用放缩法证明不等f式

合集下载

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

巧用放缩法证明数列不等式

巧用放缩法证明数列不等式

证明数列不等式问题一般较为复杂.解答这类问题的常用方法是放缩法,通常要灵活运用数列的定义、性质、通项公式、前n 项公式对不等式进行变形、化简,再运用不等式的性质对数列不等式进行适当的放缩.而证明数列不等式的关键是对不等式进合理的放缩,下面重点谈一谈运用放缩法证明数列不等式的几个技巧.一、通过裂项进行放缩有些数列不等式中的各项为分式,通过变形可裂为两项之差的形式,此时可利用裂项求和法来求得数列的和,再对其进行放缩,从而证明不等式.有时数列的通项公式不能直接裂项,可先将其进行适当的放缩,再进行求和.例1.求证:∑k =1n1k2≤53.证明:因为1k 2=44k 2<44k 2-1=2æèöø12k -1-12k +1,所以∑k =1n 1k 2=1+∑k =2n 1k 2<1+∑k =2n2æèöø12k -1-12k +1=1+2æèöø13-15+15-17+⋯+12n -1-12n +1=1+2æèöø13-12n +1<1+23=53.该数列的通项公式为分式,可根据不等式的可加性和传递性,将其放缩44k 2-1,再将其裂项为2æèöø12k -1-12k +1,这样便可运用裂项相加法求得数列的和,运用放缩法快速证明不等式.二、利用基本不等式进行放缩若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.运用基本不等式可快速将两式的和或积放大或缩小.在运用基本不等式进行放缩时,要注意三个条件“一正”“二定”“三相等”.需根据已知的关系式或目标式,合理配凑出两式的和或积,并使其一为定值.在证明数列不等式时,有时要用到基本不等式的变形式,如a +b +c ≥3abc 3、a 21+a 22+⋯+a 2nn≥a 1a 2⋯a n n 等,对所要证明的不等式进行放缩.例2.设S n =1×2+2×3+⋯+n ()n +1,求证:n ()n +12<S n <()n +122.证明:设a k =k ()k +1(k =1,2,⋯,n ),因为k <k ()k +1<k +k +12=k +12,所以∑k =1n k <∑k =1n k ()k +1<∑k =1n(k +12),即n ()n +12<S n <n ()n +12+n 2<()n +122.该数列中含有根式,很难快速求得数列的和,于是将其通项看作两式的积,构造出两式的和式,便可利用基本不等式将数列中的每一项进行放缩,再根据等差数列的前n 项和公式进行求解,即可证明不等式.三、根据数列的单调性进行放缩数列具有单调性,所以在证明数列不等式时,可根据不等式的特点找出其中的通项公式,通过作差或作商来判断数列的单调性.若a n ≥a n +1,则该数列单调递增,若a n ≤a n +1,则该数列单调递减,即可利用数列的单调性来放缩不等式.例3.求证:12≤1n +1+1n +2+⋯+1n +n <710(n ∈N *).证明:令S n =1n +1+1n +2+⋯+1n +n ,则S n +1-S n =æèöø1n +2+1n +3+⋯+1n +n +1n +n +1-æèöø1n +1+1n +2+⋯+1n +n =14æèöøn +12()n +1>0.可知数列{}S n 单调递增,因此S n ≥S 1=12.又因为S n +1-S n =14æèöøn +12()n +1<14æèöøn +14æèöøn +54=14×æèççççöø÷÷÷÷1n +14-1n +54=14n +1-14n +5,即S n +14n +1>S n +1+14n +5,可知数列{}S n +14n +1单调递减,所以S n +14n +1≤S 1+14+1=710.综上可得12≤S n <710,即12≤1n +1+1n +2+⋯+1n +n <710.总之,运用放缩法证明数列不等式,关键是对数列的通项公式、和式进行合理的放缩.同学们可根据目标不等式的结构特点,对通项公式进行裂项,也可利用基本不等式,还可以根据数列的单调性来进行放缩.(作者单位:江西省临川第二中学)解题宝典41。

导数的应用-切线放缩证明不等式

导数的应用-切线放缩证明不等式
点P处的切线。
单切线放缩
例1.求证:当x>0时,1+2x<e2x
例1:
单切线放缩
例2:
注:(1)该方法适用于凹函数与凸函数且它们的凹凸性相反
的问题(拆成两个函数); ----数形结合
(2)两函数有斜率相同的切线,这是切线放缩的基础。引入
一个中间量,分别证明两个不等式成立,然后利用不等式的传
递性即可;
明.
小结
1.切线放缩法实质是以直(切线)代曲(原函数);
2.切线放缩法中常用的两个定理必须先证明后使用;
3.证明流程为:求切线—构造差函数—证明差函数恒正
(负)--原不等式成立.
4.对于较为简单的导数试题,往往只涉及到一次切线放缩,
但是有些压轴试题涉及到两次不同的切线放缩.
----以直代曲
(3)难点在合理拆分函数,寻找它们斜率相等的切线隔板.
单切线放缩
例3:
略,
注:含参函数有时需要根据函数特征将原函数进行适当放缩.
单切线放缩
例4:
注:复杂形式的函数需要将函数适当转化后再进行放缩.
双切线放缩
例5:
a>1
注:含有两个零点的f(x)的解析式(可能含有参数, ),
告知方程f(x)=b有两个实根,要证明两个实根之差小于
(或大于)某个表达式.求解策略是画出f(x)的图象,并
求出f(x)在两个零点处(有时候不一定是零点处)的切线
方程(有时候不是找切线,而是找过曲线上某两点的直
线),然后严格证明曲线f(x)在切线(或所找直线)的上
方或下方,进而对, 作出放大或者缩小,从而实现证
导数的应用
--切线放缩法证明不等式
复习引入:曲线在某一点处的切线的定义

证明不等式的定积分放缩法

证明不等式的定积分放缩法

证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。

具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。

下面我们以一个简单的例子来说明定积分放缩法的具体应用。

假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。

具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。

为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。

可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。

总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式

用放缩法证明数列中的不等式数列的放缩法是一种通过递推关系以及寻找合适的不等式对数列进行估计的方法。

该方法在不失一般性的情况下,常常可以将原数列与一个已知数列进行比较,从而推导得出数列的性质。

本文将通过数学归纳法,对给定的数列进行放缩法证明,并给出详细推导过程。

假设我们有一个数列${a_n}$,其中$n \geq 1$。

我们要证明数列中的不等式,即要证明对于任意的$n \geq 1$,有$a_n \leq b_n$,其中${b_n}$是一个已知的数列。

我们将使用数学归纳法来证明这个结论。

首先,我们对$n=1$进行证明,即证明$a_1 \leq b_1$。

因为$n=1$是最小的情况,所以我们直接检验$a_1$和$b_1$的大小关系即可。

接下来,我们假设当$n=k$时,不等式$a_k \leq b_k$成立,即数列前$k$项满足不等式。

然后,我们要证明当$n=k+1$时,不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数列的递推关系,我们可以推导出数列前$k+1$项的关系式:$$a_{k+1}=f(a_k)$$其中$f(x)$是一个函数,表示数列的递推关系。

由于我们已经假设在$n=k$时$a_k \leq b_k$成立,因此我们可以得到:$$a_{k+1} = f(a_k) \leq f(b_k)$$这是因为$f$是一个单调递增的函数,所以不等式保持不变。

根据已知数列${b_n}$的性质,我们可以得到:$$f(b_k) \leq b_{k+1}$$这里的不等式是基于对已知数列的假设,即已知数列${b_n}$满足这个不等式。

综合以上的不等式关系$$a_{k+1} \leq f(b_k) \leq b_{k+1}$$因此,当$n=k+1$时不等式$a_{k+1} \leq b_{k+1}$也成立。

根据数学归纳法原理,我们可以得出结论:对于任意的$n \geq 1$,数列${a_n}$满足不等式$a_n \leq b_n$。

放缩法证明不等式

放缩法证明不等式

放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。

但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。

比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。

数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。

“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。

因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。

利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。

做到放大或缩小恰到好处,才有利于问题的解决。

一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。

放缩法妙解不等式问题(学生版)

放缩法妙解不等式问题(学生版)

放缩法妙解不等式问题【典型例题】例1.已知函数f(x)=1ae x-1+x,其中a∈R且a≠0.(1)设a>0,过点A-1,-12作曲线C:y=f(x)的切线(斜率存在),求切线的斜率;(2)证明:当a=1或0<a≤2e时,f(x)≥12ax(x≥-1).例2.已知函数f(x)=(x2-2x+2)e x-12ax2(a∈R).(1)当a=e时,求函数f(x)的单调区间;(2)证明:当a≤-2时,f(x)≥2.例3.已知函数f(x)=2ln x+sin x+1,函数g(x)=ax-1-b ln x(a,b∈R,ab≠0).(1)讨论g(x)的单调性;(2)证明:当a=b=1时,g(x)≥0.(3)证明:f(x)<(x2+1)e sin x.例4.已知函数f(x)=ae x(a∈R),g(x)=ln xx+1.(1)当a=1e时,求函数y=f(x)在(1,f(1))处的切线方程;(2)当a≥1e时,证明:f(x)-g(x)≥0.例5.已知函数f(x)=e x-ax3.(1)若x∈(0,+∞),f(x)≥0恒成立,求a的取值范围;(2)证明:当a=23时,f(x)>0;(3)证明:当n∈N*时,1e +2e2+3e3+⋯+ne n<3.例6.已知函数f(x)=ae x,g(x)=ln(x-1)+1.(1)设G(x)=f(x)-g(x),x=3是G(x)的极值点,求函数G(x)的单调区间;(2)证明:当a≥1e2时,f(x)≥g(x).例7.已知函数f(x)=e x-1-x-ax2,其中e为自然对数的底数.(1)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围;(2)若x>0,证明:(e x-1)ln(x+1)>x2.【同步练习】1.已知函数f(x)=ln(x-a)x.(1)若a≤-1.证明f(x)在(0,+∞)上单调递减;(2)若x>0,证明:e x ln(x+1)>x2+ln(x+1)(其中e=2.71828⋯是自然对数的底数)2.已知函数f(x)=x2+x+e2x ln x,x∈(e,+∞).(1)证明:当x∈(e,+∞)时,ln x>3x-ex+e;(2)若存在x0∈[n,n+1)(n∈N*)使得对任意的x∈(e,+∞)都有f(x)≥f(x0)成立.求n的值.(其中e=2.71828⋯是自然对数的底数).3.已知函数f(x)=x ln x-ae x+a,其中a∈R.(1)若f(x)在定义域内是单调函数,求a的取值范围;(2)当a=1时,求证:对任意x∈(0,+∞),恒有f(x)<cos x成立.4.已知函数f(x)=e-x13x3-2x+2sin x+1,g(x)=sin x+cos x+x2-2x.(1)求g(x)在点(0,g(0))处的切线方程;(2)证明:对任意的实数a≤1,g(x)≥af(x)在[0,+∞)上恒成立.5.已知函数f(x)=e x+cos x-2,f′(x)为f(x)的导数.(1)当x≥0时,求f′(x)的最小值;(2)当x>-π2时,xex+x cos x-ax2-2x≥0恒成立,求a的取值范围.6.已知函数f(x)=ae x-b ln x,曲线y=f(x)在点(1,f(1))处的切线方程为y=1e -1x+1.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>0.7.已知函数f(x)=ae x-b ln xx,在点(1,f(1))处的切线方程为y=(e-1)x+1.(1)求a,b;(2)证明:f(x)>1.8.已知函数f(x)=me x-ln x-1.(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m≥1时,证明:f(x)>1.-1,a∈R.9.已知函数f(x)=ln x+ax(1)若函数f(x)的最小值为0,求a的值.(2)证明:e x+(ln x-1)sin x>0.。

高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)

1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n !求证.2)1(2)1(2+<<+n S n n n例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1−+>++++n n n f f f ! 例3 求证),1(221321N n n n C C C Cn n nn n n ∈>⋅>++++−!.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++!2211≤1.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>−++++n n ! 例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+−++++=∗n N n a nn a n x f xx x x 给定!求证:)0)((2)2(≠>x x f x f 对任意∗∈N n 且2≥n 恒成立。

例7 已知112111,(1).2n nna a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L)例8 已知不等式21111[log ],,2232n n N n n ∗+++>∈>L 。

2[log ]n 表示不超过n 2log 的最大整数。

设正数数列}{n a 满足:.2,),0(111≥+≤>=−−n a n na a b b a n n n 求证.3,][log 222≥+<n n b ba n再如:设函数()x f x e x =−。

(Ⅰ)求函数()f x 最小值;(Ⅱ)求证:对于任意n N ∗∈,有1().1nn k k ene =<−∑ 例9 设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a3. 部分放缩例10 设++=a na 21111,23a aa n ++≥L ,求证:.2<n a例11 设数列{}n a 满足()++∈+−=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++na a a ii !. 4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(8)32(++<n n n . 例13 设数列}{n a 满足).,2,1(1,211!=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f −=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f (Ⅰ)求a 的值;(Ⅱ)设∗+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15 数列{}n x 由下列条件确定:01>=a x ,,211⎟⎟⎠⎞⎜⎜⎝⎛+=+n n n x a x x N n ∈. (I) 证明:对2≥n总有a x n≥;(II) 证明:对2≥n 总有1+≥n n x x6 . 换元放缩例16 求证).2,(1211≥∈−+<<∗n N n n n n例17 设1>a ,N n n ∈≥,2,求证4)1(22−>a n a n.7 转化为加强命题放缩例18 设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a 例19 数列{}n x 满足.,212211nx x x x n n n +==+证明.10012001<x例20 已知数列{a n}满足:a 1=32,且a n=n 1n 13na n 2n N 2a n 1∗≥∈--(,)+- (1)求数列{a n }的通项公式;(2)证明:对一切正整数n 有a 1•a 2•……a n <2•n!8. 分项讨论例21 已知数列}{n a 的前n 项和n S 满足.1,)1(2≥−+=n a S n n n(Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++ma a a !.9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数n p p p p 2321,,,,!满足12321=++++n p p p p !,求证:np p p p p p p p n n −≥++++222323222121log log log log !10. 构造辅助函数法例23 已知()f x = 2ln 243x x +−,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<−++(1)求()f x 在⎥⎦⎤⎢⎣⎡−021,上的最大值和最小值; (2)证明:102n a −<<; (3)判断n a 与1()n a n N ∗+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎞−−⎜⎟++⎝⎠≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .例25 已知函数f(x)=x 2-1(x>0),设曲线y=f(x)在点(x n ,f(x n ))处的切线与x 轴的交点为(x n+1,0)(n∈N *). (Ⅰ) 用x n 表示x n+1; (Ⅱ)求使不等式1n n x x +≤对一切正整数n 都成立的充要条件,并说明理由;(Ⅲ)若x 1=2,求证:.31211111121−≤++++++n n x x x !例1 解析 此数列的通项为.,,2,1,)1(n k k k a k !=+=2121)1(+=++<+<k k k k k k ∵,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里3,2=n 等的各式及其变式公式均可供选用。

几种常见的放缩法证明不等式的方法

几种常见的放缩法证明不等式的方法

For personal use only in study and research; not for commercialuse几种常见的放缩法证明不等式的方法一、 放缩后转化为等比数列。

例1. {}n b 满足:2111,(2)3n n n b b b n b +≥=--+(1) 用数学归纳法证明:n b n ≥(2) 1231111...3333n n T b b b b =++++++++,求证:12n T < 解:(1)略(2)13()2(3)n n n n b b b n b ++=-++ 又 n b n ≥132(3)n n b b +∴+≥+ , *n N ∈迭乘得:11132(3)2n n n b b -++≥+≥ *111,32n n n N b +∴≤∈+ 234111111111...2222222n n n T ++∴≤++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。

这道题如果放缩后裂项或者用数学归纳法,似乎是不可能的,为什么?值得体味!二、放缩后裂项迭加例2.数列{}n a ,11(1)n n a n +=-,其前n 项和为n s求证:2n s <解:2111111...234212n s n n =-+-++-- 令12(21)n b n n =-,{}n b 的前n 项和为n T当2n ≥时,1111()2(22)41n b n n n n≤=--- 2111111111111()()...()2123043445641n n s T n n ∴=≤+++-+-++--71104n =-< 点评:本题是放缩后迭加。

放缩的方法是加上或减去一个常数,也是常用的放缩手法。

值得注意的是若从第二项开始放大,得不到证题结论,前三项不变,从第四项开始放大,命题才得证,这就需要尝试和创新的精神。

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧(含答案)work Information Technology Company.2020YEAR证明数列不等式的常用放缩方法技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:aa >+12;n n n >+)1(⑵将分子或分母放大(或缩小)⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3lg 2=<=+<⋅; 2)1()1(++<+n n n n⑷二项式放缩: n n n n n n C C C +++=+= 10)11(2,1210+=+≥n C C n n n , 2222210++=++≥n n C C C n n n n )2)(1(2≥->n n n n(5)利用常用结论:Ⅰ.的放缩 <Ⅱ. 21k 的放缩(1) : 2111(1)(1)k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ.21k 的放缩(3):2214112()412121kk k k <=+--+(程度更小)Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b ma mb ab 和)0,0(>>>++<m b a ma mb ab 记忆口诀“小者小,大者大”。

解释:看b ,若b 小,则不等号是小于号,反之亦然. Ⅵ.构造函数法 构造单调函数实现放缩。

放缩法证明不等式的基本策略

放缩法证明不等式的基本策略

5
ak 2k 1 1 1 1 1 1 1 1 证明: k 1 k . k , k 1, 2,..., n, k 1 k ak 1 2 1 2 2(2 1) 2 3.2 2 2 2 3 2
a a1 a2 n 1 1 1 1 n 1 1 n 1 ... n ( 2 ... n ) (1 n ) , a2 a3 an1 2 3 2 2 2 2 3 2 2 3
“放缩法”证明不等式的基本策略
近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的 一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基 本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知 识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往 往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试 题,例谈“放缩”的基本策略,期望对读者能有所帮助。 用放缩法证明不等式的方法与技巧
1
(8) 1
1 1 1 1 1 1 n n 等等 2 3 n n n n n
1、添加或舍弃一些正项(或负项) 例 1、已知 an 2n 1(n N * ). 求证:
a n 1 a1 a2 ... n (n N * ). 2 3 a2 a3 an1
2
例 3、已知 an=n ,求证: ∑ 证明:∑
n
n
2 k=1 ak
k
n
<3.
k a
2 k
k=1
=∑

如何破解用放缩法证明不等式

如何破解用放缩法证明不等式

( l1 22 … +an ) Ⅱb +Ⅱb + n ≤ ( Ⅱ +・ + Ⅱ+ ; ・
0囊
维普资讯
教学参考
n )・ 6 +b + … + ) : ({ ; .
2 如何 避免 放缩 过 当
— — — — —
一 =
- 【 一



) 一 1 1
’ n2 2 ( n+ 2 )

1 )
一;

放 缩法 是不 等式 证 明的 . 种 重要 数 学思 想 方 一 法. 而放 缩过 程 中会 不知不 觉 间“ 控 ” 要 么放 得 失 , 过 大 , 么 放 得 过 小 , 不 到 欲 证 的 目标 . 之 毫 要 达 差
缩法 过程 中如何避 免放缩 过 当等 问题.
1 常 见的类 型和方 法


, 证: 求 /

< <


F <
简析 : 为 n一 、 因

j 《
< 、
放 缩

所 以
鍪 例 已n、三形三长 >, s 、 I 1 知、为角的边, o 一 6 c
放 缩 , 得 可
例 证 + + + + l求 : 嘉 …

4’

左 < + 一 1 1 边 1再 1 1 7  ̄ , 1
调整 成 功 , 然 从 第 三 项 开始 放 缩 所 得 的结 显
果 比从第 二项 开始 放缩 所得 的 结果 又更 小 些 , 以
一 1 1 … + + +
1+
窨 I 1一31 1 )丽 n < u 1‘ V 一
一 c一 ÷
n < 1c

高中数学讲义:放缩法证明数列不等式

高中数学讲义:放缩法证明数列不等式

放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。

本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。

放缩法证明不等式例题

放缩法证明不等式例题

放缩法证明不等式一、放缩法原理为了证明不等式B A ≤,我们可以找一个或多个中间变量C 作比较,即若能判定B C ,C A ≤≤同时成立,那么B A ≤显然正确。

所谓“放”即把A 放大到C,再把C 放大到B ;反之,由B 缩小经过C 而变到A,则称为“缩”,统称为放缩法。

放缩是一种技巧性较强的不等变形,必须时刻注意放缩的跨度,做到“放不能过头,缩不能不及”。

二、常见的放缩法技巧1、基本不等式、柯西不等式、排序不等式放缩 2、糖水不等式放缩:)b a ,0m (ma mb a b >≥++≤. 3、添(减)项放缩4、先放缩,后裂项(或先裂项再放缩)5、逐项放大或缩小:)1n (n 1n 1)1n (n 12-<<+ 21n 2)1n (n n +<+<)12)(32(1)12(12--<-n n n )12)(12(1)12(12+->-n n n )22(21)12(12+<+n n n三、例题讲解例1:设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3例2:设a 、b 、c ≥0,且3=++c b a ,求证abc c b a 23222+++≥29例3:已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈例4:函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+.例5:已知a n =n ,求证:∑nk=1 ka 2k<3.例6: 已知数列{}n a ,,132a =,113(2,*)21n n n na a n n N a n --=≥∈+-.(1)求数列{}n a 的通项公式;(2)对一切正整数n ,不等式123!n a a a a n λ⋅⋅<⋅恒成立,试求正整数的最小值。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

谈谈证明数列不等式的三种方法

谈谈证明数列不等式的三种方法

解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。

高考数学放缩法证明数列不等式之常数型与函数型(解析版)

高考数学放缩法证明数列不等式之常数型与函数型(解析版)

放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n=n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×n n -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n 1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n +a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。

放缩法在不等式证明中的应用

放缩法在不等式证明中的应用


x=-
2 3
,则 - 2 3
<x3 <0, 故

2 3
+4 <
x1+x2+x3<0+4,即
10 3
<x1+x2+x3<4,故
x1+x2+x3
的取值范围是(10 ,4)。 3
评注 等价转化法,往往可以使问题化繁
为简、化抽象为具体、化未知为已知、化陌生为
熟悉。使用等价转化法解题的关键在于明确转
化的方向和目标,把握数学知识的内在联系。
总之,填空题的解题方法不拘一格,灵活
多样,除了上述所说的三种方法外,还有构造
法、数形结合法、归纳推理法、综合分析法等。
在平时的解题练习中,同学们应立足实际,根
据题目要求,灵活选用恰当的方法,准确、快
速、巧妙解题。
(作者单位:江苏省盐城市田家炳中学)
思维之锥
得出该函数在区间内为单调递增函数,所以有:
姨 n +姨n+1 2姨 n 姨 n +姨n-1
还有不等式放缩、构造数列放缩和运用二项
姨 n -姨n-1 。
式定理放缩等方法。同学们应在平时多加积 数
三、运用部分放缩解题
例 3 已知二次函数 (f x)满足 (f -1)=0,
且对任意
x∈R,x≤(f x)≤
1 2
(x2+1)恒成立。
累,掌握好放缩法的规律,只有理解其思维过 学 程,才能触类旁通,在解题中适当灵活地运用 篇 这种方法。
2(姨 n -姨n-1 )
=2 ( 姨 n -
(姨 n +姨n-1 )(姨 n -姨n-1 )
姨n-1 ),所以有:1+ 1 + 1 +…+ 1
姨2 姨3
姨n
<2 (姨 1 - 姨 0 + 姨 2 - 姨 1 +…+ 姨n-1 -

20181207放缩法证明不等式

20181207放缩法证明不等式
2
(2)若 f (x) 在定义域内为增函数,求a 的取值范围;
(3)设 g(x) f (x) x2 1 ,当a 1 时,
求证:① g(x) 0在其定义域内恒成立;
求证:②
ln 22 ln 32 22 32

ln n2 n2

2n2 n 1
2n 1

例4. 证明: x2ex-lnx>1 .
O
1
x
x 1
x 1
x
≤lnx≤ x ≤ 1
y x
y
2
y=x-1
y=lnx
y x1 x
O
1
x
x1 ≤
x 1 x≤lnx≤ x-1
x
2
(0<x≤1)
6.(本小题满分 14 分)设函数 f (x) ln x x2 ax 。 (1)若 f (x) 在x 1 处取得极值,求a 的值;
O
1
x
方法三:
方法四:
又由
f '(x0)=0
得:( x02
2 x0 ) ex0

1 x0

0
e x0

1 x02 ( x0
2)
x02 e x0

1 x0 2
f (x)≥ f (x0)=
x02ex0 ln x0 =
1 x0 2 ln x0
构造函数 h(x)=
1 ln x x2
,
x


放缩法证明不等式
放缩的方法
1。运用基本不等式和常见结论进行放缩 2。运用切线方程进行放缩 3。运用题目给出的不等式进行放缩。 4。运用参数范围进行放缩
切线放缩原理及常见的切线放缩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用放缩法证明不等式
不等式是高考数学中的难点,而用放缩法证明不等式学生更加难以掌握。

不等式是衡量学生数学素质的有效工具,在高考试题中不等式的考查是热点难点。

本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力。

放缩法的理论依据是不等式性质的传递性,难在找中间量,难在怎样放缩、怎样展开。

证明不等式时,要依据题设、题目的特点和内在联系,选择适当的放缩方法。

⒈利用三角形的三边关系
[例1]已知a,b,c是△ABC的三边,求证:
证明:﹥∵=为增函数,又∵
∴。

点评:学生知道要利用三角形的三边关系,但无法找到放缩的方法,难在构造函数。

⒉利用函数的单调性
[例2]求证:对于一切大于1的自然数n,恒有。

证明:原不等式变形为,
令则

所以。

即是单调增函数(n=2,3,…),所以。

故原不等式成立。

点评:一开始学生就用数学归纳法进行尝试,结果失败,就放弃了。

若使不等式的右边变为常数,再用单调性放缩就好了。

⒊利用基本不等式
[例3]已知f(x)=x+(x﹥0) 求证:-
证明:,
设(1)
(2)
(1)+(2)得
点评:用数学归纳法证明,思路简单,但是难度很大,可以通过二项式定理展开,倒序法与基本不等式相结合进行放缩。

⒋利用绝对值不等式
[例4]设=,当时,总有,求证:。

证明:∵,∴,,,
又∵∴
所以,∴=7。

点评:本题是一道函数与绝对值不等式综合题,学生不能找到解题的突破口,关键在于找到a,b,c与f(0),f(1),f(-1)的联系,再利用绝对值内三角形不等式适当放缩。

⒌利用不等式和等比数列求和
[例5]求证:。

证明:=,利用不等式
∴﹤=﹤。

点评:有些学生两次用错位相减进行放缩,但是没有找到恰当的变形放缩,对利用不等式进行放缩不熟悉。

若经过“凑”与不等式相结合,再利用等比数列求和放缩就到了。

⒍利用错位相减法求和
[例6]已知a1, a2, a3, ……, a n, ……构成一等差数列,其前n项和为S n=n2, 设b n=, 记{b n}的前n项和为T n, (1) 求数列{a n}的通项公式;(2) 证明:T n<1。

解:(1) a1=S1=1, 当n≥2时, a n=S n-S n-1=2n-1; 由于n=1时符合公式,
∴ a n=2n-1 (n≥1). (2) T n=, ∴ T n=
,
两式相减得T n=+=+(1-)-,
∴ T n=+(1-)-<1。

⒎利用裂项法求和
[例7]已知函数在上有定义,且满足①对任意的
②当时,.证明不等式. 证明:令,则.令,则,故在
上为奇函数.
设,且由可得
,则由题有,故
,即,所以为上减函数.从而函数在时,.
所以,即
.
点评:本题将数列与不等式、函数综合考查数学逻辑推理能力,分析问题能力,变形能力,可以用数学归纳法证明不等式,但学生解题的过程不过完善。

若用裂项法进行数列求和放缩就简单
⒏利用二项式定理展开
[例8]已知数列满足(n∈N*),是的前n项的和,并且.
(1)求数列的前项的和;(2)证明:≤.(3)求证:
解: (1)由题意得
两式相减得
所以再相加
所以数列是等差数列.又又
所以数列的前项的和为.
而≤. (3)证明:
点评:这是一道很有研究价值的用放缩法证明不等式的典例。

考查了与an 的关系,有些学生没有对an中的n进行讨论,也没有合并,虽用了二项式展开,但无法构造不等式进行放缩。

对第3小题的放缩也可裂项法求和进行放缩。

相关文档
最新文档