七年级数学:一元一次方程的应用之追及问题

合集下载

数学教案-一元一次方程的应用之追及问题

数学教案-一元一次方程的应用之追及问题

数学教案-一元一次方程的应用之追及问题一、教学目标1.理解追及问题的基本概念,掌握追及问题的解题方法。

2.能够运用一元一次方程解决追及问题,提高解决问题的能力。

3.培养学生分析问题、解决问题的思维能力和团队协作精神。

二、教学内容1.追及问题的基本概念和类型2.一元一次方程在追及问题中的应用3.追及问题的解题方法和步骤三、教学过程1.导入新课(1)引导学生回顾一元一次方程的应用,如年龄问题、行程问题等。

(2)提出追及问题,让学生思考如何解决。

2.知识讲解(1)介绍追及问题的基本概念:追及问题是指两个物体在相对运动过程中,一个物体从后面追赶另一个物体,直到追上为止的问题。

(2)讲解追及问题的类型:直线追及和圆周追及。

(3)分析追及问题的解题思路:找出等量关系,列出方程。

3.案例分析(1)案例一:甲车从A地出发,以每小时60公里的速度行驶,乙车从A地出发1小时后以每小时80公里的速度追赶甲车,求乙车追上甲车需要多少时间?(2)引导学生分析案例,找出等量关系:甲车行驶的距离+1小时行驶的距离=乙车行驶的距离。

(3)列出方程:60x+60=80(x-1)。

(4)解方程:60x+60=80x-80,20x=140,x=7。

(5)得出结论:乙车追上甲车需要7小时。

4.练习巩固1.甲、乙两辆火车从相距600公里的两个车站同时出发,相向而行,甲车速度为每小时80公里,乙车速度为每小时100公里。

求两车相遇需要多少时间?2.一辆汽车从甲地出发,以每小时60公里的速度行驶,一辆自行车从甲地出发1小时后以每小时20公里的速度追赶汽车。

求自行车追上汽车需要多少时间?(2)学生展示解题过程,教师点评并给出正确答案。

(2)强调找等量关系、列方程的重要性。

(3)鼓励学生多练习,提高解决问题的能力。

四、课后作业1.完成课后练习题,巩固追及问题的解题方法。

2.收集生活中的追及问题,尝试用一元一次方程解决。

五、教学反思本节课通过讲解追及问题的基本概念、类型和解题方法,让学生掌握了运用一元一次方程解决追及问题的能力。

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题问题描述追及问题是数学中一个常见的应用问题,也是一元一次方程的经典应用之一。

考虑如下情境:A 、B 两人从同一地点出发,A 的速度为 v1 m/s ,B 的速度为 v2m/s 。

如果 A 比 B 先出发 t 秒,那么 B 多久能追上 A ?构建方程为了解决这个追及问题,我们需要先构建一个一元一次方程来代表 A 和 B 的位置关系。

首先,我们根据题意可以得到 A 和 B 的距离和时间之间的关系:•A 的距离 = (A 的速度) * (时间 + t),即 d1 = v1 * (t + t)•B 的距离 = B 的速度 * 时间,即 d2 = v2 * t其中,d1 和 d2 分别表示 A 和 B 的距离,t 表示 A 比 B 先出发的时间差。

根据题意,当 A、B 两人相遇时,他们的距离相等。

因此,我们可以得到以下方程:v1 * (t + t) = v2 * t将上述方程变换一下,得到一元一次方程的标准形式:v1 * t + v1 * t = v2 * t再进一步整理得到:(v1 - v2) * t = 0根据一元一次方程的定义,我们可以推断出 t = 0 或 v1 - v2 = 0。

由于 t 表示 A比 B 先出发的时间差,而实际问题中 A 必然比 B 先出发,所以 t 不能等于 0。

因此,我们只需考虑 v1 - v2 = 0 的情况。

当 v1 - v2 = 0 时,即 A 和 B 的速度相等,这时无论谁先出发,B 都无法追上 A。

因此,追及问题存在的条件是v1 ≠ v2。

判断追及问题是否有解在解追及问题之前,我们需要先判断问题是否有解。

根据一元一次方程的定义,我们知道如果方程的系数一致,方程有解。

因此,当v1 ≠ v2 时,追及问题有解;当 v1 = v2 时,追及问题无解。

解追及问题当追及问题有解时,我们可以利用一元一次方程的求解方法来计算出相遇的时间 t。

将 v1 和 v2 带入 t 的方程中,求解得到 t 的值。

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题

一元一次方程的应用之追及问题追及问题是一种经典的一元一次方程应用问题,常常出现在物理学、运动学以及交通领域中。

它描述的是两个物体相互追赶、追及的情况,通过建立一元一次方程来求解物体的速度、距离和时间等相关问题。

例如,假设有两个人A和B,他们在同一条直线上同时从不同的位置出发,A的速度是5米/秒,B的速度是4米/秒。

问题1:如果A和B同时出发后,多久之后他们能够相遇?问题2:相遇时,A和B分别走了多少米?首先,可以设定A和B同时出发的时间为t,那么A和B在t时间内分别走过的距离可以用速度乘以时间来表示。

根据题目中给出的数据,A 和B的速度分别是5米/秒和4米/秒,那么他们走过的距离可以表示为:A的距离=5tB的距离=4t问题1:他们相遇的时间是多久?由于他们在相遇时走过的距离是相等的,所以我们可以将A的距离和B的距离相等,即5t=4t。

解这个方程可以得到t=0,表示他们在出发后立即相遇。

但根据题意可知,他们是同时出发的,所以这个解是不符合实际情况的。

因此,我们可以设定他们相遇的时间为t,即5t=4t。

解这个方程可以得到t=0。

这个解同样不符合实际情况,所以可以排除。

问题2:相遇时,A和B分别走了多少米?我们可以将相遇时的距离设为d,即A和B相遇时的距离是d,那么根据上面的分析,A和B分别走过的距离分别是5d和4d。

根据题意,A 和B相遇时的距离是相等的,所以可以写出5d=4d,从而解得d=0。

同样不符合实际情况。

通过上面的分析可以看出,在这个问题中,A和B根本无法相遇。

这是因为在他们的出发速度中,A的速度5米/秒大于B的速度4米/秒,A 始终能够保持在B的前方,无论经过多久都不可能相遇。

通过这个例子,我们可以看到追及问题中一元一次方程的应用。

尽管上述问题中我们没有得到实际的解,但这并不妨碍追及问题在实际情况中的应用。

例如,在交通运输领域中,追及问题可以用于计算不同车辆之间的距离,以及不同车辆的相对速度和时间。

一元一次方程的应用之追及问题——初中数学第一册教案

一元一次方程的应用之追及问题——初中数学第一册教案

一元一次方程的应用之追及问题——初中数学第一册教案第16课4。

4一元一次方程的应用之追及问题教学目的一、使学生会分析相向而行的同时与不同时动身的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

二、使学生增强了解列一元一次方程解应用题的方式步骤。

教学分析重点:利用路程、速度、时间的关系,按照相遇问题中的相等关系,列出一元一次方程。

难点:寻觅相遇问题中的相等关系。

冲破:同时动身到相遇时,所历时间相等。

注重审题,从而找到相等关系。

教学进程一、温习一、列方程解应用题的一般步骤是什么?二、路程、速度、时间的关系是什么?3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,若是快车先开0。

5小时,那么慢车开出x小时后,快车行驶了千米。

二、新授一、引入列方程解应用题,关键是寻觅相等关系,今天咱们通过一例来学习如何寻觅相等关系,和把相等关系表示成方程的方式。

例(讲义P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:慢车行程+快车行程=两站路程设两车行了x小时相遇,则两车的行程的代数式别离为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。

一样画出图形,并按讲义讲解,(见教材P217~218)由学生完成求解进程,并作出答案。

解:略说明:(1)本题是相向而行的相遇问题,一路点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。

不同点是一个同时动身,一个不是同时动身,所以所历时间不必然相等。

(2)不是同时动身的,要注意时间的关系。

三、练习P220练习:1,2。

四、小结一、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

二、相向而行的相遇问题中,要注意时间的关系。

五、作业一、P222 4。

4A:13,14,15。

二、基础训练:同步练习3。

北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——追赶小明

北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——追赶小明
解:36 km/h=10 m/s,则4.87n+5.4(n-1)=20×10,
解得n=20. 答:n的值是20.
课堂检测
能力提升题
操场一周是400米,小明每秒跑5米,小华骑自行车每秒10 米,两人绕跑道同时同地相背而行,则两个人何时相遇?
解:设经过x秒两人第一次相遇,
小明
依题意,得 10x+5x=400,
解:设战斗是在开始追击后x小时发生的. 根据题意,得 8x-5x=25-1. 解得 x=8.
答:战斗是在开始追击后8小时发生的.
探究新知
议一议 根据下面的事实提出问题并尝试去解答. 育红学校七年级学生步行到郊外旅行.七(1)班的学生组成 前队,步行的速度为4千米/小时,七(2)班的学生组成后队, 速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派 一名联络员骑自行车在两队之间不间断地来回进行联络,他骑 车的速度为12千米/小时. 问题1:后队追上前队用了多长时间?
解:设后队追上前队用了x小时,由题意 列方程得: 6x=4x+4 . 解方程得:x=2.
答:后队追上前队时用了2小时.
探究新知
问题2:后队追上前队时联络员行了多少路程? 解:由问题1得后队追上前队用了2小时,因此联络员共行 进了 12 × 2 = 24 (千米)
答:后队追上前队时联络员行了24千米. 问题3:联络员第一次追上前队时用了多长时间? 解:设联络员第一次追上前队时用了x小时, 由题意列方程得: 12x = 4x + 4.
北师大版 数学 七年级 上册
5.6 应用一元一次方程 ——追赶小明
导入新知 龟兔赛跑
素养目标
2. 通过分析追及问题中的数量关系,从而建立方程解 决实际问题.进一解决实际问题,进一步感知数学 在生活中的作用.

初一一元一次方程:行程问题应用题专题

初一一元一次方程:行程问题应用题专题

《一元一次方程:行程问题》解答题【基本知识】路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2一、【求距离】1、七年级列队以每小时6千米的速度去甲地,小刚从队尾以每小时10千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长。

【解】设队伍长度x 千米 ,等量:时间81164=+x x 52=∴x 答:略 2、队伍以每小时4千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了4.5分钟,求队伍的长。

【解】605.4168=+x x x = 0.4千米 3、队伍以每小时6千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了5分钟,求队伍的长。

【解】605186=+x x x = 0.375千米 4、一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x 千米,求x . 【解】565.4146--=-x x ∴ 13=x 5、已知某铁路桥长500m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30s ,整列火车完全在桥上的时间为20s ,则火车的长度为多少m ?【解】设火车的长度为x m ,根据火车的速度不变可得方程:2050030500x x -=+ 2(500+x )=3(500﹣x ) x =100. 答:火车的长度为100m .6、王先生计划骑车以每小时10千米的速度由A 地到B 地,这样便可在规定时间到达B 地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B 地,求A 、B 两地间的路程.【解】设由A 、B 两地的路程是 x 千米,则60560101210++=x x 解得:x=15,答:A 、B 两地间的路程是15千米 7、李明和王华步行同时从A 、B 两地出发,相向而行,在离A 地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A 地44米处相遇,求A 、B 两地距离多少米?解:(行程问题,全是路程比与比例)设AB 相距x 千米李明 王华 路程和52 x -52 x2x -44 3x31344252==-∴x x x 8、某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【解答】设小明家到西湾公园距离x 千米, 根据题意得:6.1408=-x x 解得:x =16. 答:小明家到西湾公园距离16千米.9、小张和父亲预定搭乘家门口的公交汽车赶往火车站,去家乡看望爷爷。

一元一次方程应用题,相遇及追击问题

一元一次方程应用题,相遇及追击问题
追及问题:
追者路程=被追者路程+相隔距离
甲的路程+乙的路程=总路程
全效学习 P90、91
作业:

学 校
追 及 地
400米
80x米
180x米
例2、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。 (1)爸爸追上小明用了多少时间? (2)追上小明时,距离学校还有多远?
精讲 例题
分 析
线段图分析:


A
B
80千米
第二种情况: A车路程+B车路程-相距80千米= 相距路程
路程角度:甲的路程 + 乙的路程 =AB之间的距离
问题二:甲、乙两人分别从相距50km的A、B两地同时出发,相向而行,甲每小时走3km,乙每小时走2km,相遇时,甲行走的路程是多少?
数学在生活、经济、科技中的应用
(1)学会借助线段图分析等量关系; (2)在探索解决实际问题时,应从多角度思考问题.
问题一:甲、乙两人分别从相距50km的A、B两地同时出发,相向而行,甲每小时走3km,乙每小时走2km,问他俩几小时可以相遇? 解:设他俩 小时后相遇, 由题意得 答:他们 小时后相遇。
问题二:甲、乙两人分别从相距50km的A、B两地同时出发,相向而行,甲每小时走3km,乙每小时走2km,相遇时,甲行走的路程是多少?
A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?
Байду номын сангаас
分 析
路程角度: 乙先行路程 + 乙后行路程 =甲的路程

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题

行程问题--一元一次方程经典应用题行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速一、相遇问题1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲、乙两人同时从相距27km的A、B两地相向而行,3h后相遇,甲比乙每小时多走1km,求甲、乙两人的速度3、甲乙两城相距100千米,摩托车和自行车同时从两城出发,相向而行,2.5小时后两车相遇,自行车的速率是4、A,B两村相距2800米,小明从A村出发向B村步行5 分钟后,小军骑自行车从B村向A村出发,又经过10分钟二人相遇,小军骑自行车比小明步行每分钟多走130 米,小明每分钟步行多少米?5、甲、乙两人骑自行车,同时从相距65千米的两地相向而行,甲的速率为每小时17.5千米,乙的速率为每小时15千米,求经过几小时,甲、乙两人相距32.5千米。

6、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5 小时后两车相遇。

乙车每小时行多少千米?二、追及问题1、A、B两地相距20km,甲、乙两人分别从A、B两发出发,甲的速度是6km/h,乙的速度是8km/h。

(1)若两人相向而行,甲先出发半小时,乙才出发,问乙出发后几小时与甲相遇?(2)若两人同时同向出发,甲在前,乙在后,问乙多少小时可追上甲?2、一个自行车队举行锻炼,锻炼时一切队员都以35千米/时的速率前进,忽然,1号队员以45千米/时的速率单独行进,行进10千米后掉转车头,仍以45千米/时的速度往回骑,知道与其他队员会和。

一元一次方程之追及问题

一元一次方程之追及问题

一元一次方程之追及问题甲、乙两车站相距400千米慢车每小时行驶100千米,快车每小时行驶140千米先让慢车行驶100千米,然后快车再出发问多长时间快车能追上慢车???如果不是快车慢车的那再给你找一些追及应用题吧1、甲车在乙车前500千米,同时出发,速度分别为每小时40千米和每小时60千米,多少小时候,乙车追上甲车?2、甲乙两人相距6千米,乙在前,甲在后,两人同时同向出发,3小时甲追上乙。

乙每小时行4千米,甲每小时行多少千米?3、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,10分钟后两人相距多远?4、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,这时,乙离终点还有多远5、在长跑比赛中,甲运动员每分跑320米,乙每分跑305米,甲出发后30分钟到达终点,甲到达终点后原路返回起跑点,起跑后多少分两人相遇?6、一辆货车以每小时60千米的速度前进,一辆客车在它后面30千米,以每小时75千米的速度前进,问客车多长时间能追上货车?7、甲车1小时行驶60千米,1小时后,乙车从同一地点出发追赶甲车,如果乙车的速度为每小时80千米,几小时后可以追上甲车?8、兄弟俩骑车郊游,弟弟先出发,速度为每分钟行200米,5分钟后哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后就又返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米?9、甲乙两站相距360千米,客车与货车同时从甲站出发驶向乙站,客车每小时行驶60千米,货车每小时行驶40千米,客车到达乙站后又以原速度返回甲站,两车在开出几小时后相遇?10、甲乙两人在周长是400米的环形跑道上跑步,甲比乙跑得快,如果两人从同一地点出发,背向而行,那么经过2分钟相遇,如果两人从同一地点同向而行,那么经过20分钟甲追上乙,求甲乙各自的速度是多少?11.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地每小时步行4千米。

一元一次方程应用题追及问题

一元一次方程应用题追及问题

一元一次方程应用题追及问题一、引言一元一次方程是初中阶段数学中的一个重要知识点,也是学生学习的一个重要内容。

在现实生活中,一元一次方程有着广泛的应用,例如追及问题就是一元一次方程应用的一个典型例子。

本文将通过追及问题来探讨一元一次方程在实际生活中的应用,内容主要包括追及问题的概念、解题方法、应用实例和解决问题的思维方式等。

二、追及问题的概念追及问题是指两个物体在同一直线上相向运动,当它们起始位置、速度和方向都已知的情况下,求它们相遇时的时间和地点。

追及问题是一种典型的应用题,它可以用一元一次方程来解决。

在追及问题中,一般可以将两个物体的运动过程分别用两个一元一次方程来表示,通过求解这两个方程,就可以得到它们相遇的时间和地点。

三、解题方法1.建立方程在追及问题中,首先要根据题目中所给的信息,建立两个物体的运动方程。

通常可以采用以下步骤来建立方程:(1)确定变量及其含义:在问题中,通常需要确定两个物体的位置、速度和时间等变量,然后通过这些变量来建立方程。

(2)建立运动方程:根据两个物体的起始位置、速度和方向等信息,可以建立它们的运动方程。

例如,假设两个物体分别以v1和v2的速度从两个不同的地点出发,那么它们的位置与时间的关系可以表示为s1= v1t + s0和s2 = v2t + s0。

2.求解方程建立方程之后,接下来就是求解方程。

通常可以采用以下方法来求解一元一次方程:(1)代入法:将一个方程中的某个变量的值用另一个方程中的变量表示,然后将此值代入另一个方程中,求出另一个变量的值。

(2)消元法:通过两个方程的加减法,将一个变量消去,然后求解另一个变量。

3.检验解的合理性求解方程之后,还需要检验解的合理性。

通常可以通过代入原方程进行检验,如果代入后等式成立,则说明解是正确的;如果等式不成立,则需要重新检查解题过程。

四、应用实例下面通过几个实际的应用实例来说明追及问题的具体应用:实例一:小明骑自行车以每小时12公里的速度从A地出发,2小时后小红驾车以每小时20公里的速度从B地出发,两人在5小时后相遇,请问A、B两地的距离各是多少公里?解:设A、B两地的距离分别为x公里。

七年级一元一次方程应用题

七年级一元一次方程应用题

七年级一元一次方程应用题一、行程问题1. 例题:甲、乙两人从相距240千米的A、B两地同时出发,相向而行,3小时后相遇。

已知甲每小时行45千米,求乙每小时行多少千米?解析:设乙每小时行公式千米。

根据路程 = 速度×时间,甲行驶的路程为公式千米,乙行驶的路程为公式千米。

由于两人是相向而行,总路程为240千米,所以可列方程公式。

解方程:首先对公式进行移项,得到公式。

即公式,解得公式。

答案:乙每小时行35千米。

2. 追及问题例题:甲、乙两人在同一条路上同向而行,甲每小时走7千米,乙每小时走5千米,乙先走2小时后,甲才开始走,问甲几小时能追上乙?解析:设甲公式小时能追上乙。

乙先走2小时,则乙先走的路程为公式千米。

公式小时后,甲走的路程为公式千米,乙走的路程为公式千米。

当甲追上乙时,他们所走的路程相等,可列方程公式。

解方程:移项得公式。

即公式,解得公式。

答案:甲5小时能追上乙。

二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?解析:设两人合作需要公式天完成。

把这项工程的工作量看作单位“1”。

甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。

根据工作量 = 工作效率×工作时间,两人合作的工作效率为公式,可列方程公式。

解方程:先对括号内进行通分,公式。

则方程变为公式,解得公式。

答案:两人合作需要6天完成。

2. 例题:一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在两队合作,其间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天。

问乙队休息了几天?解析:设乙队休息了公式天。

甲队单独做20天完成,甲队每天的工作效率为公式;乙队单独做30天完成,乙队每天的工作效率为公式。

甲队工作了公式天,甲队完成的工作量为公式。

乙队工作了公式天,乙队完成的工作量为公式。

两队完成的工作量之和为单位“1”,可列方程公式。

人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)

人教版七年级上册 一元一次方程的应用-追及相遇问题(含答案)

人教版七年级上册一元一次方程的应用-追及相遇问题(含答案)一、单选题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米.若甲让乙先跑10米,设甲跑x秒后可以追上乙,则下列四个方程中不正确的是()A.7x=6.5x+10B.7x-10=6.5x C.(7-6.5)x=10D.7x=6.5x-102.甲、乙两列火车在平行轨道上相向而行,已知两车自车头相遇到车尾相离共需8 s.若甲、乙两车的速度之比为3∶2,甲车长200 m,乙车长280 m,则甲、乙两车的速度分别为( ) A.30 m/s,20 m/s B.36 m/s,24 m/sC.38 m/s,22 m/s D.60 m/s,40 m/s3.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+4.如图,甲船从北岸码头A向南行驶,航速为36千米/时;乙船从南岸码头B向北行驶,航速为27千米/时.两船均于7:15出发,两岸平行,水面宽为18.9千米,则两船距离最近时的时刻为()A.7:35B.7:34C.7:33D.7:325.甲乙两人练习跑步,甲先让乙跑10米,则甲5秒钟追上乙,若甲让乙先跑2秒,甲跑4秒就追上乙,甲乙两人每秒分别跑()A.4米、6米B.2米、4米C.6米、4米D.4米、2米6.甲、乙两人从学校到博物馆去,甲每小时走 4km ,乙每小时走 5km ,甲先出发 0.1h ,结果乙还比甲早到 0.1h .设学校到博物馆的距离为 xkm ,则以下方程正确的是( ) A.+0.1=0.145x x- B.-0.1=0.145x x+ C.=0.145x x- D.4x ﹣0.1=5x+0.17.甲、已两地相距50千米,小明、小刚分别以6?千米/时、4千米/时从甲乙两地同时出发,小明领一只小狗以10千米/时奔向小刚,碰到小刚后奔向小明,碰到小明后奔向小刚…一直到两人相遇,小狗共跑了多少路程?( ) A.25千米B.30千米C.35千米D.50千米8.A 、B 两地相距900千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是( ) A .4小时 B .4.5小时 C .5小时 D .4小时或5小时 二、填空题9.一艘船从甲码头到乙码头顺流行驶,用了2个小时,从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/时,则船在静水中的速度是_____千米/时.10.一个通讯员骑自行车需要在规定时间内把信件送到某地,每小时走15公里早到24分钟,如果每小时走12公里,就要迟到15分钟,原定时间是________分.11.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A ,C 两地距离为2千米,则A ,B 两地之间的距离是_____.12.甲、乙两人练习赛跑,若甲让乙先跑10米,则甲跑5秒种就能追上乙.若甲让乙先跑2秒钟,则甲跑4秒种就能追上乙,则甲每秒跑____米,乙每秒跑____米.13.在一段双轨铁道上,两人辆火车迎头驶过,A 列车车速为20米/秒,B 列车车速为25米/秒,若A 列车全长200米,B 列车全长160米,两列车错车的时间为____秒。

(完整版)一元一次方程应用行程问题

(完整版)一元一次方程应用行程问题

:一元一次方程应用之—-—-——-——-—---行程问题专题一、【基本概念】行程类应用题基本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度➢相遇问题:甲、乙相向而行,则:甲走地路程+乙走地路程=总路程。

➢追及问题:①甲、乙同向不同地,则:追者走地路程=前者走地路程+两地间地距离。

②甲、乙同向同地不同时,则:追者走地路程=前者走地路程➢环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地。

②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.➢飞行(航行)问题、基本等量关系:①顺风(顺水)速度=无风(静水)速度+风速(水速)②逆风(逆水)速度=无风(静水)速度-风速(水速)顺风(水)速度-逆风(水)速度=2×风(水)速➢车辆(车身长度不可忽略)过桥问题:车辆通过桥梁(或隧道等),则:车辆行驶地路程=桥梁(隧道)长度+车身长度➢超车(会车)问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差。

会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和。

在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键。

所以画行程图是我们必须学会地一种分析手段。

另外,由于行程问题中地基本量只有“路程”、“速度”和“时间"三项,所以,列表分析也是解决行程问题地一种重要方法。

二、【典型例题】(一)相遇问题相遇问题:甲、乙相向而行,则:甲走地路程+乙走地路程=总路程。

例1、甲、乙两站相距600km,慢车每小时行40km,快车每小时行60km。

⑴经过xh后,慢车行了km,快车行了km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km,如果两车同时开出,xh相遇,那么可得方程: ;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h 后与B车相遇,又知B车地时速是A车时速地1.5倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进。

“应用一元一次方程——追赶小明”教学设计

“应用一元一次方程——追赶小明”教学设计

2020年第5期(下)中学数学研究21“应用一元一次方程——追赶小明”教学设计广东省深圳市宝安区宝安中学(集团)初中部(518101)余冰摘要“应用一元一次方程——追赶小明”以一个实际事例“能追上小明吗”为载体,创设问题情境,要求学生能借助“线段图”分析复杂问题中的数量关系,并利用方程解决此类问题.关键词线段图;时间;速度;路程;相遇问题;追及问题1教材分析本节课是义务教育教科书北师大版数学七年级上册第五章第6节课“应用一元一次方程—–追赶小明”,是学生学习了一元一次方程及其解法后的延伸,是一元一次方程的应用问题中的追及问题.教材以一个实际事例“能追上小明吗”为载体,创设问题情境,要求学生能借助“线段图”分析复杂问题中的数量关系,并利用方程解决此类问题.教学重点:1⃝借助画“线段图”寻找行程问题中的等量关系.2⃝用列一元一次方程的方法解决行程问题.教学难点:发展学生文字语言、图形语言、符号语言间相互转换的能力.2学情分析学生在小学五年级就已经学过行程问题中的相遇问题,熟悉路程、时间、速度之间的关系,能利用“线段图”解决一些简单的行程问题,初步感受到方程是解决实际问题的一种有效途径.通过本章前几节的学习,对解一元一次方程及一元一次方程的应用有一定的知识储备.教材中只给了一道例题,这就要求老师在教学中能够对教材所提供的内容作适当的调整、改编.3教学目标知识与技能:能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题,进一步掌握列方程解应用题的步骤.过程与方法:经历画“线段图”,找等量关系,列出方程解决问题的过程,发展分析问题,解决问题的能力,进一步体验画“线段图”是解决实际问题的有效途径.情感态度价值观:通过层层递进,为学生提供思维的空间,体会“方程”是解决实际问题的有效模型,丰富学生利用方程解决实际问题的经验,并进一步培养学生的文字语言、符号语言、图形语言的转换能力.进行德育教育,从此不再丢三落四.4.1情境贴切生活数学源于生活,用于生活.设计身边的数学实例更能调动学生的学习兴趣,激发学生解决、探究的热情,本节课我选用了学生刚刚结束的数学期中考试成绩为研究背景,在理科班617位同学的数学成绩中随机抽取100位同学的数学成绩对全级数学成绩分析,这为引入本节课的内容起到很好的作用.4.2以引导促思考,突破难点本节课的探究部分是以问题串的形式层层递进,一直在引导学生用频率的思想来定义众数、中位数、平均数,特别是平均数的研究,将100个同学的数学成绩进行分组,引导学生用每组数据的平均数和改组数据出现的频率定义这100个数据的平均数.平均数=每个数字×该数字的频率之和,这样就用频率定义了平均数,水到渠成的类比到频率分布直方图中,得到平均数的求法.4.3小组合作显效果教学过程中,以小组合作探究为主体,老师引导为辅,不断设问,不断变式,给每个学生提供思考、创造、表现的机会,让学生在自主探索、合作交流中整理数据,分析数据的过程,培养学生发现问题和解决问题的能力,体验学习和成功的乐趣.参考文献[1]王先芳,对于螺旋式上升的再认识—–“用样本的数字特征估计总体的数字特征”教学设计,数学通报,2015,(3):11-13.22中学数学研究2020年第5期(下)4教学过程设计4.1情境引入视频展示:通过观看动画片猫和老鼠的追及视频引出三个简单的行程问题.练习1小明每分钟走80米,5分钟走多少米?练习2小明爸爸5分钟走900米,每分钟走多少米?练习3小明要在10分钟内走到离家800米的学校,他每分钟要走多少米?师生活动:与学生一起观看一个10秒的追及视频,引出三个简单的行程问题,请三位同学快速回答,并引导学生说出路程、速度、时间之间的关系式.[生]:路程=速度×时间、速度=路程÷时间、时间=路程÷速度[师]:板书公式及标题设计意图利用视频吸引学生的注意力和激发学生的学习兴趣,然后通过三个简单的行程问题复习学生学过的路程、速度、时间公式,实现文字语言到符号语言的转换.4.2小试牛刀练习4小明与爸爸分别从相距1000米的家和学校的两地相向而行,爸爸每分钟走180米,小明每分钟走80米,问过了多长时间两人相遇?练习5小明与爸爸分别从相距1000米的家和学校的两地同向而行,爸爸每分钟走180米,小明每分钟走80米,问过了多长时间爸爸追上小明?师生活动:学生自行尝试用方程解决简单行程问题,教师从旁提醒学生光看题目我们很难抽象出具体情境,因此我们可以借助线段图来理清题目意思.[师]在黑板上板书线段图以及等量关系图1线段图设计意图让学生体会到画线段图有助于理解题目意思,通过线段图可以快速找到题目中的等量关系,从而根据等量关系列出方程.4.3登堂入室例1第13周周一小明要在7:50之前赶到距家1000m 的学校上学.小明以80m/min 的速度出发,5min 后,小明的爸爸发现他忘了带数学周末试卷.于是,爸爸立即以180m/min的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,爸爸走了多远?(3)追上小明时,小明距离学校还有多远?师生活动:教师利用PPT 展示动画,同时引导学生学会从冗长的题目中找出关键信息,并用红线画出.学生根据动画,模仿黑板上的板书,画出线段图,分析题中的等量关系.[师]:通过线段图,我们可以找到题目中的等量关系是什么?[生]:爸爸走的路程等于小明走的路程.[师]板书线段图以及等量关系图2线段图[师]板书正确的解题过程图3规范解题过程[归纳小结]追及问题:两人开始相距路程+慢者的路程=快者的路程[师]板书公式:追及问题:S 相距+S 慢=S 快.设计意图从生活实际出发,用学生经常忘记带数学周末试卷作为例子,引起学生的学习兴趣.培养学生既能娴熟使用线段图,又能利用方程的思想解决问题的能力.让学生体会“方程”是解决实际问题的有效模型.变式114周周一小明以80m/min 的速度出发去上学,5min 后,小明的爸爸发现他忘了带数学周末试卷.于是,爸爸立即以180m/min 的速度去追小明,与此同时,小明也想起自己忘带语文书,并以80m/min 的速度折回.问:过了多长时间,爸爸与小明相遇?师生活动:教师利用PPT 展示动画,同时引导学生发现与例题不同的地方,并用红线画出.学生先自己根据动画演示画出线段图,分析题中的等量关系,列出方程,教师请一位学生上台在副黑板上板书自己的答案.[归纳小结]相遇问题:两人所走路程之和=两人开始相距路程[师]板书公式:相遇问题:S 甲+S 乙=S 相距.2020年第5期(下)中学数学研究23追根溯源回归本质—–由学生提问方式引起的反思广东省广州市花都区第二中学(510820)黄丽贤1问题起源笔者接手高三某个班学生不久,便发现了一个状况:个别成绩好的同学,跑来问我问题的方式较为奇怪.他们并不是问“老师,这题的解题思路如何寻找?方法如何?”而是这样问:“老师,这题目属于何种题型?它的解题快捷方法是什么?”刚开始,我很惊讶学生为什么这会样问问题,后来经过我的详细了解,我知道了个中缘由:原来他们曾经是以“题型式”的学习方式来学习数学的,而他们对这样的方式十分喜爱.主要的原因在于这种方式在解某些题目的时候速度非常“快”,只要是对准题型,有时候甚至可以“秒杀”.但出现这样的现象,不由得引起了笔者进行反思:这样的学习方式是否存在一些隐患?设计意图插入时间线,使得课堂内容更加连贯,激发学生的学习兴趣.将例题的追及问题变式为相遇问题,引发学生从不同方向进行思考.让一位学生上台展示,可以及时发现学生在学习过程中会遇到的问题并提出改正,丰富学生利用方程解决实际问题的经验.变式2第15周周一小明以80m/min的速度出发,5min 后,小明想起自己忘带数学周末试卷,于是打电话给爸爸,并以80m/min的速度折回.爸爸用了两分钟在找试卷,然后立即以180m/min的速度去追小明.从小明折回时开始算,问:过了多长时间,爸爸与小明相遇?师生活动:教师利用PPT展示动画,同时引导学生发现与例题、变式1不同的地方,并用红线画出.学生先自己根据动画演示画出线段图,分析题中的等量关系,列出方程,然后在小组内相互交流并得出一致结果,再选派小组代表上台在在投影仪上展示自己小组的结果,并讲解小组想法.最后师生共同评价.设计意图再一次对题目进行变式,对学生的能力提出了更高的要求,学生在思考行程问题还要留意爸爸跟小明所用时间上的关系.让学生上台展示并讲解,进一步培养学生的文字语言、符号语言、图形语言的转换能力.同时学生能够互相评点,共同探索,既发展了自主学习水平,又强化了协作精神.4.4总结收获师生活动:学生发言,分享,交流自己的收获,或者提出自己的疑惑,其他同学补充或者解释.教师对学生的总结进行提炼,归纳,渗透德育思想.1⃝学会借助“线段图”分析复杂问题中的数量关系;2⃝找到追及问题、相遇问题间的等量关系;3⃝自己的事情自己负责,不做丢三落四的小明.5设计说明1⃝立足实际,渗透德育教育数学源于生活,生活中蕴含着数学.如“追赶小明”这一司空见惯的行程问题,通过插入时间线,结合初中部每周数学周末试卷,把数学和生活联系在一起.从学生熟悉的事入手,增强学生的熟悉感和认同感.再通过生动的语言,如“13周的小明忘记带作业,那我们猜猜14周的小明记不记得带数学作业?”将学生代入情境,最后进行德育教育,不做“丢三落四”的小明.2⃝由浅入深,渗透情感态度先是情境引入,借助一个短视频和三个简单的行程问题回顾路程、速度、时间公式.接着是小试牛刀,用两个常见的行程问题给学生热身,渗透借助线段图,找到题目中的等量关系,用方程解决行程问题的做题思路.然后是登堂入室,利用PPT展示例题以及变式的行程动画,帮助学生画出线段图,学生借助线段图找出隐藏的等量关系,根据等量关系列方程解决问题.题目设置层层递进,使得学生敢于面对数学活动中的困难,并有独立克服困难和使用知识解决问题的成功体验,有学好数学的自信心.参考文献[1]罗强华.“打折销售”教学设计[J].《中小学数学(初中版)》,2019,Z2:28-30.[2]孙晓斌.“一元一次方程的应用(第4课时)”课例分析[J].《中小学数学(初中版)》,2016,06:57-59.。

七年级数学上册一元一次方程应用题行程类专题讲解

七年级数学上册一元一次方程应用题行程类专题讲解
逆水(风)速度=静水(风)速度-水流(风)速度 顺速–逆速 = 2 水速;顺速 + 逆速 = 2 船速 顺水的路程 = 逆水的路程
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。 常见的还有:相背而行;环形跑道问题。
一、行程(相遇)问题 A.基础训练 1. 小李和小刚家距离 900 米,两人同时从家出发相向行,小李每分走 60 米,小刚每分走 90 米,几分
5. 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以 18 米/分的速度从队头至 队尾又返回,已知队伍的行进速度为 14 米/分。问:若已知队长 320 米,则通讯员几分钟返回? 若已知通讯员用了 25 分钟,则队长为多少米?
6. 一架飞机在两个城市之间飞行,风速为 24 千米/小时,顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小时,求两个城市之间的飞行路程?
2
2. 一条环形的跑道长 800 米,甲练习骑自行车平均每分钟行 500 米,乙练习赛跑,平均每分钟跑 200 米,两人同时同地出发。 (1)若两人背向而行,则他们经过多少时间首次相遇 (2)若两人同向而行,则他们经过多少时间首次相遇?
3. 甲乙二人沿 400 米的圆形跑道跑步,他们从同一地点同时出发,背向而行。当两人第一次相遇后, 甲的速度比原来提高 2 米/秒,乙的速度比原来降低 2 米/秒,结果两人都用 24 秒回到原地。求甲原 来的速度?
三、行程(行船、飞行)问题 1. 一架飞机飞行在两个城市之间,风速为 24 千米/时. 顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小
时. 求飞机在无风时的速度及两城之间的飞行路程.
2. 一艘轮船航行于两地之间,顺水要用 3 小时,逆水要用 4 小时,已知船在静水中的速度是 50 千米/小时,求 水流的速度.

一元一次方程应用题追及问题

一元一次方程应用题追及问题

一元一次方程应用题追及问题一元一次方程应用题8种类型是相遇问题,追及问题,数字问题,溶度问题,体积变形问题,倍数问题,工程问题,实际生活问题。

1、追击问题:行程问题中的三个基本量及其关系:路程=速度×时间、时间=路程÷速度、速度=路程÷时间。

2、相遇问题:快行距+慢行距=原距、快行距-慢行距=原距。

3、航行问题:顺水(风)速度=静水(风)速度+水流(风)速度、逆水(风)速度=静水(风)速度-水流(风)速度。

4、水流问题:水流速度=(顺水速度-逆水速度)÷2。

5、工程问题:三个量及其关系为:工作总量=工作效率×工作时间,经常在题目中未给出工作总量时,设工作总量为单位1,即完成某项任务的各工作量的和=总工作量=1。

6、环形跑道与时钟问题:跑道÷两人速度差,甲的路程+乙的路程=环形周长,追及时间=路程差÷速度差,速度差=路程差÷追及时间,追及时间×速度差=路程差,快的路程-慢的路程=曲线的周长。

7、经济问题:商品利润=商品售价-商品成本价。

商品利润率=商品利润商品成本价×100%。

商品销售额=商品销售价×商品销售量。

商品的销售利润=(销售价-成本价)×销售量。

商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。

8、和、差、倍、分问题:增长量=原有量×增长率,在量=原有量+增长量。

复合应用题解题思路:1、理解题意,就是弄清应用题中的已知条件和要求问题。

2、分析数量关系,就是分析已知数量与未知数数量,已知数量与未知数数量间的关系,找到解题途径,确定先算什么,再算什么,最好算什么。

3、列式解答,就是根据分析,列出算式并计算出来。

4、验算并给出答案,就是检验解答过程中是否合理,结果是否正确,与原题的条件是否相符,最后写出答案。

初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型一、一元一次方程的应用题类型初一数学,我们学习了很多有趣的知识,其中最让人头疼的就是一元一次方程的应用题。

今天,我就来给大家讲讲一元一次方程应用题的各种类型,让我们一起来看看吧!1.1 速度、时间和距离的问题这类问题是最常见的一元一次方程应用题。

比如:“小明骑自行车去上学,他骑了20分钟,每分钟骑行200米,那么他离学校还有多远?”这类问题我们可以这样解:假设小明离学校的距离为x米,那么根据题意,我们可以得到一个一元一次方程:$20\times 200 + x = 总路程$。

通过这个方程,我们就可以求出小明离学校的距离了。

1.2 相遇与追及的问题这类问题主要考察我们对一元一次方程的灵活运用。

比如:“甲乙两人相向而行,甲的速度是乙的1.5倍,他们相距100米,那么他们要多久才能相遇?”这类问题我们可以这样解:假设甲乙两人相遇时所用时间为t分钟,那么根据题意,我们可以得到一个一元一次方程:$(1.5 1)\times t = 100$。

通过这个方程,我们就可以求出他们相遇的时间了。

1.3 利润、成本和售价的问题这类问题主要考察我们对一元一次方程的实际应用。

比如:“一家商店进货一件衣服,进价是200元,如果按照原价的1.5倍出售,那么它的利润是多少?”这类问题我们可以这样解:假设这件衣服的利润为y元,那么根据题意,我们可以得到一个一元一次方程:$y = (售价进价)div 原价\times 1.5$。

通过这个方程,我们就可以求出这件衣服的利润了。

二、如何解决这些应用题呢?2.1 仔细审题,理解题意在解决一元一次方程应用题时,首先要做的就是仔细审题,理解题意。

只有弄清楚了题目中的已知条件和所求未知量,我们才能找到解题的方向。

2.2 建立方程,求解未知量在理解了题意之后,我们需要建立一个一元一次方程来求解未知量。

这里需要注意的是,我们要保证建立的方程是正确的,否则得出的结果也是错误的。

一元一次方程应用:解决追及问题

一元一次方程应用:解决追及问题

一元一次方程应用:解决追及问题解决追及问题追及问题是一个经典的问题,它涉及到物体在相互追逐、相互靠近、相向而行等情形下的位置关系和时间关系。

在现实生活中,这种问题很常见。

例如,两辆车在同一条路上,一辆车比另一辆车快,想要追上它;或者两个人在同一运动场上,一个人从A点出发,另一个人从B点出发,问他们何时相遇。

在数学中,这种问题可以用一元一次方程解决。

一元一次方程又称为一次方程,通常为形如ax+b=c的形式,其中a、b、c均为常数,x为未知数。

解一次方程的方法很简单,我们只需要将同类项移到一边,把未知数系数约掉,就能得到x的解。

下面我们将介绍如何用一元一次方程解决追及问题。

例1:两辆车相向而行,一个车速为50km/h,另一个车速为70km/h,两车距离相隔320km,问它们何时相遇?我们需要假设t小时后,相遇时的距离为0km,根据题意可画出下图:!图1显然,当两车相遇时,它们走过的距离之和等于320km,即(50t+70t)=320。

将变量移到一边,得到120t=320,即t=320/120=2.67(约)小时,也就是说,两辆车在约2.67小时后相遇。

例2:两架飞机相向而行,一个速度为800km/h,另一个速度为1000km/h,两架飞机起点距离1600km,问它们何时相遇?同样,我们需假设t小时后,相遇时的距离为0km,根据题意可画出下图:!图2可知,两架飞机相遇时,走过的距离之和为(800t+1000t)=1600。

将变量移到一边,得到1800t=1600,即t=1600/1800=0.89(约)小时,也就是说,两架飞机在约0.89小时后相遇。

以上两例仅仅是追及问题中的两个简单例子,实际情况可能会更为复杂。

例如,当两个物体以不同的速度相互追逐,或者它们的起点和终点不同,这就需要使用更复杂的一元二次方程来解决。

但在解决的过程中,我们总是可以把问题抽象为一个关于未知数的简单方程,并进行解答。

总而言之,追及问题在现实生活中很常见,而解决这种问题的数学工具——一元一次方程,也是我们在学习数学时首先要掌握的知识点之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 初中数学 / 七年级数学教案
编订:XX文讯教育机构
一元一次方程的应用之追及问题
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中七年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

教学目的
1、使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

2、使学生加强了解列一元一次方程解应用题的方法步骤。

教学分析
重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

难点:寻找相遇问题中的相等关系。

突破:同时出发到相遇时,所用时间相等。

注重审题,从而找到相等关系。

教学过程
一、复习
1、列方程解应用题的一般步骤是什么?
2、路程、速度、时间的关系是什么?
3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了千米。

二、新授
1、引入
列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习如何寻找相等关系,和把相等关系表示成方程的方法。

例(课本P216例3)题目见教材。

分析:(1)可以画出图形,明显有这样的相等关系:
慢车行程+快车行程=两站路程
设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450
(2)再分析快车先开了30分两车相向而行的情形。

同样画出图形,并按课本讲解,(见教材P217~218)
由学生完成求解过程,并作出答案。

解:略
说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程
+快车行程=两站路程。

不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

(2)不是同时出发的,要注意时间的关系。

三、练习
P220练习:1,2。

四、小结
1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

2、相向而行的相遇问题中,要注意时间的关系。

五、作业
1、P222 4.4A:13,14,15。

2、基础训练:同步练习3。

XX文讯教育机构
WenXun Educational Institution。

相关文档
最新文档