全称量词与特称量词
全称命题和特称命题的形式及真假判断
深层次的认识.
.
3
探究(一):全称量词的含义和表示
思考1:下列各组语句是命题吗?两者有 什么关系? (1)x>3;
对所有的x∈R,x>3.
(2)2x+1是整数;
对任意一个x∈Z,2x+1是整数.
(3)方程x2+2x+a=0有实根; 任给a<0,方程x2+2x+a=0有实根.
.
4
思考2:短语“所有的”“任意一个” “任给”等,在逻辑中通常叫做全称量
.
13
整除”等,你能列举一个特称命题的实 例吗?
思考4:符号语言“ x0∈M,p(x0)”所
表达的数学意义是什么?
存在M中的元素x0,使p(x0)成立.
.
11
思考5:下列命题是特称命题吗?其真假
如何?
(1)有的平行四边形是菱ቤተ መጻሕፍቲ ባይዱ;
真
(2)有一个实数x0,使 x022x030;假
(3)有一个素数不是奇数;
真
(4)存在两个相交平面垂直于同一条直
线;
假
(5)有些整数只有两个正因数; 真
(6)有些实数的平方小于0.
假
.
12
思考6:如何判定一个特称命题的真假?
x0∈M,p(x0)为真:能在集合M中找
出一个元素x0,使p(x0)成立;
x0∈M,p(x0)为假:在集合M中,使
p(x)成立的元素x不存在.
对x0M,P(x0)都不成立.
(3)|x-1|<1;
有些x0∈R,使|x0-1|<1.
.
9
思考2:短语“存在一个”“至少有一 个”“有些”等,在逻辑中通常叫做存
在量词,并用符号“ ”表示,你还能
列举一些常见的存在量词吗?
1.4.2 全称命题与特称命题的否定
温故知新
全称量词: “所有的”, “任意一个”, “一切” ,
“每一个”, “任给”……常用符号“"”表示.
全称命题:含有全称量词的命题叫做全称命题.
全称命题格式为: 对M中任意一个x,有p(x)成立.
符号语言表示为: "x∈M,p(x).
温故知新
存在量词:“存在一个”, “至少有一个”,“有
7.(2010 年高考湖南卷文科 2)下列命题中的假命题 是 ... A. $x R, lg x 0 C. B. $x R, tan x 1 D. "x R, 2x > 0
"x R, x3 > 0
一不变:元素的性质不变.
练习: 写出下列命题的否定 . (1) p: $x0∈R, x02 + 2x0 + 2 ≤ 0; (2) p: 有的三角形是等边三角形; (3) p: 有一个素数含三个正因数 . 注意: 特称命题的否定是全称命题.
写出下列命题的否定:
(1) p: ∃x0∈R , x02 + 2x0 + 2 ≤ 0;
p:每一个平行四边形都不是菱形.
( 3)$x0 R, x + 1 < 0 .
2 0
p : "x R , x 2 + 1 0 .
特称命题的否定
特称命题: p: $x0∈M , p(x0) ﹁ p: "x∈M , ﹁ p(x) 特称命题的否定: 注意事项:
三变:更换量词,否定结论,给元素去下标;
∀x∈M,¬ p(x)
课堂小结
1、全称量词、全称命题的定义. 2、全称命题的符号记法. 3、判断全称命题真假性的方法. 4、存在量词、特称命题的定义. 5、特称命题的符号记法. 6、判断特称命题真假性的方法. 7、含有一个量词的否定.
全称量词与存在量词(讲义)解析版--2023年初升高暑假衔接之高一数学
1.5全称量词与存在量词1.全称量词与全称量词命题(1)全称量词短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示(2)全称量词命题含有全称量词的命题,叫做全称量词命题(3)全称量词命题的符号及记法记作:M x ∈∀,()x p 读作:对任意x 属于M ,有()x p 成立考点1.判断全称量词命题的真假例1判断下列全称量词命题的真假:(1)每个四边形的内角和都是360°;(2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数.【答案】(1)真命题;(2)假命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)真命题.连接一条对角线,将一个四边形分成两个三角形,而一个三角形的内角和180°,所以四边形的内角和都是360°是真命题;(2)假命题.因为负数没有算术平方根,所以任何实数都有算术平方根是假命题;(3)假命题,因为x =是无理数,3x 2=是有理数,所以{|x y y ∀∈是无理数},3x 是无理数是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.例2将下列命题用量词等符号表示,并判断命题的真假:(1)所有实数的平方都是正数;(2)任何一个实数除以1,仍等于这个实数.【答案】(1)2,0x R x ∀∈>,假命题;(2),1x x R x ∀∈=,真命题【分析】(1)易得该命题为全称命题,再举出反例判定即可.(2)易得该命题为全称命题,再直接判定即可.【详解】(1)命题为:2,0x R x ∀∈>.易得当0x =时20x =,故原命题为假命题.(2)命题为:,1x x R x ∀∈=,易得为真命题.【点睛】本题主要考查了全称命题的定义与真假的判定.属于基础题.变式2-1判断下列全称量词命题的真假:(1)所有的素数都是奇数;(2)x R ∀∈,11≥+x ;(3)对任意一个无理数x ,2x 也是无理数.【答案】(1)假命题;(2)真命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)2是素数,但2不是奇数.所以全称量词命题“所有的素数是奇数”是假命题.(2)x R ∀∈,总有||0x ,因而||11x +.所以全称量词命题“x R ∀∈,||11x +”是真命题.(3是无理数,但22=是有理数.所以,全称量词命题“对每一个无理数x ,2x 也是无理数”是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.变式2-2判断下列全称量词命题的真假:(1)每一个末位是0的整数都是5的倍数;(2)线段垂直平分线上的点到这条线段两个端点的距离相等;(3)对任意负数2,x x 的平方是正数;(4)梯形的对角线相等【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据整数的知识判断即可.(2)根据平面几何的知识判断即可.(3)根据平方的性质判断即可.(4)举出反例判断即可.【详解】(1)根据整数的性质,末位是0的整数都是5的倍数成立.故为真命题.(2)根据垂直平分线的性质可得线段垂直平分线上的点到这条线段两个端点的距离相等.故为真命题.(3)对任意负数0x <,不等式两边同时乘以负数x 有20x >.故为真命题(4)举反例如直角梯形对角线显然不相等.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.2.存在量词与存在量词命题(1)存在量词短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示(2)存在量词命题含有存在量词的命题,叫做存在量词命题(3)存在量词命题的符号及记法记法:M x ∈∃,()x p 读法:存在M 中的元素x ,使得()x p 成立考点2.判断存在量词命题的真假例3判断下列存在量词命题的真假:(1)有些实数是无限不循环小数;(2)存在一个三角形不是等腰三角形;(3)有些菱形是正方形;(4)至少有一个整数2,1n n +是4的倍数.【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据实数的定义分析即可.(2)根据等腰三角形的定义分析即可.(3)根据菱形与正方形的关系分析即可.(4)利用反证法证明是假命题即可.【详解】(1)实数包括有理数与无理数,其中无理数包括无限不循环小数如,e π等.故为真命题.(2)等腰三角形有两条长度相等的边,但并不是每个三角形都有两条长度相等的边,故为真命题.(3)四边长度相等的四边形为菱形,此时若相邻边互相垂直则为正方形,故为真命题.(4)假设有一个整数2,1n n +是4的倍数,则因为21n +能被4整除,故21n +为偶数,故2n 为奇数,故n 为奇数.设21,n k k N =+∈,则221442n k k +=++,故21n +除以4的余数为2与题设矛盾.故不存在整数,n 使得21n +是4的倍数.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.变式3-1判断下列存在量词命题的真假,并说明理由.(1)存在一个质数是偶数;(2)有一个实数x ,使2230x x ++=.【答案】(1)真命题,详见解析(2)假命题,详见解析【分析】(1)由2既是质数,也是偶数,可判断命题;(2)根据()2223122x x x ++=++≥,可判断命题.【详解】(1)因为2既是质数,也是偶数,所以原命题为真命题.(2)由于()22231220x x x ++=++≥>,所以原命题是假命题.【点睛】本题考查特称命题的判断,属于基础题.例4试判断以下命题的真假:(1)2,20x x ∈+>R ;(2)N x ∈∀,14≥x (3)3,1x x ∃∈<Z ;(4)2,3x x ∃∈=Q .【答案】(1)真命题;(2)假命题;(3)真命题;(4)假命题【分析】(1)根据不等式的性质判断即可;(2)全称命题判断为假,只需举一个反例即可;(3)特称命题判断为真,只需举一个正例即可;(4)解方程即可判断;【详解】解:(1)由于x ∀∈R ,都有20x ,因而有2220x +≥>,即220x +>.因此命题“2,20x x ∀∈+>R ”是真命题.(2)由于0∈N ,当0x =时,41x 不成立.因此命题“4,1x x ∀∈N ”是假命题.(3)由于1-∈Z ,当1x =-时,能使31x <成立.因此命题“3,1x x ∃∈<Z ”是真命题.(4)由于使23x =成立的数只有,而它们都不是有理数,因而没有任何一个有理数的平方能等于3.因此命题“2,3x x ∃∈=Q ”是假命题.【点睛】本题考查含有一个量词的命题的真假性判断,属于基础题.变式4-1判断下列命题的真假:(1)2,x x x ∃∈>R ;(2)2,x x x ∀∈>R ;(3)2,80x x ∃∈-=Q ;(4)2,20x x ∀∈+>R .【答案】(1)真命题;(2)假命题;(3)假命题;(4)真命题【分析】(1)特称命题判断为真,只需举一个正例即可;(2)全称命题判断为假,只需举一个反例即可;(3)通过解方程可判断;(4)根据不等式的性质可证明;【详解】解:(1)因为2x =时,2x x >成立,所以“2,x x x ∃∈>R ”是真命题.(2)因为0x =时,2x x >不成立,所以“2,x x x ∀∈>R ”是假命题.(3)因为使280x -=成立的数只有x =与x =-,但它们都不是有理数,所以“2,80x x ∃∈-=Q ”是假命题.(4)因为对任意实数x ,有20x ≥,则220x +>,即对任意实数,都有220x +>成立,所以“2,20x x ∀∈+>R ”是真命题.【点睛】本题考查命题真假判断,属于基础题.3.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:M x ∈∀,()x p 否定为:M x ∈∃,()x p ⌝(2)存在量词命题的否定存在量词命题:M x ∈∃,()x p 否定为:M x ∈∀,()x p ⌝考点3.全称量词命题和存在量词命题的否定例5命题“1x ∀>>”的否定是()A .01x ∃>≤B .01x ∀>≤C .01x ∃≤≤D .01x ∀≤≤【答案】A【分析】根据全称命题的否定为特称命题即可判断;【详解】解:命题1x ∀>>,为全称命题,全称命题的否定为特称命题,故其否定为01x ∃>≤故选:A【点睛】本题考查全称命题的否定,属于基础题.变式5-1命题“(0,1),x ∀∈20x x -<”的否定是()A .0(0,1),x ∃∉2000x x -≥B .0(0,1),x ∃∈2000x x -≥C .0(0,1),x ∀∉2000x x -<D .0(0,1),x ∀∈2000x x -≥【答案】B【分析】根据“全称命题”的否定一定是“特称命题”判断.【详解】“全称命题”的否定一定是“特称命题”,∴命题“(0,1),x ∀∈20x x -<”的否定是0(0,1),x ∃∈2000x x -≥,故选:B .【点睛】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题.变式5-2命题“所有能被2整除的数都是偶数”的否定是A .所有不能被2整除的数都是偶数B .所有能被2整除的数都不是偶数C .存在一个不能被2整除的数是偶数D .存在一个能被2整除的数不是偶数【答案】D试题分析:命题“所有能被2整除的整数都是偶数”的否定是“存在一个能被2整除的数不是偶数”.故选D .考点:命题的否定.例6命题“0R x ∃∈,20010x x -+<”的否定是()A .R x ∃∈,210x x -+>B .R x ∃∈,210x x -+≥C .R x ∀∈,210x x -+>D .R x ∀∈,210x x -+≥【答案】D【分析】特称命题的否定是全称命题【详解】因为特称命题的否定是全称命题所以命题“0R x ∃∈,20010x x -+<”的否定是“R x ∀∈,210x x -+≥”故选:D【点睛】本题考查的是特称命题的否定,较简单.变式6-1已知命题:N,21000n P n ∃∈>,则P ⌝为()A .N,2100n n ∀∈B .N,21000n n ∀∈>C .N,21000n n ∃∈D .N,21000n n ∃∈<【答案】A【分析】【详解】写特称命题的否命题,将存在量词改为全称量词,再否定结果所以命题:N,21000n P n ∃∈>的否定P ⌝为N,2100n n ∀∈故选:A点评:掌握命题的改写方法变式6-2若命题[]2000:3,3,210p x x x ∃∈-++≤,则命题p 的否定为()A .[]23,3,210x x x ∀∈-++>B .()()2,33,,210x x x ∀∈-∞-⋃+∞++>C .()()2,33,,210x x x ∀∈-∞-⋃+∞++≤D .[]20003,3,210x x x ∀∈-++<【答案】A【分析】利用存在性命题否定的结构形式写出其否定即可.【详解】命题p []23,3,210x x x ∀∈-++>.故选:A.【点睛】全称命题的一般形式是:x M ∀∈,()p x ,其否定为(),x M p x ∃∈⌝.存在性命题的一般形式是x M ∃∈,()p x ,其否定为(),x M p x ∀∈⌝.变式6-3写出下列各题中的p ⌝:(1):,10p x Z x ∃∈->;(2):,20p x Q x ∀∈-≥;(3)2:,10p x R x ∀∈+>;(4)2:,10p x R x ∃∈-<.【答案】(1):,10p x Z x ⌝∀∈-≤;(2):,20p x Q x ⌝∃∈-<;(3)2:,10p x R x ⌝∃∈+≤;(4)2:,10p x R x ⌝∀∈-≥.【分析】(1)特称量词变为全称量词,大于变小于等于得到命题的否定。
高中数学教案:全称命题与特称命题
全称命题与特称命题课程目标知识提要全称命题与特称命题∙全称量词与全称命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词(universal quantifier),并用符号“ ”表示.含有全称量词的命题,叫做全称命题.通常,将含有变量的语句用,,,来表示,变量的取值范围用表示,那么,全称命题“对中任意一个,有成立”可用符号简记为.∙特称量词与特称命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词(existential quantifier),并用符号“ ”表示.含有特称量词的命题,叫做特称命题.特称命题“存在中元素,使成立”可用符号简记为.全(特)称命题的概念与真假判断∙全称量词与全称命题短语“所有的”“任意一个”在逻辑中通常叫做全称量词(universal quantifier),并用符号“ ”表示.含有全称量词的命题,叫做全称命题.通常,将含有变量的语句用,,,来表示,变量的取值范围用表示,那么,全称命题“对中任意一个,有成立”可用符号简记为,.∙特称量词与特称命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词(existential quantifier),并用符号“ ”表示.含有特称量词的命题,叫做特称命题.特称命题“存在中元素,使成立”可用符号简记为,.全(特)称命题的否定∙全称命题的否定一般地,对于含有一个量词的全称命题,,其否定为.全称命题的否定是特称命题.∙特称命题的否定一般地,对于含有一个量词的特称命题,,其否定为.特称命题的否定是全称命题.精选例题全称命题与特称命题1. 命题“ ,”的否定为.【答案】,2. 若命题,,则命题为.【答案】,3. 命题,的否定为.【答案】,4. 命题“ ,使得”的否定是.【答案】5. 已知命题,则是.【答案】,6. 下列命题中,假命题的序号是.,;,;,能被和整除;,.【答案】④7. 命题:存在实数,使得关于的方程有实数根,则,命题的真假是.【答案】对一切实数,关于的方程没有实数根;假【分析】(1)原命题为存在性命题,故为全称命题;(2)间接考查的真假.8. 若命题一元一次不等式的解集一定是,命题关于的不等式的解集一定是,则“ ”,“ ”及“ ”形式的复合命题中的真命题是.【答案】【分析】为假命题(因为可以不大于),也是假命题.因为,的大小关系未知,所以“ ”“ ”为假命题,“ ”为真命题.9. 若命题” 使”是假命题,则实数的取值范围为.【答案】10. 命题“ ,使得”的否定是.【答案】,11. 写出下列命题的否定:(1)若是锐角三角形,则的任何一个内角是锐角;【解】若是锐角三角形,则中存在某个内角不是锐角.(2)所有可以被整除的整数,末位数字都是;【解】存在一个可以被整除的整数,末位数字不是.(3),;【解】,.(4)存在一个四边形,它的对角线互相垂直且平分.【解】对于所有四边形,它的对角线不互相垂直或不平分.12. 用符号“ ”与“ ”表示下列命题,并判断真假:(1)不论取什么实数,方程必有实根;【解】,方程必有实根.假命题;(2)存在一个实数,使.【解】,.真命题.13. 判断下列命题是全称命题还是存在性命题,并判断其真假.(1)对数函数都是单调函数;【解】命题中隐含了全称量词“所有的”,原命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)至少有一个整数,它既能被整除,又能被整除;【解】命题中含有存在量词“至少有一个”,因此是存在性命题,真命题.(3),;【解】命题中含有全称量词“ ”,是全称命题,真命题.(4),.【解】命题中含有存在量词“ ”,是存在性命题,真命题.14. 命题:二次函数的图象与轴相交,命题:二次函数的图象与轴相交,判断由,组成的新命题“ ”的真假.【解】:二次函数与轴相交,易知图象过点,故为真.:二次函数的图象与轴相交,而,故为假,所以为假命题.15. 设集合边形,:内角和为.试用不同的表述写出全称命题:‘’‘’.【解】任意边形的内角和都为.16. 判断命题" ,则方程有解"是全称命题还是特称命题,并写出它的否定.【解】由于表示是任意实数,即命题中含有全称量词"任意的",因而是全称命题;其否定是:" ,使方程无解".17. 写出下列命题的否定.(1) ,;【解】,使得;(2) ,是有理数;【解】,使得不是有理数;(3) 使;【解】都有;(4) 使得.【解】都有.18. 指出下列语句中的全称量词或存在量词:(1)每个人都喜欢体育锻炼;【解】全称量词:每个.(2)有的等差数列是等比数列;【解】存在量词:有的.(3)有些相似三角形是全等三角形;【解】存在量词:有些;(4)两个正数的算术平均数不小于它们的几何平均数.【解】全称量词:任意.19. 写出下列命题的非,并指出其真假:(1)至少有一个实数,使;(2);(3);(4)若与是对顶角,则.【解】(1)任意实数,使;真(2);假(3);假(4)若与是对顶角,则;假.20. 用量词符号" , "表示下列命题,并判断下列命题的真假.(1)任意实数都有,;【解】;假命题,时,结论不成立;(2)存在实数,;【解】;假命题,时,;(3)存在一对实数,使成立;【解】;真命题,如,;(4)有理数的平方仍为有理数;【解】;真命题;(5)实数的平方大于.【解】;假命题,.(6)有一个实数乘以任意一个实数都等于.【解】,有;真命题,即满足.全(特)称命题的概念与真假判断1. 已知命题:“ ,,”,且命题是假命题,则实数的取值范围为.【答案】【分析】命题是假命题,则命题是真命题,即关于的方程有实数解,而,所以.2. 若命题" , "是真命题,则实数的取值范围是.【答案】3. 命题" "的否定形式是.【答案】4. 对于语句(1);(2);(3)(4);其中正确的命题序号是.(全部填上)【答案】5. 判断下列存在性命题的真假:(1),;(2)至少有一个整数,它既不是合数,也不是素数;(3)是无理数,是无理数.【答案】(1)真;(2)真;(3)真6. 下列四个命题:,使得;,;,;,.其中的真命题是.【答案】【分析】由,得,故错误;结合指数函数和三角函数的图象,可知,错误;因为恒成立,所以正确.7. (1)任意属于,有成立,用符号语言可简记为;(2)符号语言:,,读作.【答案】(1),则成立(2)存在实数使不等式成立.8. 给出下列四个命题:①偶数都能被整除;②实数的绝对值大于;③存在一个实数,使④,为第一象限的角,则.其中即使全称命题又是假命题的是.(写出所有符合要求的序号)【答案】②④9. 下列命题中真命题的个数有个①②③使【答案】【分析】①③正确.10. 若命题 " 不成立 " 是真命题,则实数的取值范围是.【答案】【分析】该命题等价于:对恒成立.当时,恒成立;当时,解得.综上,.11. 判断下列命题的真假:(1),;【解】因为时,成立,所以,“ ,”是真命题;(2),;【解】因为时,不成立,所以," ,“是假命题;(3),;【解】因为使成立的数只有与,但它们都不是有理数,所以,“ ,”是假命题;(4),.【解】因为对任意实数,都有成立,所以,” ,“是真命题.12. 判断下列命题是全称命题还是存在性命题:(1)有的质数是偶数;【解】存在性命题.(2)与同一平面所成的角相等的两条直线平行;【解】全称命题.(3)有的三角形三个内角成等差数列;【解】存在性命题.(4)与圆只有一个公共点的直线是圆的切线.【解】全称命题.13. 判断下列命题是全称命题还是存在性命题,并判断其真假:(1)对数函数都是单调函数;【解】全称命题,真命题;(2)至少有一个整数,它既能被整除又能被整除;【解】存在性命题,真命题;(3) ,使.【解】存在性命题,真命题.(1)设,判断命题" , "的真假;【解】取,则,显然,,因此,此时.故这个命题是假命题.(2)设,判断命题" , "的真假.【解】由,得.因为,,所以,成立.因此," , "是真命题.15. 写出下列命题的否定,并判断其真假,写出理由.(1):任意两个第一象限角和,有;【解】:存在两个第一象限角和,有此为真命题.(2):存在一个函数,既是奇函数又是偶函数.【解】:对所有函数,不能既是奇函数又是偶函数.此为假命题,如,.16. 已知,命题:" , "命题:" ". (1)若命题为真命题,求实数的取值范围;【解】由命题为真命题,,.(2)若命题为假命题,求实数的取值范围.【解】由命题为假命题,所以为假命题或为假命题为假命题时,由.为假命题时,综上.17. 判断下列命题是全称命题还是存在性命题,并判断真假.①是整数( );②对所有的实数,;③对任意一个整数,为奇数;④末位是的整数,可以被整除;⑤角平分线上的点到这个角的两边的距离相等;⑥正四面体中两侧面的夹角相等;⑦有的实数是无限不循环小数;⑧有些三角形不是等腰三角形;⑨有的菱形是正方形.【解】①⑥是全称命题,⑦⑨是存在性命题;③⑨是真命题,①②是假命题.18. 判断下列命题是全称命题还是存在性命题.(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;【解】全称命题;(2)负数的平方是正数;【解】全称命题;(3)有些三角形不是等腰三角形;【解】存在性命题;(4)有些菱形是正方形.【解】存在性命题.19. 写出下列命题的否定,并判断真假.(1) ,;【解】,(真命题).(2) ,;【解】,(假命题).(3)集合是集合或的子集;【解】存在集合既不是集合的子集,也不是的子集(假命题).(4) 是异面直线,,,使,.【解】,是异面直线,,,有既不垂直于,也不垂直于(假命题).20. 判断下列命题是全称命题还是存在性命题:(1)任何实数的平方都是非负数;【解】全称命题;(2)任何数与相乘,都等于;【解】全称命题;(3)任何一个实数都有相反数;【解】全称命题;(4)有些三角形的三个内角都是锐角.【解】存在性命题全(特)称命题的否定1. 命题:“ ”的否定是.【答案】2. 命题:“ ,”的否定是.【答案】,3. 已知命题:,,则为.【答案】,4. 若:" ",则"非 "为.【答案】,使5. 已知命题,则命题的否定是.【答案】6. 命题 " " 的否定是.【答案】.7. 命题:,的否定是.【答案】,8. 命题:,的否定是.【答案】,;9. 已知命题,,则命题的否定.【答案】,10. 已知命题:,则为.【答案】11. 写出下列命题的否定:(1)中学生的年龄都在岁以上;【解】有的中学生年龄不在岁以上;(2)有的三角形中,有一个内角是直角;【解】任意三角形中’所有内角都不是直角;(3)锐角都相等;【解】有些锐角不相等;(4)我们班上有的学生不会用电脑.【解】我们班上所有的学生都会用电脑.12. 写出下列特称命题的否定:,使.【解】,都有.13. 写出下列命题的否定:(1)三角形的内角和是;【解】存在三角形的内角和不是;(2)所有的等边三角形都全等;【解】存在两个等边三角形不全等;(3)实系数一元二次方程有实数解;【解】有的实系数一元二次方程没有实数解;(4)有的实数没有平方根.【解】所有的实数都有平方根.14. 已知命题:存在一个实数,使.当时,非为真命题,求集合.【解】非为真,故" , "为真即.从而,所求的集合.15. 命题:对任意实数,有或,其中,是常数.(1)写出命题的否定;【解】命题的否定:对某些实数,有且,其中,是常数.(2)实数,满足什么条件时,命题的否定为真?【解】要使命题的否定为真,就是要使关于的不等式组的解集不为空集.通过画数轴可以看出:,应满足的条件是.16. 设函数.求证:,,中至少有一个不小于.【解】假设,,都小于,则有即由,得,即,与矛盾,故假设不成立.即,,中至少有一个不小于.17. 写出下列命题的否定:(1)所有人都晨练;【解】“所有人都晨练”的否定是“有的人不晨练”.(2),>;【解】,的否定是‘‘ ,”.(3)平行四边形的对边相等;【解】“平行四边形的对边相等”是指任意—个平行四边形的对边相等’它的否定是“存在平行四边形,它的对边不相等”.(4),=.【解】‘‘ ,”的否定是‘‘ , ".课后练习1. 请补充条件,使命题成为全称命题.2. 若命题“ ,”是假命题,则实数的取值范围是.3. 设集合四边形,:“对角线互相垂直平分”.试用不同的表述方法写出存在性命题:“ ,”.4. 关于的函数,有以下命题:①,;②,使;③,都不是偶函数;④,使是奇函数.其中假命题的序号是.5. 使’’的非命题是.6. 已知命题,,命题,,若命题“ ”是真命题,则实数的值为.7. 已知命题,,则该命题的否定是.8. 命题“ ,”的否定是.9. 命题“ ,”的否定是.10. 命题“ ,”的否定是.11. 给出下列命题:①,使得;②曲线表示双曲线;③,的递减区间为④对,使得其中真命题为(填上序号)12. 由命题“ ,”是假命题,求得实数的取值范围是,则实数的值是.13. 已知命题:存在,使得,命题:指数函数是上的增函数,若命题“ 且”是真命题,则实数的取值范围是.14. 已知命题:;:.若且为真,则的取值范围是.15. 有下列四个命题:①对任意实数均有.②不存在实数使.③方程至少有一个实数根.④使.其中假命题是.(填相应序号即可)16. 下列四个命题:①;②;③;④.其中真命题的序号是.17. 若存在,使,则实数的取值范围是.18. 若方程和中至少有一个方程有实数根,则实数的取值范围是.19. 下列命题中,是真命题的有.①;②;③;④.20. 命题"存在 "为假命题,则实数的取值范围为.21. 命题 "对任意,都有 "的否定是-----.22. 由命题"存在,使 "是假命题,求得的取值范围是,则实数的值是.23. 命题 " " 的否定是.24. 命题“ ,或”的否定为.25. 命题","的否定是.26. 已知命题,,则命题是.27. 命题"存在实数,使得 "的否定是.28. 命题“至少有一个数,使”的否定是.29. 命题 " "的否定是.30. 已知命题,则命题的否定是.31. 已知,,若使得,求正实数的取值范围.32. 用符号“ ”,“ ”表达下列命题:(1)实数的平方大于等干;(2)存在一个实数,使;(3)存在一对实数对,使成立.33. 已知命题对任意的,都成立.判断此命题是全称命题还是存在性命题,并写出它的否定.34. 写出下列命题的否定,并判断真假.(1) 等圆的面积相等,周长相等;(2) 对任意角,都有;(3) 存在实数,使得或.35. 已知集合,函数的定义域为.(1)若,求实数的取值范围;(2)若,求实数的取值范围.36. 用符号‘’ ‘’与‘’ ‘’表示下面含有量词的命题:(1)自然数的平方大于零;(2)存在一对整数,使.37. 判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数;(2)至少有一个整数,它既能被整除,又能被整除;(3) 是无理数,是无理数;(4) ,.38. 设语句.(1)写出,并判断其真假;(2)写出“ ,”并判断命题的真假.39. “ 是的子集”可以用下列数学语言表达:“若对任意的,都有,则称”,请用数学语言表达“ 不是的子集”.40. 判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数;(2) 是无理数,是无理数;(3) ,.41. 设语句,写出" ",并判断它是不是真命题.42. 用符号" "," "表达下列命题:(1)实数的平方大于等于;(2)存在一个实数,使;(3)存在一个实数对,使成立.43. 判断下列命题是全称命题还是特称命题,并判断其真假.(1)对于第一象限角,,都有:时,;(2)对于圆上的点的坐标,有的不能使方程成立;(3)对于中的元素,都有.44. 写出下列命题的否定,并判断真假.(1)正方形都是菱形;(2),使;(3),;(4)集合是集合或的子集.45. 判断下列命题的真假:(1)已知,,,,若,或,则;(2) ,;(3)若,则方程无实数根;(4)存在一个三角形没有外接圆.全称命题与特称命题-出门考姓名成绩1. 命题:" "的否定是.2. 已知命题,;命题,,若命题“ 且”是真命题,则实数的取值范围为.3. 命题:“存在,使”为假命题,则实数的取值范围是.4. 命题“ ,”的否定是.5. 给出下列四个命题:①;②矩形都不是梯形;③,;④任意互相垂直的两条直线的斜率之积等于.其中全称命题是.6. 写出下列命题的否定:①有的平行四边形是菱形,②存在质数是偶数.7. 命题“ ”的否定是命题.(填“真”或“假”之一)8. 已知命题,,则为.9. 命题“ ,”的否定是.10. 已知命题:“ ”,则:.11. 已知命题.如果命题是真命题,那么实数的取值范围是.12. 若“ ,”是真命题,则实数的取值集合是.13. 命题:,:,则命题为 (填: "真"或"假").14. “存在,,使”是命题(填“全称”或“特称”),该命题是(填“真”或“假”)命题.15. 若命题“存在,”为假命题,则实数的取值范围是.16. 若命题 "对 "是真命题,则实数的取值范围是.17. 下列命题既是全称命题,又是真命题的个数有个.(1)对数函数都是单调函数;(2)至少有一个整数,它既能被整除,又能被整除;(3)对于任意的无理数,是无理数;(4)存在一个整数,使得.18. " ,使 "是真命题,则实数的取值范围是.19. 若命题" ,使得 "是真命题,则实数的取值范围是.20. 已知命题:;命题:中,,则.则命题 " 且 " 的真假性的是.21. 命题:,的否定是.22. “ 是的子集”可以用下列数学语言表达:“若对任意的,都有,则称”.那么“ 不是的子集”可用数学语言表达为.23. 命题" , "的否定形式是.24. 命题" "的否定.25. 命题" , "的否定是.26. 命题"对任何 "的否定是.27. 已知命题,则.28. 命题"若,则 "的否命题是.29. 若命题"存在实数,使 "的否定是真命题,则实数的取值范围为.30. 命题" , "的否定是31. 写出下列命题的否定,并判断真假.(1)等边三角形都是等腰三角形;(2) ,使;(3) ,有.32. 判断下列命题是否是全称命题或特称命题.若是,用符号表示,并判断其真假.(1)有一个实数,;(2)任何一条直线都存在斜率;(3)所有的实数,,方程恰有唯一解;(4)存在实数,使得.33. 下列语句是不是全称命题或者是特称命题.(1)有一个实数,不能取对数;(2)所有不等式的解集为,都有;(3)有的向量方向不定;(4)正弦函数都是周期函数吗?34. 判断下列命题是全称命题还是特称命题,并判断其真假:(1)对数函数都是单调函数;(2)至少有一个整数,它既能被整除,又能被整除;(3) ,.35. 判断下面对结论的否定是否正确,如果不正确,请写出正确的否定结论:(1)至少有一个是;否定:至少有两个或两个以上是;(2)最多有一个是.否定:最少有一个是;(3)全部都是.否定:全部的都不是.36. 判断下列命题的真假:(1),;(2),;(3),使;(4),使为的约数.37. 写出下列命题的否定,并判断其真假:(1)菱形的对角线互相垂直;(2)二次函数的图象与轴有公共点.38. 写出下列命题的否定,并判断真假:(1)质数都是奇数;(2) ,;(3) (为全集),是集合的真子集.39. 判断下列命题是全称命题,还是存在性命题.(1)平面四边形都存在外接圆;(2)有些直线没有斜率;(3)三角形的内角和等于;(4)有一些向量方向不定;(5)所有的有理数都是整数;(6)实数的平方是非负的.40. 用符号“ ”与“ ”表达下列命题.(1)对任意角,都有;(2)存在正整数,,对任意小的正数,当时,;(3)存在实数,使得.。
简单的逻辑用语、全称量词和特称量词
简单的逻辑⽤语、全称量词和特称量词⾼⼆年级数学科辅导讲义(第讲)学⽣姓名:授课教师:授课时间: 12.14第⼀部分基础知识梳理1.命题p∧q、p∨q、?p的真假判定2.全称量词和存在量词(1)全称量词有:所有的,任意⼀个,任给,⽤符号“?”表⽰;存在量词有:存在⼀个,⾄少有⼀个,有些,⽤符号“?”表⽰.(2)含有全称量词的命题,叫做全称命题.“对M中任意⼀个x,有p(x)成⽴”⽤符号简记为:?x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成⽴”⽤符号简记为:?x0∈M,p(x0).3.含有⼀个量词的命题的否定第⼆部分例题解析(⼀)“p∧q”“p∨q”“?p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“?p”命题的真假.2.含有逻辑联结词的命题的真假判断规律(1)p∨q:p、q中有⼀个为真,则p∨q为真,即⼀真全真;(2)p∧q:p、q中有⼀个为假,则p∧q为假,即⼀假即假;(3)綈p:与p的真假相反,即⼀真⼀假,真假相反.例1.下列命题是真命题的是( )①27是3的倍数或27是9的倍数;②27是3的倍数且27是9的倍数;③平⾏四边形的对⾓线互相垂直且平分;④平⾏四边形的对⾓线互相垂直或平分;⑤1是⽅程x-1=0的根,且是⽅程x2-5x+4=0的根.A.①③⑤B.①②③⑤ C.①②④⑤ D.①②③④⑤2.已知命题p:?x0∈R,x20+1x20≤2;命题q是命题p的否定,则命题p、q、p∧q、p∨q中是真命题的是________.变式练习1.若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.?p是真命题D.?q是真命题2.如果命题“⾮p或⾮q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是( ) A.①③B.②④ C.②③ D.①④3.已知命题p:(a-2)2+|b-3|≥0(a,b∈R),命题q:x2-3x+2<0的解集是{x|1①命题“p∧q”是真命题;②命题“p∧?q”是假命题;③命题“?p∨q”是真命题;④命题“?p∨?q”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④(⼆)1.全称命题真假的判断⽅法(1)要判断⼀个全称命题是真命题,必须对限定的集合M中的每⼀个元素x,证明p(x)成⽴;(2)要判断⼀个全称命题是假命题,只要能举出集合M中的⼀个特殊值x=x0,使p(x0)不成⽴即可.2.特称命题真假的判断⽅法要判断⼀个特称命题是真命题,只要在限定的集合M中,找到⼀个x=x0,使p(x0)成⽴即可,否则这⼀特称命题就是假命题.例3.下列命题中的假命题是( )A.?x0∈R,x0+1x0=2 B.?x0∈R,sin x0=-1 C.?x∈R,x2>0 D.?x∈R,2x>0例4.命题“?x0∈R,2x20-3ax0+9<0”为假命题,则实数a的取值范围为________.变式练习1.下列命题中的假命题是( ) A.?x∈R,2x-1>0 B.?x∈N*,(x-1)2>0C.?x0∈R,lg x0<1 D.?x0∈R,tan x0=22.下列命题中的假命题是( )A.?a,b∈R,a n=an+b,有{a n}是等差数列 B.?x0∈(-∞,0),2x0<3x0 C.?x∈R,3x≠0 D.?x0∈R,lg x0=03.下列命题中的真命题是( )A.?x0∈R,使得sin x0cos x0=35B.?x0∈(-∞,0),2x0>1C.?x∈R,x2≥x-1 D.?x∈(0,π),sin x>cos x(三)1.对含有⼀个量词的命题进⾏否定的⽅法⼀般地,写含有⼀个量词的命题的否定,⾸先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.2.常见词语的否定形式例4.命题“?x0∈?R Q,x30∈Q”的否定是( )A.?x0??R Q,x30∈Q B.?x0∈?R Q,x30?QC.?x??R Q,x3∈Q D.?x∈?R Q,x3?Q例5.命题p:有的三⾓形是等边三⾓形.命题?p:__________________.变式练习1.(1)命题p:任意两个等边三⾓形都是相似的,则?p:__________.(2)命题p:?x0∈R,x20+2x0+2=0,则?p:__________.2.命题“所有不能被2整除的整数都是奇数”的否定是( )A.所有能被2整除的整数都是奇数 B.所有不能被2整除的整数都不是奇数C.存在⼀个能被2整除的整数是奇数 D.存在⼀个不能被2整除的整数不是奇数3.若命题改为“存在⼀个能被2整除的整数是奇数”,其否定为________.4.写出下列命题的否定,并判断其真假.(1)p:?x∈R,x2-x+14≥0; (2)q:所有的正⽅形都是矩形;(3)r :?x 0∈R ,x 20+2x 0+2≤0; (4)s :⾄少有⼀个实数x 0,使x 30+1=0.6.命题“能被5整除的数,末位是0”的否定是.第三部分巩固练习1.设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是( )A .p 、q 中⾄少有⼀个为真B .p 、q 中⾄少有⼀个为假C .p 、q 中有且只有⼀个为真D .p 为真,q 为假2.下列四个命题中的真命题为( )A .?x 0∈Z,1<4x 0<3B .?x 0∈Z,5x 0+1=0C .?x ∈R ,x 2-1=0D .?x ∈R ,x 2+x +2>03.已知命题p :?x 0∈R ,cos x 0=54;命题q :?x ∈R ,x 2-x +1>0,则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧?q 是真命题C .命题?p ∧q 是真命题D .命题?p ∨?q 是假命题 4.已知命题p :?x 0∈?0,π2,sin x 0=12,则?p 为( ) A .?x ∈? ????0,π2,sin x =12 B .?x ∈? ????0,π2,sin x ≠12C .?x 0∈? ????0,π2,sin x 0≠12D .?x 0∈?0,π2,sin x 0>12 5.已知命题p :抛物线y =2x 2的准线⽅程为y =-12;命题q :若函数f (x +1)为偶函数,则f (x )关于x=1对称.则下列命题是真命题的是( )A .p ∧qB .p ∨(?q )C .(?p )∧(?q )D .p ∨q6.下列命题正确的是( )A .已知p :1x +1>0,则?p :1x +1≤0 B .在△ABC 中,⾓A 、B 、C 的对边分别是a 、b 、c ,则a >b 是cos A+x +1>0,则?p :对任意的x ∈R ,x 2+x +1≤0D .存在实数x ∈R ,使sin x +cos x =π2成⽴7.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是____________.8.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p∨q”、“p∧q”、“?p”中是真命题的有________.9.若命题“?x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.10.写出下列命题的否定,并判断真假.(1)q:?x∈R,x不是5x-12=0的根;(2)r:有些素数是奇数;(3)s:?x0∈R,|x0|>0.11.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,x20+2ax0+2-a=0,若“p且q”为真命题,求实数a的取值范围.12.已知命题p:存在实数m,使⽅程x2+mx+1=0有两个不等的负根;命题q:存在实数m,使⽅程4x2+4(m-2)x+1=0⽆实根.若“p∨q”为真,“p∧q”为假,求m的取值范围.第四部分课后作业1.将a2+b2+2ab=(a+b)2改写成全称命题是( )A.?a,b∈R,a2+b2+2ab=(a+b)2 B.?a<0,b>0,a2+b2+2ab=(a+b)2C.?a>0,b>0,a2+b2+2ab=(a+b)2 D.?a,b∈R,a2+b2+2ab=(a+b)22.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是( ) A.(?p)∨q B.p∧q C.(?p)∧(?q) D.?p)∨(?q)3.下列命题中,真命题是( )A.?m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R)是奇函数 C .?m ∈R ,函数f (x )=x 2+mx (x ∈R)`都是偶函数 D .?m ∈R ,函数f (x )=x 2+mx (x ∈R)都是奇函数 4.下列命题中,真命题是( )A .?x 0∈R ,e x 0≤0B .?x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件5.已知命题p 1:?x 0∈R ,x 20+x 0+1<0;p 2:?x ∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(?p 1)∧(?p 2)B .p 1∨(?p 2)C .(?p 1)∧p 2D .p 1∧p 26.下列说法中错误的是( )A .对于命题p :?x 0∈R ,使得x 0+1x 0>2,则?p :?x ∈R ,均有x +1x≤2B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0” D .若p ∧q 为假命题,则p ,q 均为假命题7.已知命题p :?x ∈[1,2],x 2-a ≥0,命题q :?x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,则实数a 的取值范围是( )A .a =1或a ≤-2B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤18.命题“存在x 0∈R ,使得x 20+2x 0+5=0”的否定是________.9.已知命题p :“?x ∈N *,x >1x”,命题p 的否定为命题q ,则q 是“________”;q 的真假为________(填“真”或“假”).10.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.。
《全称量词命题与存在量词命题》示范公开课教案【高中数学苏教版】
第2章常用逻辑用语2.3.1 全称量词命题与存在量词命题第1课时◆教学目标1.通过已知的数学实例,理解全称量词与存在量词的意义.2.掌握全称量词命题和特称量词命题的定义,并能判断它们的真假.3.能把一些简单命题表述成全称量词命题和特称量词命题.◆教学重难点◆教学重点:理解全称量词、存在量词的含义.教学难点:全称量词命题和特称量词命题的定义,并能判断它们的真假.◆课前准备PPT课件.◆教学过程一、新课导入问题1:“哥德巴赫猜想”大致可以分为两个猜想:(1)每个不小于6的偶数都可以表示为两个奇素数之和;(2)每个不小于9的奇数都可以表示为三个奇素数之和.虽然通过大量试验,这两个命题是正确的,但是还需要证明.从1920年布朗证明“9+9”到1966年陈景润攻下“1+2”,历经46年.自“陈氏定理”诞生至今的40多年里,人们对哥德巴赫猜想的进一步研究,均劳而无功.引语:要解决这个问题,就需要进一步学习全称量词命题和特称量词命题.(板书:全称量词命题和特称量词命题)【探究新知】问题2:阅读课本P34~35页,回答下列问题思考 1.观察下列命题:(1)所有的质数都是奇数;(2)每一个四边形都有外接圆;(3)任意实数x,x2≥0.以上三个命题有什么共同特征?2.观察下列命题:(1)有些矩形是正方形;(2)存在实数x,使x>5;(3)至少有一个实数x,使x2-2x+2<0.以上三个命题有什么共同特征?师生活动:学生阅读,给出答案.预设的答案:1.都使用了表示“全部”的量词,如“所有”、“每一个”、“任意”.2.都使用了表示“存在”的量词,如“有些”、“存在”、“至少有一个”.追问:全称量词与存在量词的意义、全称量词命题和特称量词命题的定义是什么?预设的答案:1.全称量词与全称量词命题2设计意图:阅读教材,梳理概念.【巩固练习】例1.判断下列命题是全称量词命题还是存在量词命题?(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除,又能被5整除;(3)负数的平方是正数;(4)有的实数是无限不循环小数;(5)有些三角形不是等腰三角形;(6)每个二次函数的图象都与x轴相交.师生活动:判断一个命题是全称量词命题还是存在量词命题,关键是两点:一是是否具有两类命题所要求的量词;二是根据命题的含义判断指的是全体,还是全体中的个别元素.对于没有量词的命题需要补全量词在进行判别.预设的答案:(1)中含有全称量词“都”,所以是全称量词命题.(2)中含有存在量词“至少有一个”,所以是存在量词命题.(3)中省略了全称量词“都”,所以是全称量词命题.(4)中含有存在量词“有的”,所以是存在量词命题.(5)中含有存在量词“有些”,所以是存在量词命题.(6)中含有全称量词“每个”,所以是全称量词命题.反思与感悟:判定命题是全称量词命题还是存在量词命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称量词命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.设计意图:加深对全称量词命题和存在量词命题概念的理解,并能正确运用.例2.判断下列命题的真假.(1)任意两个面积相等的三角形一定相似;(2)∃x,y为正实数,使x2+y2=0;(3)在平面直角坐标系中,任意有序实数对(x,y)都对应一点P;(4)∀x∈N,x2>0.师生活动:学生分析解题思路,给出答案.预设的答案:(1)因为面积相等的三角形不一定相似.故它是假命题.(2)因为当x2+y2=0时,x=y=0,所以不存在x,y为正实数,使x2+y2=0,故它是假命题.(3)由有序实数对与平面直角坐标系中的点的对应关系知,它是真命题.(4)因为0∈N,02=0,所以命题“∀x∈N,x2>0”是假命题.反思与感悟:要判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称量词命题就是假命题.要判定存在量词命题“∃x0∈M,p(x0)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个存在量词命题就是假命题.设计意图:掌握全称量词命题与存在量词命题真假的判断方法.例3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅,若命题p:“∀x ∈B,x∈A”是真命题,求m的取值范围.师生活动:学生分析解题思路,给出答案.预设的答案:由于命题p:“∀x∈B,x∈A”是真命题,所以B⊆A,B≠∅,所以121,12,215,m mmm+-⎧⎪+-⎨⎪-⎩≤≥≤解得2≤m≤3.设计意图:掌握与运用含量词命题的真假求参数的取值范围.反思与感悟:已知含量词命题的真假求参数的取值范围,实质上是对命题意义的考查.解决此类问题,一定要辨清参数,恰当选取主元,合理确定解题思路.【课堂小结】1.板书设计:2.3.1 全称量词命题与存在量词命题1.全称量词命题与存在量词命题的判断例12.全称量词命题与存在量词命题的真假的判断例23.由全称量词命题与存在量词命题的真假求参数的范围例32.总结概括:问题:(1)如何判断一个语句是全称量词命题或存在量词命题?(2)如何判断全称量词命题或存在量词命题的真假?师生活动:学生尝试总结,老师适当补充.预设的答案:(1)(2)要判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称量词命题就是假命题.要判定存在量词命题“∃x0∈M,p(x0)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个存在量词命题就是假命题.设计意图:通过梳理本节课的内容,能让学生更加明确全称量词命题、存在量词命题的概念,并能判断其真假.布置作业:【目标检测】1.以下量词“所有”“任何”“一切”“有的”“有些”“有一个”“至少”中是存在量词的有()A.2个B.3个C.4个D.5个设计意图:巩固全称量词还是存在量词概念.2.下列命题:①至少有一个x使x2+2x+1=0成立;②对任意的x都有x2+2x+1=0成立;③对任意的x都有x2+2x+1=0不成立;④存在x使得x2+2x+1=0成立.其中是全称量词命题的有()A.1个B.2个C.3个D.0个设计意图:巩固全称量词命题还是存在量词命题概念.3.四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∃x∈R,4x2>2x-1+3x2.其中真命题的个数为_____.设计意图:全称量词命题、存在量词命题的真假判断.4.用符号“∀”与“∃”表示下列含有量词的命题,并判断真假:(1)实数都能写成小数形式.(2)有的有理数没有倒数.(3)不论m取什么实数,方程x2+x-m=0必有实根.(4)存在一个实数x,使x2+x+4≤0.设计意图:全称量词命题、存在量词命题的真假判断.5.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅,若命题p:“∃x∈A,x∈B”,求m的取值范围.设计意图:握与运用含量词命题的真假求参数的取值范围.参考答案:1.“有的”“有些”“有一个”“至少”都是存在量词.故选C.2.②③含有全称量词,所以是全称量词命题.故选B.3.x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题,对∀x∈R,x2+1≠0,∴③为假命题,4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.4.(1)∀a∈R,a都能写成小数形式,此命题是真命题.(2)∃x∈Q,x没有倒数,有理数0没有倒数,故此命题是真命题.(3)∀m∈R,方程x2+x-m=0必有实根.当m=-1时,方程无实根,是假命题.(4)∃x∈R,使x2+x+4≤0.x2+x+4=212x⎛⎫+⎪⎝⎭+154>0恒成立,所以为假命题.5.p为真,则A∩B≠∅,因为B≠∅,所以m≥2.所以15,212,2,mmm+⎧⎪--⎨⎪⎩≤≥≥解得2≤m≤4.。
全称命题和存在命题
1.4 全称量词与存在量词教材内容:1.全称命题及其真假判断;2.特称命题及其真假判断;教材分析:全称量词和特称量词是数学选修1—1第一章常用逻辑用语里面最后一节内容。
在我们日常交往、学习和工作中,逻辑用语是必不可少的工具。
学习一些常用逻辑用语,可以使我们真确理解数学概念、合理论证数学结论、准确表达数学内容。
新课标要求:新课程理念告诉我们,教师已不再象以前是知识的权威,也不都是将事先组织的知识体系传递给学生。
而是学生们的合作伙伴,帮助学生掌握和提高解决问题的方法以及把握好行动的方向,在学生研究问题的关键时候“扶一把”,与学生共同探究知识。
学情分析:高二(8)是由68人组成的普通文科班,学生数学基础薄弱,但很刻苦。
在数学方面绝大多数学生是学困生,所以在教学中要设计新颖别致的问题,使学生学习有趣味感、新鲜感,从而诱发学生的内驱力。
教学目标:知识与技能:1.全称量词、存在量词的含义和表示;2.正确区分全称命题和特称命题;3.准确判断全称命题和特称命题的真假;过程与方法:1.通过探究式学习全称命题的含义、表示以及判断全称命题真假的方法;2.用类比法归纳特称命题的含义、表示以及判断特称命题真假的方法;情感、态度、价值观:培养逻辑思维,提高解决问题的能力;重点目标:能区分全称命题和特称命题,能判断它们真假;教学难点:准确判断全称命题和特称命题的真假教学关键:1.正确区分全称命题和特称命题;2.准确判断全称命题和特称命题的真假;教学方法或模式:自主探究法讨论法类比法教学活动设计思路:创设情景,引入课题→探究全称命题的含义和表示→引导学生总结判断全称命题真假的方法→探究特称命题的含义和表示→引导学生总结判断特称命题真假的方法→课堂练习、小结与课后作业;教学用具:多媒体教学过程:一、复习命题和简单的逻辑联结词二、创设情境引入课题1.所有中国公民的合法权利都受到中华人民共和国宪法的保护.2.凡是中国人,都是黄种人.3.全体同学到多媒体教室上数学课.4.每一个例题都必须认真听懂.5.有一位同学没来上课.6.对任意实数x,它的平方大于等于0.7.存在两个相交平面垂直于同一条直线.通过生活和数学中的实例,引出课题——全称量词和存在量词。
逻辑判断知识汇总
逻辑判断(一)、词项推理1.概念的内涵和外延概念有内涵和外延两个方面。
内涵也叫含义,它是对象的本质属性的反映。
“人”这个概念的内涵“有理性的、会制造和使用工具的动物。
”外延就是具有这个内涵所反映的本质属性的个体对象。
“人”的外延就是世界上存在过、存在着并将存在的每个人。
2.概念的外延关系。
我们借助欧拉圈直观地表现这种外延关系。
概念之间一共五种外延关系。
设有A、B两个概念。
全同关系是说A、B两个概念的外延完全相同或完全重合。
比如“人”和“有理性的动物”真包含关系,A的外延的分子都是b的外延的分子,但并非b的外延的分子都是a的外延的分子,这时称b 的外延真包含a的外延。
例如,“动物”的外延真包含“人”的外延。
真包含于关系,a的外延都是b的外延的分子,但并非b的外延的分子都是a的外延的分子,这时称a的外延真包含于b。
例如“人”的外延真包含于“动物”的外延中。
真包含关系和真包含于关系是相对的。
A真包含b,则b真包含于a。
这两种关系又称种属关系。
外延小的称为种概念,外延大的称为属概念。
牛、羊、马都是动物这个种概念的属概念。
交叉关系,a的外延只有部分分子包含在b的外延中,同时b的外延也只有部分分子包含在a的外延中。
比如“教师”和“妇女”就是交叉关系。
全异关系。
A、b两个概念的外延没有分子是相同的。
如“动物”“植物”两个概念。
当有全异关系的两个概念有同一属概念时,它们外延之间的关系是并列关系,并列关系有两种:反对关系和矛盾关系。
反对关系是说,两个并列概念的外延之和小于属概念的外延。
如牛、马是反对关系,除了牛、马还存在其他动物。
中学生和小学生也是反对关系。
矛盾关系是说,两个并列概念的外延之和等于属概念的外延。
如元素中的金属和非金属,动物中的人和非人,颜色中的红色和非红色。
3.直言命题的种类也叫主谓命题或性质命题。
例如:所有三角形内角和都是180º有些三角形不是直角三角形。
中国是人口最多的国家。
直言命题有四种成分构成:量词、主词、谓词、系词。
全称量词和特称量词
常用逻辑用语全称量词与存在量词3. 1 全称量词与全称命题3. 2存在量词与特称命题I明目标、知重点:1•通过具体实例理解全称量词和存在量词的含义.2.会判断全称命题和特称命题的真假.填要点1 .全称量词与全称命题在命题的条件中,“所有”“每一个”“任何”“任意一条”“一切”都是在指定范围内,表示整体或全部的含义,这样的词叫作全称量词.含有全称量词的命题,叫作全称命题.2. 存在量词与特称命题在命题中,“有些” “至少有一个”“有一个” “存在”都有表示个别或一部分的含义,这样的词叫作存在量词.含有存在量词的命题,叫作特称命题.探要点:究所然探究点一全称量词与全称命题思考1下列语句是命题吗?(1)与(3), (2)与(4)之间有什么关系?(1) x>3 ;(2) 2x+ 1是整数;(3) 对所有的x€ R, x>3;(4) 对任意一个x€ Z,2x+ 1是整数.答语句(1)(2)含有变量x,由于不知道变量x代表什么数,无法判断它们的真假,因而不是命题.语句(3)在(1)的基础上,用短语“对所有的”对变量x进行限定;语句(4)在(2)的基础上,用短语“对任意一个”对变量x进行限定,从而使(3)(4)成为可以判断真假的语句,因此语句⑶(4)是命题.小结短语“所有”“每一个”“任何”“任意一条”“ 一切”都是在指定范围内,表示整体或全部的含义,这样的词叫作全称量词.像这样含有全称量词的命题,叫作全称命题.思考2如何判定一个全称命题的真假?答要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一个x o,使得p(x o)不成立即可(即举反例). 例1判断下列全称命题的真假:(1) 所有的素数是奇数;(2) 任意x€ R , x2+ 1> 1;(3) 对每一个无理数x, x2也是无理数.解(1)2是素数,但2不是奇数.所以,全称命题“所有的素数是奇数”是假命题.⑵任意x€ R,总有x2> 0,因而x2+ 1> 1.所以,全称命题“任意x€ R, x2+ 1> 1”是真命题.(3) .2是无理数,但(,2)2= 2是有理数.所以,全称命题“对每一个无理数x, x2也是无理数”是假命题.反思与感悟判断全称命题的真假,要看命题是否对给定集合中的所有元素成立.跟踪训练1试判断下列全称命题的真假:(1) 任意x€ R , x2+ 2>o ; (2)任意x€ N , x4> 1.⑶对任意角a都有sin2a+ COS2a= 1.解⑴由于任意x€ R,都有x2> 0,因而有x2+ 2> 2>0,即x2+ 2>0,所以命题“任意x€ R ,x2+ 2>0”是真命题.⑵由于0€ N,当x = 0时,x4> 1不成立,所以命题“任意x€ N, x4》1”是假命题.⑶由于任意a€ R , sin2a+ COS2a= 1成立.所以命题“对任意角a,都有Sin2a+ COS2a= 1 ”是真命题.探究点二存在量词与特称命题思考1下列语句是命题吗?(1)与(3), (2)与(4)之间有什么关系?(1) 2x+ 1= 3;(2) x能被2和3整除;(3) 存在一个x o€ R,使2x0 + 1 = 3;⑷至少有一个x o€ Z,使x o能被2和3整除.答(1)(2)不是命题,⑶(4)是命题.语句⑶在⑴的基础上,用短语“存在一个”对变量x 的取值进行限定;语句(4)在(2)的基础上,用“至少有一个”对变量x的取值进行限定,从而使⑶(4)变成了可以判断真假的语句,因此语句⑶(4)是命题.小结“有些” “至少有一个”“有一个” “存在”都有表示个别或一部分的含义,这样的词叫作存在量词•像这样含有存在量词的命题,叫作特称命题.思考2怎样判断一个特称命题的真假?答要判断一个特称命题是真命题,只要在限定集合M中,至少能找到一个x= x o,使p(x o)成立即可,否则,这一特称命题是假命题.例2判断下列特称命题的真假:(1) 有一个实数x o,使x2+ 2x o+ 3= 0;(2) 存在两个相交平面垂直于同一条直线;(3) 有些整数只有两个正因数.解⑴由于任意x€ R ,x2+ 2x+ 3 = (x + 1)2+ 2>2,因此使x2+ 2x+ 3= 0的实数x不存在.所以,特称命题“有一个实数x o,使x0+ 2x o+ 3 = 0”是假命题.(2) 由于垂直于同一条直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一条直线.所以,特称命题“存在两个相交平面垂直于同一条直线”是假命题.(3) 由于存在整数3只有两个正因数1和3,所以特称命题“有些整数只有两个正因数”是真命题. 反思与感悟特称命题是含有存在量词的命题,判断一个特称命题为真,只需在指定集合中找到一个元素满足命题结论即可.跟踪训练2判断下列命题的真假:(1) 存在x o€ Z , x3<1 ;(2) 存在一个四边形不是平行四边形;(3) 有一个实数a, tan a无意义;(4) 存在x o € R , cos x o=才.解(1) T — 1 € Z,且(-1)3=- 1<1,“存在x o€ Z , x3<1 ”是真命题.⑵真命题,如梯形.n(3)真命题,当a= 2时,tan a无意义.⑷•/ 当x€ R 时,cos x€ [- 1,1],n而2>1 ,二不存在x o€ R,使cos x o= 2,•••原命题是假命题.探究点三全称命题、特称命题的应用思考不等式有解和不等式恒成立有何区别?答不等式有解是存在一个元素,使不等式成立,相当于一个特称命题;不等式恒成立则是给定集合中的所有元素都能使不等式成立,相当于一个全称命题.例3 (1)已知关于x的不等式x2+ (2a + 1)x+ a2+ 2< 0的解集非空,求实数a的取值范围;⑵令p(x):ax2+ 2x+ 1>0,若对任意x€ R , p(x)是真命题,求实数a的取值范围.解⑴关于x 的不等式x2+ (2a + 1)x+ a2+ 2< 0 的解集非空,(2a + 1)2—4(a2+ 2)> 0,即4a—7>0,解得a>4,•实数a的取值范围为7, + m.⑵•••对任意x€ R, p(x)是真命题.•对任意x€ R , ax2+ 2x+ 1>0恒成立,当a= 0时,不等式为2x+ 1>0不恒成立,a>0,当0时,若不等式恒成立,则△= 4 —4a<0,• a>1.反思与感悟有解和恒成立问题是特称命题和全称命题的应用,注意二者的区别.跟踪训练3 (1)对于任意实数x,不等式sin x + cos x>m恒成立,求实数m的取值范围;(2)存在实数x,不等式sin x+ cos x>m有解,求实数m的取值范围.解(1)令y= sin x+ cos x, x€ R,■/y= sin x+ cos x= .2sin x + ^ > —. 2,又T任意x€ R , sin x+ cos x>m恒成立,•••只要m<—2即可.•••所求m的取值范围是(—0,— '2). (2)令y= sin x+ cosx, x€ R,n■/ y= sin x+ cos x= '2sin x+ 4 € [ —'2, '2].又•••存在x € R , sin x+ cos x>m 有解,•只要m<」2即可,•所求m的取值范围是(一0, .2).当1 .下列命题中特称命题的个数是()①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;总有|sin x|w 1.A. 0B. 1C. 2D. 3答案B解析命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形命题③可以叙述为“一切能被6整除的数都能被3整除”,是全称命题;题.故有一个特称命题.2. 下列命题中,不是全称命题的是()A .任何一个实数乘以0都等于0B .自然数都是正整数C.每一个向量都有大小D .一定存在没有最大值的二次函数答案D解析对于A,当x= 1时,9 x= 0,正确;对于B,当x=訓,tan x=④对于任意x€ R ,",故为全称命题;而命题④是全称命解析D选项是特称命题.3. 下列命题中的假命题是(A .存在x€ R, lg x= 0C.任意x€ R, x3>0 答案C )B .存在x € R , tan x=1D.任意x€ R,2x>01,正确;对于C,当x v 0时,x3V 0,错误;对于D,任意x€ R,2x> 0,正确.4 •用量词符号“任意”“存在”表述下列命题:⑴凸n边形的外角和等于2 n.(2)有一个有理数x o满足x0= 3.⑶对任意角a,都有Sin1 2a+ COS2a= 1.解⑴任意x€ {x|x是凸n边形} , x的外角和是2 n.(2)存在x o€ Q , % = 3.⑶任意a€ R , sin2a+ COS2a= 1.[呈重点、现规律]1. 判断命题是全称命题还是特称命题,主要是看命题中是否含有全称量词和存在量词,有些全称命题虽然不含全称量词,可以根据命题涉及的意义去判断.2•要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3•要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.1下列命题:①中国公民都有受教育的权利;②每一个中学生都要接受爱国主义教育;③有人既能写小说,也能搞发明创造;④任何一个数除0,都等于0.其中全称命题的个数是()A. 1B. 2C. 3D. 4答案C解析命题①②④ 都是全称命题.2下列特称命题是假命题的是()A .存在x€ Q,使2x—x3= 0B .存在x€ R,使x2+ x+ 1= 0C. 有的素数是偶数D .有的有理数没有倒数答案B1 3解析对于任意的x€ R , x2+ x+ 1 = (x + 2)2+ 4>0恒成立.3. 给出四个命题:①末位数是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x, x>0 :④对于任意实数x,2x+ 1是奇数.下列说法正确的是()A .四个命题都是真命题B .①②是全称命题C .②③是特称命题D. 四个命题中有两个假命题答案C解析①④为全称命题;②③为特称命题;①②③为真命题;④为假命题.4. 下列全称命题中真命题的个数为()①负数没有对数;②对任意的实数a, b,都有a2+ b2>2ab;③二次函数f(x)= x2—ax—1与x轴恒有交点;④任意x € R, y€ R,都有x2+ |y|>0.A. 1B. 2C. 3D. 4答案C解析①②③为真命题.5. 下列全称命题为真命题的是()A .所有的素数是奇数B .任意x€ R, x2+ 3> 3C.任意x€ R,2x—1=0D .所有的平行向量都相等答案B6. _____________________________ 下列命题中,真命题是.①存在X o€ 0, n,sin X o+ cos x o》2;②任意x€ (3,+s ), X2>2X+ 1;③存在m€ R,使函数f(x)= x2+ mx(x€ R)是偶函数;n④任意x €, n , tan x>sin x.答案②③此命题为假命题;对于②,当 x € (3 ,+s )时,x 2— 2x — 1 = (x — 1)2— 2>0,•此命题为真命题;对于③,当m = 0时,f(x) = x 2为偶函数,•此命题为真命题;n对于④,当 x € , n 时,tan x<0<sin x ,•此命题为假命题.7. 判断下列命题是否为全称命题或特称命题,并判断其真假.(1)存在一条直线,其斜率不存在;⑵对所有的实数a , b ,方程ax + b = 0都有唯一解;1 (3)存在实数 x o ,使得 逐—xo + i = 2.解(1)是特称命题,是真命题.(2) 是全称命题,是假命题.(3) 是特称命题,是假命题.二、能力提升&对任意x>3, x>a 恒成立,则实数 a 的取值范围是 _____________ . 答案(―汽3]解析 对任意x>3, x>a 恒成立,即大于 3的数恒大于a , • a < 3.9. 给出下列四个命题:①a 丄b? a b = 0;②矩形都不是梯形;③ 存在 x , y € R , x 2 + y 2w 1 ;④ 任意互相垂直的两条直线的斜率之积等于- 1.其中全称命题是 _________ .答案①②④解析 ①②省略了量词“所有的”,④含有量词“任意”.10. 四个命题:①任意 x € R , x 2— 3x + 2>0恒成立;②存在 x € Q , x 2 = 2;③存在x € R , 解析对于①,任意x € sin x + cos x = 2sin x +X2+ 1 = 0;④任意x€ R,4x2>2x—1 + 3x2.其中真命题的个数为 ________ .答案0解析x2—3x+ 2>0, △= (—3)2—4X 2>0,•••当x>2 或x<1 时,x2—3x+ 2>0 才成立,①为假命题.当且仅当x= ± 2时,x2= 2,• •不存在x€ Q,使得x2= 2,•②为假命题,对任意x € R, x2+ 1工0,•③为假命题,4/ —(2x—1 + 3x2)= x2—2x+ 1 = (x—1)2> 0,即当x= 1 时,4x2= 2x—1+ 3x2成立,•④为假命题.•••①②③④ 均为假命题.11. 判断下列命题的真假:(1)对任意x € R, |x|>0;⑵对任意a € R,函数y= log a x是单调函数;⑶对任意x € R, x2> —1;⑷存在a € {向量},使a b= 0.解(1)由于0€ R,当x= 0时,|x|>0不成立,因此命题“对任意x€ R, xi>0”是假命题.⑵由于1 € R,当a = 1时,y= log a x无意义,因此命题“对任意a€ R,函数y = log a x是单调函数”是假命题.⑶由于对任意x€ R,都有x2》0,因而有x2> —1.因此命题“对任意x€ R , x2> —1 ”是真命题.⑷由于0€ {向量},当a= 0时,能使ab= 0,因此命题“存在a€ {向量},使ab = 0”是真命题.12. 已知函数f(x)= x2—2x+ 5.(1)是否存在实数m,使不等式m+ f(x)>0对于任意x€ R恒成立?并说明理由;⑵若存在实数x,使不等式m —f(x)>0成立,求实数m的取值范围.解⑴不等式m+ f(x)>0 可化为m> —f(x),即m> —x2+ 2x—5 =—(x —1)2—4.要使m>—(x —1)2—4对于任意x€ R恒成立,只需m> —4即可.故存在实数m使不等式m+ f(x)>0对于任意x€ R恒成立,此时m> —4.(2)不等式m—f(x)>0 可化为m>f(x).若存在实数x使不等式m>f(x)成立,只需m>f(x)min.又f(x)= (x—1)2+ 4,所以f(x)min = 4,所以m>4.故所求实数m的取值范围是(4,+ a).三、探究与拓展13. 若任意x€ R,函数f(x)= mx2+ x—m—a的图像和x轴恒有公共点,求实数a的取值范围.解①当m= 0时,f(x)= x —a与x轴恒相交,所以 a € R;②当m^0时,二次函数f(x) = mx2+ x—m—a的图像和x轴恒有公共点的充要条件是△= 1 + 4m(m+ a)> 0 恒成立,即4m2+ 4am+ 1 > 0 恒成立.又4m2+ 4am + 1> 0是一个关于m的二次不等式,恒成立的充要条件是△= (4a)2—16< 0, 解得—K a< 1.综上所述,当m=0 时, a€ R;当m^ 0 时,a€ [ —1,1].。
名词不加量词默认全称还是特称
名词不加量词默认全称还是特称
摘要:
1.引言:名词和量词的关系
2.名词不加量词的默认全称情况
3.名词不加量词的默认特称情况
4.总结:名词不加量词的默认全称和特称的实际应用
正文:
一、名词和量词的关系
在中文中,名词通常需要与量词相结合,才能表达出准确的含义和数量。
例如,“书”这个名词,如果没有量词,我们无法知道是指一本书还是多本书。
因此,量词在名词表达中起到了关键的作用。
二、名词不加量词的默认全称情况
在某些情况下,名词可以不加量词,但这并不意味着它们没有数量。
这种不加量词的情况,通常表示的是全称。
例如,“猫”这个词,如果没有量词,我们默认它是指所有的猫,而不是某一只猫。
三、名词不加量词的默认特称情况
另外一些名词,在不加量词的情况下,可以表示特称,即特定的某一个或某些事物。
例如,“总统”这个词,如果不加量词,我们默认它是指某一个特定的总统,而不是所有的总统。
四、总结:名词不加量词的默认全称和特称的实际应用
总的来说,名词不加量词时,既可以表示全称,也可以表示特称,具体取
决于上下文和语境。
全称量词与特称量词课件
解析:(1)若¬p∨q 为假命题,则¬p,q 都是假命题,所以 p 为 真命题,q 为假命题,所以 p∧q 是假命题,故选 A.
(2)¬p:存在一个 x0∈R,使 x20+x0+1≠0 成立.
例题考分点一析 含有逻辑联结词命题的真假判定
已知命题 p:∃x0∈R,使 tan x0=1,命题 q:x2-3x +2<0 的解集是{x|1<x<2},给出下列结论: ①命题“p∧q”是真命题;②命题“p∧¬q”是假命题;③命 题“¬p∨q”是真命题;④命题“¬p∨¬q”是假命题.其中正 确的是( D ) A.②③ B.①②④ C.①③④ D.①②③④
解:(1)p 或 q:平行四边形的对角线相等或互相垂直.假命题. p 且 q:平行四边形的对角线相等且互相垂直.假命题. ¬p:有些平行四边形的对角线不相等.真命题. (2)p 或 q:方程 x2+x-1=0 的两实根的符号相同或绝对值相 等.假命题. p 且 q:方程 x2+x-1=0 的两实根的符号相同且绝对值相等.假 命题. ¬p:方程 x2+x-1=0 的两实根的符号不相同.真命题.
确定命题的 构成形式
⇒
判断其中简单 命题的真假
⇒
根据真值表判断 命题的真假
1.写出由下列各组命题构成的“p 或 q”、“p 且 q”、“¬p”形式的复合命题,并判断真假. (1)p:平行四边形的对角线相等;q:平行四边形的对角线互相 垂直; (2)p:方程 x2+x-1=0 的两实根的符号相同;q:方程 x2+x -1=0 的两实根的绝对值相等.
当堂检测 4.(1)(2015·东北师大附中三校联考)已知命题 p:
∃x0∈(0,π2),sin x0=12,则¬p 为(
)
A.∀x∈(0,π2),sin x=12
1.4全称命题与特称命题
转变观念
改革课堂
服务学生
成就辉煌
这三个命题都是特称命题,即具有形式
“x∈M, p(x) ”
命题(4)的否定“不存在一个实数,它的绝 对值是正数” ,也就是说,所有实数的绝对值 都不是正数; 命题(5)的否定是“没有一个平行四边形是 菱形” ,也就是说,每一个平行四边形都不是 菱形;
命题(6)的否定是“不存在 x∈R, x +1<0”, 2 也就是说,x∈R, x +1≥0;
2
转变观念 改革课堂 服务学生
成就辉煌
巩固练习:
1.判断下列命题的真假,其中为真命 题的是 ( D )
A,x R, x 1 0
2
B, x R, x 1 0 C , x R, sin x tan x D, x R, sin x tan x
2
转变观念 改革课堂 服务学生 成就辉煌
(1)与(3),(2)与(4)之间有什么关系?
转变观念 改革课堂 服务学生 成就辉煌
★★ 1.4.2 存在量词与特称命题
定义 短语“存在一个” “至少有一个”在逻辑 中通常叫做存在量词,
常见的存在量词还有:“有些”,“有一个”,“对某个”,“有 的”
记法 存在量词用符号 “
”表示
特称命题的定义
含有存在量词的命题,叫做特称命题.
变式3
已知f(x) ax bx c的图像
2
过点(-1,0), 是否存在常数a, b,c, 1 x 使不等式x f(x) 对一 2 切实数x均成立?
2
1 1 1 a ,b ,c 4 2 4
转变观念 改革课堂
服务学生
成就辉煌
课本23页第1题
答案: (1)真命题
全称命题与特称命及否定
全称命题p: x M , p( x),
它的否定 p: x0 M , p( x0 )
它的否定 p:x M , p( x), 4.复合命题的否定 特称命题p: x0 M , p( x0 )
例4:写出下列命题的否定形式: (1)3是6的约数或15的约数; (2)菱形的对角线互相垂直平分 (1)3既不6的约数,也不是15的约数. (2)菱形的对角线不互相垂直或不互相平分
例1:判断下列全称命题的真假 假 (1)所有的素数是奇数; (2) x (5, ), f ( x) x 2 4 x 2 0 真 (3) n N 点 pn (n, an ) 都在直线y=2x+1上,则 an 是等差数列 真 2:存在量词 x 与(3),(2)与(4)之间有 问题2:下列语句是命题吗?(1) 什么关系? (1)2x+1=3 (2)x能被2和3整除. (3)存在一个 x0 R 使 2 x0 1 3 (4)至少有一个 x0 Z x0 能被2和3整除 短语“至少有一个” “存在一个” “某些” “有一个” “对 某个” “有的”等在逻辑中通常叫做存在量词.并用符号
特称命题“存在M中元素x0,使p(x0)成立”
可以有符号简记为 x0 M , p( x0 ) 例2:判断下列特称命题的真假 2 假 (1) x0 R, x0 2x0 3 0 (2)存在两个相交平面垂直于同一条直线.假 (3) a Z , a 2 3a 2 真 3.全称命题与特称命题的否定 例3:写出下列命题的否定,并判断真假: (1)所有的矩形都是平行四边形; (2) x R, x 2 2x 1 0 (3)有些实数的绝对值是正数; (4) x0 R, x0 2 1 0
D.x R, sin来自x tan x4.命题p:存在实数m,使方程x2+mx+1=0有实数根, 则“非p”形式的命题是( B ) A.存在实数m,使得方程x2+mx+1=0无实根; B.不存在实数m,使得方程x2+mx+1=0有实根; C.对任意的实数m,使得方程x2+mx+1=0有实根; D.至多有一个实数m,使得方程x2+mx+1=0有实根;
全称量词
全称命题的否定是特称命题.
循序渐进 再探新知
写出下列命题的否定 1)有些实数的绝对值是正数;
x M,p(x)
2)某些平行四边形是菱形; 3)x R, x 2 1 0
否定: 1)所有实数的绝对值都不是正数; 2)每一个平行四边形都不是菱形; 3) x R, x 2 1 0
x M,p(x) x M,p(x)
x M,p(x)
x M,p(x) x M,p(x)
这些命题和它们的否定在形式上有什么变化?
从命题形式上看,这三个特称命题的否定都变 成了全称命题. 一般地,对于含有一个量词的特称命题的否定, 有下面的结论:
特称命题 p : x M,p(x)
3)x R, x 2 x 1 0
2
x M,p(x) x M,p(x)
这些命题和它们的否定在形式上有什么变化?
从命题形式上看,这三个全称命题的否定都 变成了特称命题.
一般地,对于含有一个量词的全称命题的否 定,有下面的结论: 全称命题p:
x M , P( x), 它的否定p: x M,p(x).
高考链接 2、(2010· 安徽文)命题“x R, x 2 2 x 5 0 x R, x 2 2 x 5 0 的否定是____________. 3、(2010· 湖南文,2)下列命题中的假命 题是( C ) • A.∃x∈R,lgx=0 • B.∃x∈R,tanx=1 • C.∀x∈R,x2>0 • D.∀x∈R,2x>0
5、(2009· 辽宁文,11)下列4个命题 • 其中的真命题是( D )
• • • •
A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4
归纳小结
全称命题与特称命题
全称命题与特称命题课前预习学案一、预习目标理解全称量词与存在量词的意义,并判断全称命题和特称命题的真假全称命题与特称命题是两类特殊的命题,也是两类新型命题,这两类命题的否定又是这两类命题中的重要概念,二、预习内容1.全称量词和全称命题的概念:概念:短语————,——————在逻辑中通常叫做全称量词,用符号————表示。
含有全称量词的命题,叫做——————。
例如:⑴对任意n ∈N ,21n +是奇数;⑵所有的正方形都是矩形。
常见的全称量词还有:“一切”、“每一个”、“任给”、“所有的”等通常,将含有变量x 的语句用()p x 、()q x 、()r x 表示,变量x 的取值范围用M 表示。
全称命题“对M 中任意一个x ,有()p x 成立”。
简记为:x M ∀∈,()p x读作:任意x 属于M ,有()p x 成立。
2.存在量词和特称命题的概念概念:短语————,——————在逻辑中通常叫做存在量词,用符号——表示。
含有存在量词的命题,叫做————(————命题)。
例如:⑴有一个素数不是奇数;⑵有的平行四边形是菱形。
特称命题“存在M 中的一个x ,使()p x 成立”。
简记为:x M ∃∈,()p x读作:存在一个x 属于M ,使()p x 成立。
3.如果含有一个量词的命题的形式是全称命题,那么它的否定是————;反之,如果含有一个量词的命题的形式是存在性命题,那么它的否定是————。
书写命题的否定时一定要抓住决定命题性质的量词,从对量词的否定入手,书写命题的否定三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标判别全称命题与特称命题的真假.二、学习过程探究一:判别全称命题的真假 1)所有的素数都是奇数;(2)11,2≥+∈∀x R x ;(3)每一个无理数x ,2x 也是无理数.(4){}Q n m n m x x b a ∈+=∈∀,,2,,{}Q n m n m x x b a ∈+=∈+,,2. 探究二:判断下列存在性命题的真假:(1)有一个实数0x ,使032020=++x x ;(2)存在两个相交平面垂直于同一平面;(3)有些整数只有两个正因数.(三)反思总结1、书写命题的否定时一定要抓住决定命题性质的量词,从对量词的否定入手,书写命题的否定2.由于全称量词的否定是存在量词,而存在量词的否定又是全称量词;因此,全称命题的否定一定是特称命题;特称命题的否定一定是全称命题.(四)当堂检测判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数;(2)x ∀∈{x x |是无理数},2x 是无理数;(3)2{}log 0x x x x ∃∈∈Z >|课后练习1.下列命题中为全称命题的是( () )(A)有些圆内接三角形是等腰三角形 ; (B )存在一个实数与它的相反数的和不为0;(C)所有矩形都有外接圆 ; (D )过直线外一点有一条直线和已知直线平行. 设计意图:能正确判断全称命题和特称命题及其区别.2.下列全称命题中真命题的个数是( () )①末位是0的整数,可以被3整除;②角平分线上的任意一点到这个角的两边的距离相等;③对12,2+∈∀x Z x 为奇数. (A ) 0 (B ) 1 (C ) 2 (D ) 33.下列特称命题中假命题...的个数是( () )①0,≤∈∃x R x ;②有的菱形是正方形;③至少有一个整数,它既不是合数,也不是素数.(A ) 0 (B ) 1 (C ) 2 (D ) 32~3设计意图:能正确理解全称量词和特称量词.4.命题“任意一个偶函数的图象关于y 轴对称”的否定是() (A ) 任意一个偶函数的图象不关于y 轴对称;(B ) 任意一个不是偶函数的函数图象关于y 轴对称;(C ) 存在一个偶函数的图象关于y 轴对称;(D ) 存在一个偶函数的图象不关于y 轴对称.5.命题“存在一个三角形,内角和不等于 180”的否定为()(A )存在一个三角形,内角和等于 180;(B )所有三角形,内角和都等于 180;(C )所有三角形,内角和都不等于 180;(D )很多三角形,内角和不等于 180.4~5设计意图:能从变式的角度理解全称命题与特称命题.全称命题与特称命题教案一、教材分析1)《课程标准》指出:“通过生活和数学实例,理解全称量词和特称量词的意义。
函数中存在性和任意性问题分类解析
函数中存在性和任意性问题分类解析全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.1.1x ∃,2x ∃,使得()()12fg x x =,等价于函数()f x 在1D 上的值域A 与函数在2D上的值域的交集不空,即A ∩B ≠Φ.例1已知函数()31,1,12111,06122x x f x x x x ⎧<≤⎪⎪+=⎨⎪-+≤≤⎪⎩和函数()()sin 106g x a x a a π=-+>,若存在12,[0,1]x x∈,使得()()12ff x x =成立,则实数的取值范围是( )解 设函数()f x 与()g x 在[0,1]上的值域分别为与,依题意.当112x <≤时,()31f x x x =+,则()()()2,22301x x x fx +=>+ ∴()f x 在1(,1]2单调递增∴()()112f f x f ⎛⎫<≤ ⎪⎝⎭即()11122f x <≤. 当102x ≤≤时,()11612f x x =-+,所以()f x 单调递,所以()()102f f x f ⎛⎫≤≤ ⎪⎝⎭即()1012f x ≤≤. 综上所述在上的值域A=10,2⎡⎤⎢⎥⎣⎦.当时,[0,]66x ππ∈,又a>0,所以()g x 在[0,1]上单调递增,所以即()112aa g x -≤≤-,故在上的值域[1,1]2a B a =--. 因为A ∩B ≠Φ,所以1012a ≤-≤或10122a ≤-≤解得122a ≤≤,故应选C.2.对11x D ∀∈,22x D∃∈,使得()()12fg x x =,等价于函数()f x 在上的值域是函数()g x 在2D上的值域的子集,即.例2(2011湖北八校第二次联考)设()2332x f x x x -+=-,.①若()02,x ∃∈+∞,使()0f m x =成立,则实数的取值范围为___;②若()12,x ∀∈+∞,,使得()()12fg x x =,则实数的取值范围为___解 ①依题意实数的取值范围就是函数()2332x f x x x-+=-的值域.设,则问题转化为求函数()()()()23231102t h t t t ttt -++==++>+的值域,由均值不等式得h(t)≥3(t=1时取等号),故实数的取值范围是. ②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数的取值范围.由①知,易求得函数的值域()2,B a =+∞,则当且仅当231a a ⎧<⎪⎨>⎪⎩即,故实数的取值范围是.例3已知()()ln f x x ax a R =-∈ (1)求()f x 的单调区间; (2)若,且,函数()313g x bx bx =-,若对任意的,总存在,使,求实数的取值范围.解 (1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围. 当a=1时, 由得(),1110xx x x f -=-=<,故在上单调递减,所以即,于是.因,由()313g x bx bx =-得()(),21x bg x =-.①当时,,故在上单调递增,所以即()2233b g x b -<<,于是22,33B b b ⎛⎫=- ⎪⎝⎭.因为A B ⊆,则当且仅当2ln 223213b b ⎧-≤-⎪⎪⎨⎪≥-⎪⎩,即33ln 22b ≥-时符合题意;②当时,同上可求得3ln 232b ≤-.时符合题意 综合①②知所求实数的取值范围是33(,ln 23][3ln 2,)22-∞--+∞U .3.已知f(x)、g(x)是在闭区间的上连续函,则对12,x x∀∈D 使得()()12fg x x ≤,等价于()()maxminf x gx ≥.例4已知()()2,ln f x x g x x x xa=+=+,其中a>0.(1)若是函数h(x)=f(x)+g(x)的极值点,求实数的值;(2)若对12,[1,]e x x∀∈都有()()12fg x x ≥成立,求实数的取值范围.解 (1)略;(2) 对12,[1,]e x x∀∈,有()()12fg x x ≥,等价于x ∈[1,e]有.当x ∈[1,e]时(),110x x g =+>,所以g(x)在[1,e]上单调递增,所以.因为()222,221x axaf xx-=-=, 令得,又且,.①当0<a<1时,(),x f >0,所以f(x)在[1,e]上单调递增,所以.令得这与矛盾。
3.1 全称量词与全称命题 3.2存在量词与特称命题
③有的菱形是正方形;
④2x+1 (x∈R)是整数;
⑤对所有的x∈R,x>4;
⑥对任意一个x∈Z,2x+1为奇数 解析: ①②③⑥为真命题,④⑤为假命题
1.下列命题中为全称命题的是( B ) A.今天有人请假
B.矩形都有外接圆
C.存在一个实数与它的相反数的和为0
D.过直线外一点有一条直线和已知直线平行
存在量词与特称命题的定义
短语“有些”“至少有一个”“有一个”“存
在” 都有表示个别或一部分的含义,这样的词叫作 存在量词 特称命题 ________.含有存在量词的命题,叫作_________.
思考
特称命题与存在量词的关系是什么?
提示:特称命题是与存在量词相联系的,一个命题中
如果含有如下的量词:“存在一个”“至少有一
全称量词 含有全称量词的命题,叫 这样的词叫作_________. 全称命题 作_________.
常见的全称量词有哪些? 提示:常见的全称量词有 “一切 ” “任何”“每 一个” “所有的”“任给”等.
探究点2
存在量词与特称命题
思考 下列语句是命题吗?(1)与(3),(2)与
(4)之间有什么关系?
(1)方程x2+x-1=0的两个解都是实数解.
(2)每一个关于x的一元一次方程ax+b=0(a≠0)都有 解. (3)有一个实数,不能作除数. (4)末位数字是0或5的整数,能被5整除. 提示:(1)(2)(4)全称命题,(3)特称命题.
例2
判断下列命题的真假:
(1)所有的素数都是奇数. (假)
(2)对每一个无理数x,x2也是无理数. (假) (3)有一个实数x,使x2+3x+2=0成立. (真) (4)存在两个相交平面垂直同一条直线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:P23:第2题
练 习:
( )下列全称命题中,真命题是:( 1 A. 所有的素数是奇数 B. x R, ( x 1) 0
下列语句是否是命题?(1)与(3),(2)与(4)之间有什么关系? (1)2x+1=3 (2)x能被2和3整除 (3)存在一个x∈R, 使得2x+1=3 (4)至少有一个x∈Z, x能被2和3整除 (1),(2)不是命题,但是(3),(4)是陈述句,并且能判定 真假,所以(3)(4)是命题
类似于(3)(4)中的短语“存在一个”“至少有一 个”“有些”“有一个”“对某个”“有的”“存在 着”等,在逻辑中通常叫做存在量词 符号表示:
含有全称量词的命题,叫做全称命题
判定命题是否为全称命题?
(1)对任意的n∈Z,
2n+1 是奇数
(2)所有的正方形都是矩形 (3) 自然数的平方是正数
注意: (1)全称命题就是陈述某集合所有元素都具有某种性质的命题 (2)一个全称命题,可以包含多个变数,例如:
x R, y R,( x y )( x y ) 0
***含有一个量词的命题的否定***
全称命题p : x M , p( x ) 它的否定p : x M , p( x ) 特称命题p : x M , p( x ) 它的否定p :
***含有一个量词的命题的否定***
全称命题p : x M , p( x ) 它的否定p : x M , p( x ) 特称命题p : x M , p( x ) 它的否定p : x M , p( x )
含有存在量词的命题,叫做特称命题
读作:“存在一个x属于M,使p(x)成立” 判定命题是否为特称命题?
(1)有的平行四边形是菱形
(2)有一个素数不是奇数
(1)(2)都是特称命题
例2:判定特称命题的真假:
(1)有一个实数x0,使x02+2x0+3=0
(2)存在两个相交平面垂直于同一条直线
(3)有些数只有两个正因数
写出下列命题的否定 (1)所有的矩形都是平行 四边形; (2)每一个素数都是奇数 ; (3)x R, x 2 2 x 1 0
否定
(1) 存在一个矩形不是平行 四边形; (2) 存在一个素数不是奇数 ;
写出下列命题的否定 (1)所有的矩形都是平行 四边形; (2)每一个素数都是奇数 ; (3)x R, x 2 2 x 1 0
写出下列命题的否定 (1)所有的矩形都是平行 四边形; (2)每一个素数都是奇数 ; (3)x R, x 2 2 x 1 0
否定
写出下列命题的否定 (1)所有的矩形都是平行 四边形; (2)每一个素数都是奇数 ; (3)x R, x 2 2 x 1 0
否定
(1) 存在一个矩形不是平行 四边形;
否定
1)所有实数的绝对值都不是正数;
2)每一个平行四边形都不是菱形;
3)x R, x 1 0
2
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; 2)某些平行四边形是菱 形; 3)x R, x 2 1 0
否定
1)所有实数的绝对值都不是正数;
2)每一个平行四边形都不是菱形;
否定
1)所有实数的绝对值都不是正数;
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; 2)某些平行四边形是菱 形; 3)x R, x 2 1 0
否定
1)所有实数的绝对值都不是正数;
2)每一个平行四边形都不是菱形;
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; 2)某些平行四边形是菱 形; 3)x R, x 2 1 0
2
2)p : 有的三角形是等边三角 形; 3)p : 又一个素数含有三个正 因子;
***含有一个量词的命题的否定***
***含有一个量词的命题的否定***
全称命题p : x M , p( x )
***含有一个量词的命题的否定***
全称命题p : x M , p( x ) 它的否定p :
否定
(1) 存在一个矩形不是平行 四边形; (2) 存在一个素数不是奇数 ;
( 3) x R, x 2 x 1 0
2
Hale Waihona Puke 这些命题和他们的否定 在形式上有什么变化?
写出下列命题的否定 (1)所有的矩形都是平行 四边形;x M , p( x ) (2)每一个素数都是奇数 x M , p( x ) ; (3)x R, x 2 2 x 1 0 x M , p( x )
1.4
全称量词与存在量词
探究一
下列语句是否是命题?(1)与(3),(2)与(4)之间有什么关系? (1)x>3 不是命题
(2)2x+1是整数
不是命题
是命题
(3)对所有的 x∈R, x>3 (4)对任意一个2x+1是整数
是命题
类于(3)(4)中的短语“所有的”“任意一个”“任意 的”“一切的”“每一个”“任给”等,在逻辑中通常叫做全 称量词. 符号表示:
3)x R, x 1 0
2
这些命题和他们的否定 在形式上有什么变化?
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; x M , p( x ) 2)某些平行四边形是菱 形; x M , p( x ) 3)x R, x 2 1 0 x M , p( x )
例1:判定全称命题的真假:
(1)所有的素数是奇数
(2) x∈R,
x2+1≥1
(3)对每个无理数x,x2也是无理数 判定全称命题的真假:
(1)判断为真,需要对集合M中每个元素x,证明p(x)成立;
(2)判断为假,只需在集合M中找到一个元素x0,使得
p(x0)不成立,那么这个全称命题就是假命题。
探究二
否定
1)所有实数的绝对值都不是正数; x M , p( x )
2)每一个平行四边形都不是菱形; x M , p( x )
3)x R, x 1 0
2
x M , p( x )
这些命题和他们的否定 在形式上有什么变化?
例1:写出下列全称命题的 否定 1)p : x R, x 2 x 3 0;
2
)
(3)用符号“”“”表示下列含有量词的命题:
① 实数的平方大于等于0; ② 存在一对实数,使2 x 3 y 3 0成立.
含有一个量词的命题的否定
写出下列命题的否定 (1)所有的矩形都是平行 四边形; (2)每一个素数都是奇数 ; (3)x R, x 2 2 x 1 0
***含有一个量词的命题的否定***
全称命题p : x M , p( x ) 它的否定p : x M , p( x )
***含有一个量词的命题的否定***
全称命题p : x M , p( x ) 它的否定p : x M , p( x ) 特称命题p : x M , p( x )
2
3)r : x R, x 2 x 2 0
2
4)s : 至少又一个实数 , 使x 1 0 x
3
例2 : 写出下列命题的否定 并判断其真假 , 1)p : 任意两个等边三角形都 是相似的; 2)p : x R, x 2 x 2 0;
2
课外练习: 已知命题p : a , b, c (0, ), 三个数 1 1 1 a , b , c 中至少有一个不小于 , 2 b c a 试写出p, 并证明它们的真假 .
否定
(1) 存在一个矩形不是平行 四边形; (2) 存在一个素数不是奇数 ;
( 3) x R, x 2 x 1 0
2
写出下列命题的否定 (1)所有的矩形都是平行 四边形; (2)每一个素数都是奇数 ; (3)x R, x 2 2 x 1 0
否定
(1) 存在一个矩形不是平行 四边形; (2) 存在一个素数不是奇数 ;
( 3) x R, x 2 x 1 0
2
这些命题和他们的否定 在形式上有什么变化?
写出下列命题的否定 (1)所有的矩形都是平行 四边形;x M , p( x ) (2)每一个素数都是奇数 x M , p( x ) ; (3)x R, x 2 2 x 1 0 x M , p( x )
2
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; 2)某些平行四边形是菱 形; 3)x R, x 2 1 0
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; 2)某些平行四边形是菱 形; 3)x R, x 2 1 0
否定
想一想: 写出下列命题的否定 1)有些实数的绝对值是 正数; 2)某些平行四边形是菱 形; 3)x R, x 2 1 0
否定
(1) 存在一个矩形不是平行 四边形; x M , p( x ) (2) 存在一个素数不是奇数 x M , p( x ) ;
( 3) x R, x 2 x 1 0 x M , p( x )
2
这些命题和他们的否定 在形式上有什么变化?
例1:写出下列全称命题的 否定 1)p : 所有能被3整除的整数都是奇数; 2)p : 每一个四边形的四个顶 点共圆; 3)p : 对任意x Z , x 的个位数字不等于 ; 3
2
)
1 C. x R, x 2 x 1 D. x (0, ), sin x 2 2 sin x