最新《岩石力学》课件(完整版)
精品课程《岩石力学》ppt课件(全)
具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然而
岩石材料不同于一般的人工制造的固体材料,它是
一种典型的“连续介质”,具有复杂的地质构造和赋
存条件的天然地质体。
.
11
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
.
8
(2)60年代初意大利Vajont大坝水库高边坡的崩溃 意大利Vajont拱坝,坝高262m,
于1959年建成,是当时世界上 最高的拱坝。1963年10月9日 夜,由于大坝上游山体突然滑 坡,约2.5亿立方的山体瞬时涌 入水库,涌浪摧毁上游及下游 一个小镇与邻近几个村庄,造 成约2500人死亡,整个灾害的 持续时间仅仅5分钟。
.
3
一、引言
1. 人类活动与岩石工程(Rock Engineering)
岩石圈是人类赖以生存的主要载体,人类的大部分活动都 是在岩石圈上进行的:
远古
约4700年前 公元1600年
19世纪
石器,穴居 金字塔(146.5m) 火药采矿 铁路隧道技术
20世纪 大型水电工程
岩基、边坡,地下 洞室,隧道工程等
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论.
围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于 冒落拱内岩石的重量,仅是上覆岩石重量的一部分.
太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型.
优点与缺点
上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.
岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在
《岩石力学》课件(完整版)-第三章岩石动力学基础
能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。
《高等岩石力学》课件
岩石声波测试仪
用于测量岩石的声波速度,评估岩石的完整性、孔隙 度和弹性参数。
岩石CT扫描仪
通过X射线扫描岩石,获取岩石内部的结构和孔隙分 布信息。
岩石力学实验方法
直接拉伸试验
测量岩石在拉伸载荷下 的应力-应变关系,了解 岩石的抗拉强度和变形 特性。
《高等岩石力学》ppt课件
目 录
• 岩石力学基础 • 岩石力学性质 • 岩石力学实验 • 岩石工程稳定性分析 • 岩石工程防护与加固 • 高等岩石力学应用案例
01
岩石力学基础
岩石力学定义
总结词:基本概念
详细描述:岩石力学是一门研究岩石在各种外力作用下的变形、破裂、破坏和流 动等行为的科学。它涉及到岩石的物理性质、力学行为和地质环境等多个方面。
单轴压缩试验
测量岩石在单轴压缩下 的应力-应变关系,了解 岩石的抗压强度和变形 特性。
三轴压缩试验
模拟岩石在实际地质环 境中的受力状态,测量 岩石在三轴压力下的应 力-应变关系。
岩石力学实验结果分析
强度分析
根据实验结果,分析岩石的抗压、抗拉和抗剪 强度,评估岩石的稳定性。
变形特性分析
分析岩石的应力-应变曲线,了解岩石的弹性、 塑性 Nhomakorabea破裂特性。
地下水监测
通过监测地下水的变化情况,评估地下水对岩体的影响和破坏程 度。
06
高等岩石力学应用案 例
岩石工程设计案例
总结词 详细描述 详细描述 详细描述
通过实际案例分析,展示高等岩石力学在岩石工程设计中的应 用。
介绍某大型水电站岩石高边坡设计,如何运用高等岩石力学的 理论和方法,对边坡稳定性进行评估,并设计出合理的支护结
《岩石力学》课件(完整版)-第三章岩石动力学基础
第三十三页,共42页。
单向压缩 环向压缩
均匀压缩
第三十四页,共42页。
2.压应力愈大波速愈大
从图中可以看出,随着压力的增大,纵波的波速亦随 之增大。纵波增加的波速,在开始阶段较快,然后逐 渐变小,最后可能不增加。
3.对于层面发育的沉积岩石,当垂直于层面加 载时,在低应力阶段波速急速随应力增长而 增加,
与压应力相同方向 上的纵波波速,在 低应力阶段波速急 速增长,达到一定
程度后增速减缓
第三十八页,共42页。
与压应力垂直 方向上的纵波 波速,随应力 增长而减小( 波传动方向上 受拉应力)
第三十九页,共42页。
(二)现场量测的结果
在某工程中,测定 了巷道两帮的应力 变化对声波波速的影 响可以推断松动圈的 范围。工程测点布置 如图3-16
岩石在受到扰动时在岩体中主要传播的是弹性波,塑性
波和冲击波只有在振源才可以看到。
第二页,共42页。
• 3.在固体中可传播的弹性波可分为两类
• (1)体波:由岩体内部传播的波(2类)
•
(a)纵波(又称:初至波、Primary波)
• 质点振动的方向和传播方向一致的波
• 它产生压缩或拉伸变形。
• (b)横波(又称次到波、Second波)
• 质点振动方向和传播方向垂直的波
• 产生剪切变形。
• (2)面波:仅在岩石表面传播。
•
质点运动的轨迹为一椭圆,其长轴垂直
•
于表面,这样的面波又称为瑞利波。
•
面波速度小于体波,但传播距离大。
第三页,共42页。
• 按波面形状,应力波又区分为平面波、球面波和和柱面波。 • 波面上介质的质点具有相同的速度、加速度、位移、应力和变形。
岩石力学性质-PPT课件
粘度是衡量地球动力学的一个重要参数。
近代,人们把物体所有这些力学性质概括为物质的流变 性(rheological properties),并形成一门新兴学科 -流变学(rheology)
流变学是研究固体物质流动的科学。因此,从近代地球 科学观念来看,地球物质具有流变性。把研究地球物质 流动性质和规律的科学,称为“地球流变学(Rheology of Earth Materials)”。
时间对岩石蠕变和松弛的影响
蠕变是在恒定应力作用下,应变随时间持续增加的变形。 蠕变的结果在低于岩石弹性极限的情况下使岩石产生永
久变形。 松弛是在恒定变形情况下,岩石中应力随时间增长不断
减小。 松弛的结果:使部分弹性变形转化为永久变形,相当于
降低了岩石的弹性极限。 蠕变和松弛现象是岩石变形表现的两方面,都表现出时
(1)改写为
(3)
(4)
(1)、(3)式称为线性粘性定律(牛顿粘性定律),服从牛顿粘性定律的 材料称为牛顿流体(或线粘性流体)。具牛顿粘性变形称为粘性流体变形。
理想粘性材料的力学行为
弹塑性变形—指有些物体同时具有弹性和塑性的性 能。在弹塑性变形中,有一部分是弹性,其余为塑 性变形。
理想弹性体的变形是可逆过程,它的应力与应变 之间有一个确定的单值关系,符合虎克定律:
σ=Ee
其中E为杨氏弹性模量。
岩石变形的应力-应变曲线
非理想弹性体的变形:受力不立即产生全部弹性 变形,而是随着时间的延长逐渐增大弹性变形到 应有的值;当撤除外力后,也不立即恢复原状, 而是随时间延长逐渐恢复原状。这种现象称为弹 性后效(即滞弹性)。
流体沿着x方向流动的n个不同流层。它们的流速ů是y的函数,ů在y轴方向的 变化率称为速度梯度,dů/dy。同一位置上的剪应力(摩擦阻力)与速度梯度 呈正比关系
岩石力学课件
岩石力学课件 第一节岩石力学试验机一、试验机及岩样变形分析 1.刚度刚度:产生单位位移需要的力。
lP K ∆=l∆——沿P 方向的位移。
岩石试件的刚度:设其高度为l r 、横截面为F r 、弹模为E r ,则岩石试件刚度为:rr r rr rr l F E l Pl P K ===∆=......ε;通常:标准的岩石试件K r >0.5MN/mm 。
试验机的刚度:等效为类似于岩石试件的金属构件:设其高度为l m 、横截面为F m 、弹模为E m ,则试验机刚度为:mm m mm mm l F E l Pl P K ===∆=......ε。
通常:普通试验机K m =0.15~0.20MN/m ;K m <K r岩石强度试验中,荷载达到峰值后岩石突然全面崩溃,峰值后岩石应力应变曲线不容易得到(采矿工程中,峰后岩石承载普遍存在)。
1943年,惠特尼Whithey 首次正确解释了岩石试件达到峰值后突然崩溃的机理。
破裂原因:岩石材料刚度大于试验机刚度。
当岩石达到强度极限后,因刚度下降无法再抵抗极限荷载,导致试验机中积聚的弹性变形能急剧释放,使岩石失控而立即崩溃。
2.岩石加载过程能量积聚试验机蓄积的变形能:m m m m K PK P P P E 2212121===μ;试件蓄积的变形能:rrr r K PK P PP E 2212121===μ。
试验过程中试验机与岩石试件变形能之比:m r r m K K E E ::=显然,试验机刚度越低,其积聚的变形能越多。
3.岩石弱化过程能量释放峰值后岩石试件的能量释放:峰值后,试件将发生破裂,岩石试件刚度降低,试件中的应变能将转化为各种能量(裂缝扩展、声响、震动、热能)而释放。
注意:岩石继续变形仍需能量,试件平稳变形所需能量(r K '为峰值后弱化段刚度,图中梯形面积):r r K u u P E '∆-∆=∆221峰值后试验机的能量释放:mm K u u P E 221∆-∆=∆由于普通试验机:rmE E ∆>∆,试验机释放的能量超过试件平稳变形所需能量,因此,试件必然瞬间崩溃。
岩石力学-全部课件
1.5 岩石和岩体的基本概念
1.绪论
岩石和岩体是岩石力学的直接研究对象,因此学习和研究岩石
力学,首先要建立岩石(或岩块)和岩体的基本概念。
几个基本概念
●岩石(Rock):矿物、岩屑的集合体。 ●结构面(Structural
Plane): 指地质历史发展过程中,在岩体内形成的 具有一定的延伸方向和长度,厚度相对较小的地质界面或带。 ●岩块(Rock block 或 Rock):指不含显著结构面的岩石块体,是构成岩 体的最小岩石单元体。 ●岩体(Rockmass):指地质历史过程中形成的,由岩块和结构面网络组 成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环 境中的地质体。 ●岩体结构(Rockmass Structure):指岩体中结构面与结构体的排列组合 关系。其包括两个基本要素,即结构面和结构体。
沉积岩
1.绪论
沉积岩是由母岩(岩浆岩、变质岩或早已形成的沉积岩)在地表
经风化剥蚀而产生的物质,通过搬运、沉积和固结作用而形成的 岩石。
●颗粒包括各种不同形状和大小的岩屑及不同矿物。 ●胶结物常见的有钙质、硅质、铁质、泥质等。
沉积岩由颗粒和胶结物组成,各有不同的成分。
沉积岩的物理力学性质不仅与颗粒有关,还与胶结物有很大
23
1.5.1岩石和岩体
1.绪论 岩石
岩石是组成地壳的基本物质,它是由矿物或岩屑在
地质作用下按一定规律凝聚而成的自然地质体。
岩石可由单种矿物组成。 ●如:纯洁的大理石由方解石组成。 多数的岩石则是由两种以上的矿物组成。 ●如:花岗岩主要由石英、长石、云母三种矿物组成。 按照成因,岩石可分为三大类:岩浆岩、沉积岩和
14
1.4 岩石力学发展简况
《岩石力学性质》PPT课件
▪ 应力状态: σ1>σ2=σ3
精选ppt
26
▪ 三轴压缩试验加载示意图
▪ 真三轴
▪ σ1>σ2> σ3
▪ 假三轴
▪ σ1>σ2=σ3
精选ppt
27
▪ 3)假三轴试验装置图:
▪ 由于试件侧表面已被加压油缸的橡皮套包住,液压油不会 在试件表面造成摩擦力,因而侧向压力可以均匀施加到试 件中。其试验装置示意图如下。
线与σ轴夹角为内摩擦角,外切线及其延长线与τ
轴相交之截距即为C。
▪ 实践中采用第一种方法的人数多。
精选ppt
31
精选ppt
20
▪ 5) Hoek直剪仪试验装置
精选ppt
21
▪ 6)角模压剪试验及受力分析示意图
▪ 在压力P的作用下,剪切面上可分解为沿剪切面 的剪力Psinα/A和垂直剪切面的正应力Pcosα/A, 如图所示。
精选ppt
22
▪ 7)限制性剪切强度试验结果及其分析
▪ ①试验结果:剪切面上正应力越大,试件被剪破坏前所 能承受的剪应力也越大。
▪ a.直线形:τ轴的截距称为岩石的粘结力(或称内
聚力),记为C(MPa),与σ轴的夹角称为岩
石的内摩擦角,记为φ(度)。
▪ b.曲线形:
▪ ①一种方法是将包络线和τ轴的截距定为C,将包
络线与τ轴相交点的包络线外切线与σ轴夹角定为
内摩擦角。
▪ ②另一种方法建议根据实际应力状态在莫尔包络 线上找到相应点,在该点作包络线外切线,外切
▪ 非限制性剪切试验在剪切面上只有剪应力存在, 没有正应力存在;限制性剪切试验在剪切面上除 了存在剪应力外,还存在正应力。
岩石力学-全部课件
1.3 岩石力学的研究方法
1.绪论
由于岩石力学是一门边缘交叉学科,研究的内容
广泛,对象复杂,这就决定了岩石力学研究方法 的多样性。
根据所采用的研究手段或所依据的基础理论所属
学科领域的不同,岩石力学的研究方法大概可 归纳为以下四种:
●工程地质研究方法;
●科学实验方法; ●数学力学分析方法; ●整体综合分析方法。
下诞生的:
●二战后,各国急于医治战争
创伤,大力发展经济建设; ●水电、矿山等能源、资源的 开发,导致工程规模越来越大; ●工程条件却越来越差,经常 发生滑坡、顶板冒落等严重 事故; ●迫使人们研究失事原因,开始 从岩石力学着手探索。 ●特别是两起震惊世界的特大工 程灾害, 给人们敲响了警钟, 从而催化了岩石力学的萌芽。
同时,第一次开展了水 压法测定隧洞围岩抗力 系数的大型现场试验和 抗剪强度现场试验。
19
1.4 岩石力学发展简况
1.绪论
起步阶段
(1958年~70年代初)
1958年10月成立三峡岩基专题研究组。
此期间我国开始具体建立机构和结合工程开发室内和
现场试验。
该阶段试验做得不少,但如何结合工程实际,认识还
12
1.4 岩石力学发展简况
国际方面: ●岩石力学形成背景 ●两大著名工程灾害 ●两个里程碑事件
●萨茨堡学派
1.绪论
国内方面: ●发展的四个阶段及其主要标志
13
1.4 岩石力学发展简况
一般认为,岩石力学作为一门
1.绪论
岩石力学形成背景
独立的学科存在, 大概在 上世纪50年代。
岩石力学是在这样的背景
绪论数值分析方法有限差分法有限差分法不确定性和系统分析法随机分析随机分析极限平衡法在边坡稳定性在边坡稳定性分析中常用数学力学分析方法11有限元法边界元法无界元法流形元法不连续变形分析法块体力学反演分析法等可靠度分析灵敏度分析趋势分析时间序列分析灰色系统理论等整体综合分析方法?就整个工程进行多种方法并以系统工程为基础的综合分析
《岩石力学》课件(完整版)
(m3/s)
dh
dx ——水头变化率; qx——沿x方向水的流量;h——水头高度; A——垂直x方向的截面面积;k——渗透系数。
四、岩石的抗风化指标(3类)
(1)软化系数(表示抗风化能力的指标)
Rcc——干燥单轴抗压强度、 Rcd——饱和单轴抗压强度;
Rcc / Rcd
( 1 )越小,表示
1.频率越低,跨越裂隙宽度俞大,反之俞小
图3-7
2. 裂隙数目越多,则纵波速度愈小
3.岩体的风化程度愈高弹性波的速度亦小
4.夹层厚度愈大弹性波纵波速度愈
三、岩体波速与岩体的有效孔隙率n及吸水 率 W f 有关
一些岩浆岩,沉积 岩和变质岩的纵 波速度与有效孔 隙率n之间的关系 见图3-9所示。
静泊松比代替)求 Ed ,则
Vp
/ Vs
[
2(1
)
]
1 2
1 2
• 若 =0.25时,
• 经过各方面试验验证, 之间。
Vp /Vs =1.73
Vp /Vs 一般在1.6~1.7
三、岩体弹性波速得测定
(一)岩块声波传播速度室内测定
测定时,把声源和接收器放在岩块试件得两端,通 常用超声波,其频率为1000Hz-2MHz。(示波见图3-1)
表3-1表示了各类岩石的弹性波速与岩石种 类之间的关系。 图3-5从实例统计的角度,表示了各类岩 石的弹性波速及密度之间的关系。
VP 0.35 1.88
二、岩体波速与岩体中裂隙或夹层的关系
弹性波在岩体中传播时,遇到裂隙,则视
充填物而异。若裂隙中充填物为空气,则弹 性波不能通过,而是绕过裂隙断点传播。在 裂隙充水的情况下,声能有5%可以通过, 若充填物为其他液体或固体物质,则弹性波 可部分或完全通过。弹性波跨越裂隙宽度的 能力与弹性波的频率和振幅有关.
《岩石力学教案》课件
《岩石力学教案》PPT课件第一章:岩石力学概述1.1 岩石力学的定义岩石力学的定义和研究对象岩石力学的应用领域1.2 岩石的物理和力学性质岩石的物理性质岩石的力学性质1.3 岩石力学的研究方法实验研究理论分析和数值模拟第二章:岩石的力学行为2.1 岩石的弹性行为弹性模量和泊松比弹性应变和应力2.2 岩石的塑性行为塑性应变和应力岩石的屈服和破坏2.3 岩石的断裂行为断裂韧性和断裂强度断裂准则第三章:岩石的变形和强度3.1 岩石的变形线应变和切应变弹性变形和塑性变形3.2 岩石的强度压缩强度和拉伸强度剪切强度和抗弯强度3.3 岩石的流变行为粘弹性理论和流变模型岩石的长期强度和蠕变特性第四章:岩石力学实验4.1 岩石力学实验方法实验设备和原理实验步骤和数据采集4.2 岩石力学实验案例压缩实验剪切实验弯曲实验4.3 实验结果分析和讨论实验数据的处理和分析实验结果的可靠性和精度第五章:岩石力学在工程中的应用5.1 岩石工程中的岩石力学问题岩体支护和加固设计5.2 岩土工程中的岩石力学应用岩土工程的稳定性分析岩土工程的支护和加固技术5.3 采矿工程中的岩石力学应用矿山压力和岩层控制矿山支护和通风技术第六章:岩石力学数值模拟6.1 数值模拟方法概述有限元方法离散元方法有限差分方法6.2 岩石力学数值模型连续介质模型离散介质模型6.3 数值模拟案例分析岩体稳定性分析岩石破裂过程模拟第七章:岩石力学在地质工程中的应用7.1 地质工程中的岩石力学问题地质灾害防治7.2 地质工程中的岩石力学应用隧道工程基坑工程7.3 地球物理勘探中的岩石力学地震勘探地球物理测井第八章:岩石力学在土木工程中的应用8.1 土木工程中的岩石力学问题大坝和水库岩体稳定性道路和桥梁基础稳定性8.2 土木工程中的岩石力学应用岩体支护和加固岩体锚固技术8.3 地质灾害防治中的岩石力学滑坡防治岩体崩塌防治第九章:岩石力学在采矿工程中的应用9.1 采矿工程中的岩石力学问题矿山压力和岩层控制矿山支护和通风技术9.2 采矿工程中的岩石力学应用地下开采技术露天开采技术9.3 矿山安全与环境保护矿山安全评价矿山环境保护措施第十章:岩石力学的未来发展趋势10.1 岩石力学研究的新理论连续介质力学的发展非连续介质力学的研究10.2 岩石力学研究的新技术先进的测试技术数字图像分析技术10.3 岩石力学在可持续发展中的作用绿色岩石力学可持续岩石工程设计重点和难点解析重点环节1:岩石的物理和力学性质岩石的物理性质包括密度、孔隙度、渗透率等,这些性质对岩石的力学行为有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、岩石的孔隙性:反映裂隙发育程度的指标
(一)孔隙比 eVV /V /V
V=VC+VV
e~n关系
VV e VV VV /V V
VC VC /V V VV V
n 1 c / GW
n 1 n
三、岩石的水理性质
(一)含水性
1、含水量:岩石孔隙中含水量GW与 固体质量之比的百分数
《岩石力学》课件(完整版)
1.2 岩体力学的研究任务与内容
(1)岩体的力学特征
①不连续; ②各向异性; ③不均匀性; ④岩块单元的可移动性; ⑤地质因子特性(水、气、热、初应力)。 (2)任务
①基本原理方面(建模与参数辨别); ②试验方面(试验方法)仪器、信息处理、室内、
外、动、静; ③现场测试 ; ④实际应用
1951年《岩石力学》——最早的代表作。
1963年意大利瓦依昂水库岩坡滑动
1966年在里斯召开第一届国际岩石力学大会(一届/4年 )
全国岩石力学与工程学术会,2000年开第6届,1届/1年。
全美,全欧。 总之三个阶段:材料力学、连介力学、构造力学。
返回
第二章 岩石的基本物理力学性质
岩石的基本物理力学性质是岩体最基本、最 重要的性质之一,也是岩石力学学科中研究最 早、最完善的内容之一。
天然状态下
W=GW/G1(%)
饱和状态下
2、吸水率:岩石吸入水的质量与固体质量之比
Wd= (d )/c (%)
吸水率是一个间接反映岩石内孔隙多少的指标
(二)渗透性
在一定的水压作用下,水穿透岩石的能力。反映 了岩石中裂隙向相互连通的程度,大多渗透性可用达 西(Darcy)定律描述:
qx
k dh A dx
• (2)岩石耐崩解性指数
•
耐崩解性指数是通过对岩石试件进行烘干,浸水循
环试验所得的指标。试验时,将烘干的试块,约500g,
分成10份,放入带有筛孔的圆筒内,使圆筒在水槽中以
•
20r/s速度连续转10分钟,然后将留在圆筒内的石块取 出烘干称重。如此反复进行两次,按下式计算耐崩解性
• 指数:
Id2 mr /ms%
试验前的试件烘干质量 m r ;残留在筒内的试件烘
•
干质量 m s
(三)岩石的膨胀性
评价膨胀性岩体工程的稳定。
1、自由膨胀率:无约束条件下,浸水后胀 变形与原尺寸 之比
轴向自由膨胀 VHH/H (%)
H——试件高度
径向自由膨胀 VDD/D (%)
D——直径
返回
第三章 岩石动力学基础
第一节 岩石的波动特性 一、固体中应力波的种类
(m3/s)
dh
dx
——水头变化率;
qx——沿x方向水的流量;h——水头高度; A——垂直x方向的截面面积;k——渗透系数。
四、岩石的抗风化指标(3类)
(1)软化系数(表示抗风化能力的指标)
Rcc——干燥单轴抗压强度、
Rcd——饱和单轴抗压强度;
Rcc/Rcd
( 1 )越小,表示
岩石受水的影响越大。
1. 定义:所谓波,就是某种扰动或某种运动参数 或状态参数(例如应力、变形、震动、温度、 电磁场强度等)的 变化在介质中的传播。应 力波就是应力在固体介质中的传播。
2. 分类:(4类)
• 弹性波: 在应力应变关系服从虎克定律的介质 中传播的波。
• 粘弹性波 在非线性弹性体中传播的波, 这种波,除弹性变形产生的弹性应力外, 还产生又摩擦应力或粘滞应力。
第一节 基本物理性质
一、岩石的质量指标 (一)密度和比重
1、岩石的密度:单位体积内岩石的质量。 岩石含:固相、液相、气相。
三相比例不同而密度不同。
(1)天然密度:自然状态下,单位体积质量
G/V
G——岩石总质量;V——总体积。
(2)饱和密度:岩石中的孔隙被水充填时的单 位体积质量(水中浸48小时)
dG 1 V V VW (K/N m 3)
VV——孔隙体积
(3)干密度:岩块中的孔隙水全部蒸发后的单位体 积质量(108℃烘24h)
c G1 /V (KN/m3)
G1——岩石固体的质量。
2、岩石的比重:岩石固体质量(G1)与同体积 水在4℃时的质量比
G 1/(VCW)
VC——固体积; W ——水的比重
• 塑性波 应力超过弹性极限的波。 • 冲击波 如果固体介质的变形性质能使
大扰动的传播速度远比小扰动的传播速 度大,在介质中就会形成波头陡峭的、 以超声波传播的冲击波。
岩石在受到扰动时在岩体中主要传播的是弹
性波,塑性波和冲击波只有在振源才可以看到。
• 3.在固体中可传播的弹性波可分为两类
•交通方面 :北京道路面积4.4m2/人;东京11.3m2/ 人;伦敦21.3m2/人。
1.3 岩体力学的研究方法
研究方法:实验、理论分析与工程应用相结合
实验 理论
室内
岩块(拉、压、剪…) 模拟 收敛(表面位移)
野外 位移 应力
应变 绝对位移、相对位移(内部)
压力 连介
非连介
数值方法
有限元 离散元 DDA
1.4 岩体力学在其它学科中的地位
力学 (固体力学分支)、地质学、岩土工程
1.5 岩石力学的发展简史
(1)1925年泰沙基(Terzaghi)《建筑土力学》
(2)地质力学的岩石力学学派(奥地利学派(萨尔茨堡 学派)缪勒<L.Miiller>)否认小岩块试件的力学试验。
(3)工程岩石力学学派,法国塔洛布尔(J.Talober)
(4)相关任务
•城市化:我国1989年不到20%,2000年为35.7%, 2010达45%,为减少占用地面土地,发展地下空间。
•人口密度:拥人极限2万/km2,而上海达4万/km2(局 部16万/km2),北京达2.7万/km2。
•绿化指标:1990年全国城市绿化面积3.9m2/人,上 海 0 . 9 m2/ 人 ( 国 家 要 求 2 m2/ 人 ) 。 联 合 国 建 议 : 4 0 m2/ 人 ( 莫 斯 科 4 4 m2/ 人 ; 伦 敦 2 2 . 8 m2/ 人 ; 巴 黎 25m2/人)。
岩 石 工 岩岩 地 程 体体 质 地 结力 调 质 构学 查 分 划性 区 分质 试 验
初始应力 岩体赋存条件分析
结构面几
何特征
介质的模型化 物理
数学
经典解析法 正反
计算 数值计算法
分析
岩 体
加 固
施
工措
程 设
施
工
长 期 监 测
分类确定岩体的质量等级
计
物理模拟 模拟试验
相似材料
反馈分析
经验判据
图1-1 岩石力学研究步骤的框图