初中数学变式训练几例
人教版初中数学中考 练本 中考真题中的教材变式题(一题多变)
(2)解:连接AQ,CQ.
∵四边形ABCD是正方形,
∴BA=BC,∠ABQ=∠CBQ=45°,∠ABF=90°.
∵BQ=BQ,∴△ABQ≌△CBQ(SAS),
∴QA=QC,∠BAQ=∠BCQ.
∵EQ垂直平分线段AF,∴QA=QF,
∴QC=QF,∴∠QFC=∠QCF,
∴∠QFC=∠BAQ.
∵∠QFC+∠BFQ=180°,
∴AB=BC,
∠B=∠BCD=90°.
∵CF平分∠DCH,
∴∠ECF=135°.
∵AG=CE,∴BG=BE,
∴△BGE是等腰直角三角形,
∴∠BGE=∠BEG=45°,∴∠AGE=135°=∠ECF.
∵AE⊥EF,∴∠AEB+∠FEC=90°.
∵∠BAE+∠AEB=90°,∴∠FEC=∠BAE,
∴△GAE≌△CEF,∴AE=EF.
的中点G,连接EG.)
变式1:(2022·泸州)如图,在边长为3的正方形ABCD中,E是边AB上的点,且
BE=2AE,过点E作DE的垂线,交正方形外角∠CBG的平分线于点F,交边BC于
点M,连接DF,交边BC于点N,则MN的长为(
B )
D.1
变式2:(2022·呼和浩特)下面图片是八年级教科书中的一道题.
∵CE⊥BF,∴∠BOE=90°,
∴∠2+∠3=90°,∴∠1=∠3.
∵∠DAB=90°=∠CME,
∵AB=BC,∠ABC=60°,
变式3:(2020·鞍山)在矩形ABCD中,E是射线BC上一动点,连接AE,过点B作
BF⊥AE于点G,交直线CD于点F.
(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰
变式3:(2022·兰州)综合与实践
部编数学八年级下册专题5二次根式最热考点——阅读材料题(解析版)含答案
专题5 二次根式最热考点——阅读材料题(解析版)第一部分 典例精析+变式训练类型一 分母有理化典例1(2022秋•万柏林区校级月考)阅读材料:材料一:两个含有二次根式而非零的代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.×=3,6﹣2=4―材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如1=,8==请你仿照材料中的方法探索并解决下列问题:(1 (均写出一个即可)(2)将下列各式分母有理化:(要求:写出变形过程)思路引领:(1)根据互为有理化因式的定义得出答案即可;(2)①先分子和分母都乘以分母的有理化因式,再根据二次根式的运算法则进行计算即可;②先分子和分母都乘以分母的有理化因式,再根据二次根式的运算法则进行计算即可.解:(1+―(2)①3=5;②11=+3.总结提升:本题考查了平方差公式,分母有理化和二次根式的混合运算,能找出分母的有理化因式是解此题的关键.变式训练1.(2022秋•修水县期中)阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因+11.(1)请你写出两个二次根式,使它们互为有理化因式: .化简一个分母含有二次根式的式子时,可以采用分子、分母同乘分母的有理化因式的方法.例如:3.(2)请仿照上述方法化简:3.(3)比较1与1的大小.思路引领:(1)根据有理化因式的概念写出乘积不含二次根式的两个式子即可;(2)分子,分母同时乘以分母的有理化因式即可;(3)分母有理化后再比较.解:(122互为有理化因式,+22(答案不唯一);(2=(3∴1<1.总结提升:本题考查二次根式的混合运算,解题的关键是掌握二次根式的分母有理化.类型二二重根式的化简典例2(2022秋•郸城县期中)请阅读下列材料:a ,b ,使a +b =m ,ab =n ,即22=m ,a >b ).m =7,n =12,由于4+3=7,4×3=12,即22=7×=2+请根据材料解答下列问题:(1= .(2.思路引领:(1)利用完全平方公式化简得出答案;(2)利用完全平方公式以及二次根式的性质化简得出答案.解:(1―(2m =21,n =108,∵9+12=21,9×12=108,即22=21×===3.总结提升:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.变式训练1.(2022秋•例如:3224=6+数化简中的作用.建立模型:只要我们找到两个数a ,b ,使a +b =m ,ab =n ,这样22==ma>b),m=7,n=12,由于4+3=7,4×3=12,即22=7×=2+模型应用1:利用上述解决问题的方法化简下列各式:(1(2模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4―AC=BC边的长为多少?(结果化成最简).思路引领:(1)先根据完全平方公式进行变形,再求出即可;(2)先根据完全平方公式进行变形,再求出即可;(3)根据勾股定理求出即可.解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+2=6,1====1(2m=13,n=40,由于5+8=13,5×8=40,2+2=13=====(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,2+BC2=(42所以,BC==2.总结提升:本题考查的是分母有理化,勾股定理和完全平方公式,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.类型三整体思想运算典例3(2022秋•皇姑区校级期中)阅读理解:已知x=1,求代数式x2﹣2x﹣5的值.王红的做法是:根据x=1得(x﹣1)2=2,∴x2﹣2x+1=2,得:x2﹣2x=1.把x2﹣2x作为整体代入:得x2﹣2x﹣5=1﹣5=﹣4.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x―2,求代数式x2+4x﹣5的值;(2)已知x x3+x2+1的值.思路引领:(1)仿照阅读材料解答即可;(2)把已知变形可得x2+x=1,代入即可求出答案.解:(1)∵x―2,∴x+2=∴(x+2)22,∴x2+4x=﹣1,∴x2+4x﹣5=﹣6;,(2)∵x=2∴2x+1=∴(2x+1)22,变形整理得:x2+x=1,∴x3+x2+1=x(x2+x)+1=x+11总结提升:本题考查二次根式的化简求值,解题的关键是读懂题意,能将已知式子适当变形.针对训练1.(2022春•江都区期末)请阅读下列材料:问题:已知x=,求代数式x2﹣4x﹣7的值.小明的做法是:根据x=得(x﹣2)2=5,∴x2﹣4x+4=5,x2﹣4x=1.把x2﹣4x作为整体代入,得:x2﹣4x﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.仿照上述方法解决问题:(1)已知x=―3,求代数式x2+6x﹣8的值;(2)已知x=x3+2x2的值.思路引领:(1)根据x=3求出x+3x2+6x+9=10,求出x2+6x=1,再代入求出答案即可;(2)根据x2x+1=4x2+4x+1=5,求出x2+x=1,再变形后代入,即可求出答案.解:(1)∵x3,∴x+3=两边平方得:(x+3)2=10,即x2+6x+9=10,∴x2+6x=1,∴x2+6x﹣8=1﹣8=﹣7;(2)∵x=∴2x―1,∴2x +1=两边平方,得(2x +1)2=5,即4x 2+4x +1=5,∴4x 2+4x =4,即x 2+x =1,∴x 3+2x 2=x 3+x 2+x 2=x (x 2+x )+x 2=x ×1+x 2=x +x 2=1.总结提升:本题考查了二次根式的化简求值,完全平方公式,整式的加减等知识点,能够整体代入是解此题的关键.类型四 基本不等式求最值典例4(2021春•新泰市期中)观察,计算,判断:(只填写符号:>,<,=或≥,≤)(1)①当a =2,b =2②当a =3,b =3③当a =4,b =4④当a =3,b =5(2)观察以上式子,猜想写出关于a b 2与a >0,b >0)之间的数量关系: 并进行探究证明;(提示:2≥0)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为 .思路引领:(1)把各组a 、b 的值分别代入a b 2和(22≥0,然后利用完全平方公式展开,变形后可得到a b 2≥(3)设长方形的长宽分别为xm ,ym ,则xy =1,利用(2)中的结论得到x y2≥2(x +y )≥4,然后可确定镜框周长的最小值.解:(1)当a =2,b =2时,a b 2=2=2,则a b 2=②当a =3,b =3时,,a b2=33,则a b 2③当a =4,b =4时,a b2=44,则a b 2=④当a =3,b =5时,a b2=4,则a b 2>故答案为:=,=,=,>;(2)a b 2≥2≥0,∴a ﹣b ≥0,∴a +b ≥∴a b 2≥故答案为:a b 2≥(3)设长方形的长为xm ,宽是ym ,则xy =1,∵x y2≥∴x +y ≥2,∴2(x +y )≥4,即镜框周长的最小值为4米.故答案为:4米.总结提升:本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.变式训练1.(2022春•海淀区校级期中)阅读下面材料:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a >0,b >0时:2=a ﹣b ≥0,∴a +b ≥a =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x的最小值为 .当x <0时,x +1x的最大值为 .(2)若y =x 22x 10x 1(x >﹣1),求y 的最小值.(3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和10,求四边形ABCD 面积的最小值.思路引领:(1)根据公式计算即可;(2)先配方,化简,运用公式计算即可;(3)设△BOC 的面积为x ,根据△AOB 与AOD ,△BOC 与△COD 为等高的三角形,且△AOB 与△BOC ,△AOD 与△COD 为同底的三角形,得到S △BOC :S △COD =S △AOB :S △AOD ,求出S △AOD =40x,利用公式求面积的最小值即可.解:(1)当x >0时,1x>0,∴x +1x≥=2,∴x +1x的最小值是2;当x <0时,﹣x >0,―1x >0,∴x +1x =―(﹣x ―1x),∵﹣x ―1x ≥2,∴﹣(﹣x ―1x)≤﹣2,∴x +1x的最大值为﹣2;故答案为:2;﹣2;(2)y =x=x +1+9x 1,∵x >﹣1,∴x +1>0,∴y ≥=2×3=6,∴y 的最小值为6;(3)设△BOC 的面积为x ,∵△AOB 与AOD ,△BOC 与△COD 为等高的三角形,且△AOB 与△BOC ,△AOD 与△COD 为同底的三角形,∴S △BOC :S △COD =S △AOB :S △AOD ,∴x :10=4:S △AOD ,∴S △AOD =40x,∴四边形ABCD 的面积=4+10+x +40x≥=14+2×=当且仅当x =40x,即x =∴四边形ABCD 面积的最小值为总结提升:本题考查了配方法的应用,列出四边形ABCD 面积的表达式解题的关键.类型五 a =的化简典例5 (2022秋•仁寿县校级月考)在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:2﹣|1﹣x |.解:隐含条件1﹣3x ≥0,解得x ≤13,∴1﹣x >0,∴原式=(1﹣3x )﹣(1﹣x )=1﹣3x ﹣1+x =﹣2x.(12;(2)已知a,b,c为△ABC的三边长,化简(3)已知a、b a+3a―b+1,求ab的值.思路引领:(1)根据二次根式有意义条件得出2﹣x≥0,求出x≤2,再根据二次根式的性质进行计算即可;(2)根据三角形三边关系及二次根式的性质可得答案;(3)直接利用二次根式性质进而分析得出a,b的值,进而得出答案.解:(1)隐含条件2﹣x≥0,解得:x≤2,―2=3﹣x﹣(2﹣x)=3﹣x﹣2+x=1;(2)∵a,b,c为△ABC的三边长,∴a﹣b<c,a+c>b,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,=(a+b+c)﹣(a﹣b﹣c)﹣(b﹣a﹣c)﹣(c﹣b﹣a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c;(3=a+3,若a≥2,则a﹣2=a+3,不成立,故a<2,∴2﹣a=a+3,∴a=―1 2,=a﹣b+1,∴a﹣b+1=1或0,∴b=―12或12,∴ab=±1 4.总结提升:本题考查了数轴与实数,二次根式的性质与化简等知识点,能熟记二次根式的性质是解此题的关键.变式训练1.(2022秋•唐河县月考)阅读下列解题过程:2,求a的取值范围.解:原式=|a﹣1|+|a﹣3|,当a<1时,原式=(1﹣a)+(3﹣a)=4﹣2a=2,解得a=1(舍去).当1≤a≤3时,原式=(a﹣1)+(3﹣a)=2,符合条件.当a>3时,原式=(a﹣1)+(a﹣3)=2a﹣4=2,解得a=3(舍去).综上所述,a的取值范围是1≤a≤3.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题.(1)当2≤a≤5 ;(2=4成立,求a的取值范围.思路引领:(1)根据二次根式的性质即可求出答案;(2)先将等式的左边进行化简,然后分情况讨论即可求出答案.解:(1)∵2≤a≤5,∴a﹣2≥0,a﹣5≤0,∴原式=|a﹣2|+|a﹣5|=a﹣2﹣(a﹣5)=3;(2)由题意可知:|3﹣a|+|a﹣7|=4,当a≤3时,∴3﹣a≥0,a﹣7<0,∴原方程化为:3﹣a﹣(a﹣7)=4,∴a=3,符合题意;当3<a<7时,∴3﹣a<0,a﹣7<0,∴﹣(3﹣a)﹣(a﹣7)=4,∴4=4,故3<a<7符合题意;当a≥7时,∴3﹣a<0,a﹣7≥0,∴﹣(3﹣a)+(a﹣7)=4,∴a=7,符合题意;综上所述,3≤a≤7;总结提升:本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.类型六纠正解题过程中的错误典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.针对训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是 .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.类型7 分子有理化求最值和比较大小典例7 (2020秋•梁平区期末)阅读下述材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”:―分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:――=1,―+―再例如:求y ―解:由x +2≥0,x ﹣2≥0可知x ≥2,而y =4.当x =2+2,所以y 的最大值是2.解决下述问题:(1)比较―4和(2)求y =思路引领:(1)利用分母有理化得到4=2,=2,利用4>4<(2)根据二次根式有意义的条件得到由1+x ≥0,x ≥0,则x ≥0,利用分母有理化得到y =1,由于x =01,从而得到y 的最大值.解:(1)∵―4==2,=而4∴+4>∴―4<(2)由1+x ≥0,x ≥0得x ≥0,而y ―1,∵x=01,∴y的最大值为1.总结提升:本题考查了分母有理化:分母有理化是指把分母中的根号化去.也考查了平方差公式.针对训练1.(2021秋•即墨区期中)我们在学习二次根式时,了解了分母有理化及其应用.其实,还有一个类似的方法叫做“分子有理化”,即分母和分子都乘以分子的有理化因式,从而消除分子中的根式.1.分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较:―+再例如,求y―解:由x+2≥0,x﹣2≥0可知x≥2,而y=4.当x=2+2.所以y的最大值是2.利用上面的方法,完成下面问题:(1(2)求y=+2的最大值.思路引领:(1)利用平方差公式进行分子有理化计算,从而比较大小;(2)利用二次根式有意义的条件确定x的取值范围,然后通过利用平方差公式对原式进行分子有理化变形,从而确定其最大值.解:(1=1;=++――(2)∵x+1≥0且x﹣1≥0,∴x≥1,原式=2,当x=1时,2有最大值为此时,原式有最大值为2+总结提升:本题考查二次根式的有理化计算,理解二次根式的性质,掌握平方差公式(a+b)(a﹣b)=a2﹣b2的结构是解题关键.第二部分专题提优训练1.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=+2,求x y的值.思路引领:根据二次根式中的被开方数是非负数,可得x的值,进而得出y的值,然后代入所求式子计算即可.解:由题意得:2x―1≥01―2x≥0,∴2x﹣1=0,解得x=1 2,所以y=2,所以x y=(12)2=14.总结提升:此题主要考查了二次根式有意义的条件,正确得出被开方数的取值范围是解题关键.2.(2022秋•驻马店期中)阅读材料:(一)如果我们能找到两个正整数x,y使x+y=a且xy=b,这样“和谐二次根式”,则上述过程就称之为化简“和谐二次根式”.=1+(二)在进行二次根式的化简与运算时,我们有时还会碰上如2样的式子,其实我们还可以将其进一12=1.那么我们称这个过程为分式的分母有理化.根据阅读材料解决下列问题:(1)化简“和谐二次根式”: ; .(2)已知m =n ,求m nm n 的值.思路引领:(1)根据阅读材料(一)化简“和谐二次根式”即可;(2)先根据阅读材料(一)化简m 与n 的分母,再根据阅读材料(二)进行分母有理化即可.(1)解:=+2;=2―+2;2―(2)解:∵m =11n =11+∴m ﹣n ―m +n =+∴m n m n=总结提升:本题考查的是估算无理数的大小,二次根式的性质与化简,考查了学生的阅读理解能力以及知识的迁移能力,弄懂题意,熟练掌握二次根式的性质、完全平方公式是解题的关键.3.(2021秋•广平县期末)阅读下列解题过程―(1)观察上面的解答过程,请写出1= .(2⋅⋅⋅思路引领:(1(2)把各加数分母有理化,再合并同类二次根式.解:(1(2)1+11⋅⋅⋅+11=―1+―...=1=10﹣1=9.总结提升:此题考查二次根式的分母有理化,确定最简公分母和合并同类二次根式是关键.4.(2022秋•南召县月考)阅读下面的材料,解答后面提出的问题:在二次根式计算中我们常常遇到这样的情况:(2+×(2―=1,×=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:7+像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决问题:(1)4+ .(2)已知x =y ,则1x +1y = .(3)利用上面所提供的解法,请化简1+1+1+⋯+1+1.思路引领:(1)根据有理化因式的概念解答;(2)利用二次根式的乘法法则计算;(3)根据分母有理化、二次根式的加法法则计算.解:(1)∵(4+(416﹣7=9,∴44―故答案为:4(2)∵x =∴1x =2=5﹣同理,1y =∴1x+1y =5﹣=10,故答案为:10;(3)原式=―1++⋯+=10﹣1=9.总结提升:本题考查的是二次根式的混合运算、分母有理化,掌握二次根式的乘法法则是解题的关键.5.(2022秋•峄城区校级月考)阅读下列材料,然后回答问题:再进行二次根式运算时,我们有时会碰上如5,221=1.以上这种化简的过程叫做分母有理化.(1)请根据以上方法化简:①4;②4;③1(2)直接写出:2― ;(3)计算:⋯⋯+⋅思路引领:(1)根据阅读材料分母有理化即可;(2)根据倒数的概念列式,再分母有理化即可;(3)将括号内各数分母有理化,合并同类二次根式后再算乘法.解:(14+1;1(2)2―=2+故答案为:2(3―......+×+1)―1)1)=2022.总结提升:本题考查二次根式的混合运算,解题的关键是读懂题意,掌握分母有理化的方法.6.(2022春•昭化区期末)=a (a ≥0),+1)―1)=b ﹣1(b ≥0)这样的+1―1,都互为有理化因式.进行含有二次根式的分式计算时,利用有理化因式,可以化去分母中的根号.【解决问题】(1―3的有理化因式为 ;(2)已知正整数a ,bb3―a ,b 的值.思路引领:(1―3的有理化因式;(2)根据题意,将题目中的式子变形,然后即可得到关于a 、b 的二元一次方程组,求出a 、b 的值即可.解:(1―3)+3)=7﹣9=﹣2,―3+3,+3;(2)∵a=3―=3﹣∴a +1)=3﹣+a ―=3﹣∴(a ―12b a =3﹣∴a ―12b =―2a =3,解得a =3b =10,即a 的值是3,b 的值是10.总结提升:本题考查二次根式的混合运算、分母有理化,解答本题的关键是明确二次根式混合运算的运算法则和分母有理化的方法.7.(2022春•新余期末)阅读下列解题过程:=2,求a 的取值.解:原式=|a ﹣2|+|a ﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7(26,求a的取值;(3=5的a的取值范围 .思路引领:(1)根据已知可得3﹣a≤0,a﹣7≤0,然后利用二次根式的性质,进行计算即可解答;(2)按照例题的思路,分类讨论进行计算即可解答;(3)按照例题的思路,分类讨论进行计算即可解答.解:(1)∵3≤a≤7,∴3﹣a≤0,a﹣7≤0,=|3﹣a|+|a﹣7|=a﹣3+7﹣a=4;(2)原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣a﹣1+3﹣a=﹣2a+2=6,解得a=﹣2;当﹣1≤a<3时,原式=a+1+3﹣a=4,等式不成立;当a≥3时,原式=a+1+a﹣3=2a﹣2=6,解得a=4;所以,a的值为﹣2或4;(3)原式=|a﹣1|+|a﹣6|,当a<1时,原式=1﹣a+6﹣a=7﹣2a=5,解得a=1(舍去);当1≤a<6时,原式=a﹣1+6﹣a=5,等式恒成立;当a≥6时,原式=a﹣1+a﹣6=2a﹣7=5,解得a=6;∴a的取值范围:1≤a≤6,故答案为:1≤a≤6.总结提升:本题考查了整式的加减,二次根式的性质与化简,理解例题的解题思路是解题的关键.8.(2022秋•辉县市期中)【阅读学习】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如=(1+ 2.善于思考的小明进行了以下探索:设a+=(m+2(其中a,b,m,n均为整数),则有a+=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把a+【解决问题】(1)当a,b,m,n均为正整数时,若a+(m+2,用含m,n的式子分别表示a,b,得:a = ,b= ;(2)利用(1)的结论,找一组正整数a,b,m,n(m≠n),使得a+(m+2成立,且a+b+m+n 的值最小.请直接写出a,b,m,n的值;(3)若a=(m+2,且a,m,n均为正整数,求a的值.思路引领:(1)根据阅读材料,利用完全平方公式将等式右边展开,即可求出a、b的值;(2)根据(1)的结论即可得到结果;(3)根据题意得到a=m2+5n2,b=2mn,求得mn=3,分类讨论即可得到结论.解:(1)(m+2=m2+3n2=m2+3n2+2∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)当n=1,m=2时,a=22+3×1=7,b=2mn=4,故a=7,b=4,m=2,n=1时,a+b+m+n的值最小.(3)(m+2=m2+5n2=a∴a=m2+5n2,6=2mn,∴mn=3,∵a、m、n均为正整数,∴令m=1,n=3或m=3,n=1;当m=1,n=3时,a=12+5×32=46.当m=3,n=1时,a=32+5×12=14.综上,a的值为14或46.总结提升:本题考查了二次根式的化简求值,完全平方公式,整式的加减,理解题意,弄清阅读材料中把一个式子化为平方式的方法是解题的关键.9.(2022春•邗江区期末)阅读下列材料,并回答问题:把形如a+a﹣a、b为有理数且b>0,m为正整数且开方开不尽)的两个实数称为共轭实数.(1)请你举出一对共轭实数: 3+ 3―(2)﹣a、b的值;(3)若两个共轭实数的和是10,差的绝对值是思路引领:(1)根据题意,可以写出一组共轭实数,本题答案不唯一;(2)根据共轭实数的定义,可以判断﹣a和b即可;(3)根据两个共轭实数的和是10,差的绝对值是a、b、m的值,从而可以写出这两个共轭实数.解:(1)由题意可得,3+3―故答案为:33―(2)﹣a=0,b=2;(3)设这两个共轭实数为a+a﹣∵两个共轭实数的和是10,差的绝对值是∴(a++(a﹣10,|(a+a﹣|=∴2a=10,|2∴a=5,b=2或b=﹣2(舍去),m=3,∴这两个共轭实数是5﹣总结提升:本题考查二次根式的混合运算、新定义,解答本题的关键是明确题意,会用新定义解答问题.10.(2022春•武江区校级期末)请阅读下列材料:问题:已知x=2,求代数式x2﹣4x﹣7的值.小敏的做法是:根据x+2得(x﹣2)2=5,∴x2﹣4x+4=5,得:x2﹣4x=1.把x2﹣4x作为整体代入:得x2﹣4x﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知x―2,求代数式x2+4x﹣10的值;(2)已知x x 3+x 2+1的值.思路引领:(1)根据完全平方公式求出x 2+4x =1,代入计算即可;(2)根据二次根式的乘法法则、完全平方公式计算,答案.解:(1)∵x ―2,∴(x +2)2=5,∴x 2+4x +4=5,∴x 2+4x =1,∴x 2+4x ﹣10=1﹣10=﹣9;(2)∵x =∴x 22=则x 3=x •x 2=2×22,∴x 3+x 2+1=21=总结提升:本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的乘法法则是解题的关键.11.(2021秋•宽城县期末)(1)计算:+1;(2―2;(3)下面是王鑫同学进行实数运算的过程,认真阅读并完成相应的问题:×第一步―第二步―第三步第四步①以上化简步骤中第一步化简的依据是: ;②第 步开始出现错误,请写出错误的原因 ,该运算正确结果应是 .思路引领:(1)利用平方差公式计算;(2)先把各二次根式化简,然后合并即可;(3)①第一步化简的依据为二次根式的除法法则;②第二步去括号错误,然后计算出正确的结果.解:(1)原式=5﹣3+1=3;(2)原式=+912×5=―5=+5;(3)①化简步骤中第一步化简的依据是商的算术平方根,等于算术平方根的商;故答案为商的算术平方根,等于算术平方根的商;②第二步开始出现错误,请写出错误的原因括号前是负号,去掉括号后第二项没有变号;,该运算正确结果应是故答案为:二;括号前是负号,去掉括号后第二项没有变号; 总结提升:本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和除法法则是解决问题的关键.12.(2021秋•岳阳期末)王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:2123―1;2直接写出以下算式的结果:2 ;2(n 为正整数)= ;(2)小明编的题,由二次根式的乘法可知:+1)2=2=+2=a +b a ≥0,b ≥0);再根据平方根的定义可得:+1a ≥0,b ≥0);直接写出以下算式的结果: , , ;(3)王老师编的题,根据你的发现,完成以下计算:(2+2222)思路引领:(1)根据分母有理化化简即可得出答案;(2=|a|化简即可;(3|a|化简,根据平方差公式即可得出答案.解:(17=n1=n为正整数);(2===+1;===―1;===2+1―1,2+(3)原式==1―――1))=11﹣1=10.总结提升:本题考查了分母有理化,二次根式的混合运算,探索二次根式计算中的规律,将第一个多项式的每项分母有理化,裂项相消是解题的关键.13.(嘉祥县期中)阅读理解:对于任意正整数a,b2≥0,∴a﹣b≥0,∴a+b≥a=b时,等号成立;结论:在a+b≥2 a、b均为正实数)中,只有当a=b时,a+b有最小值根据上述内容,回答下列问题:(1)若a+b=9≤ ;(2)若m>0,当m为何值时,m+1m有最小值,最小值是多少?思路引领:(1)根据a+b≥2 a、b均为正实数),进而得出即可;(2)根据a+b≥2 a、b均为正实数),进而得出即可.解:(1)∵a+b≥2 a、b均为正实数),∴a+b=9,则a+b≥9 2;故答案为:9 2;(2)由(1)得:m +1m≥即m +1m ≥2,当m =1m 时,m =1(负数舍去),故m +1m有最小值,最小值是2.总结提升:此题主要考查了二次根式的应用,根据题意结合a +b ≥2 a 、b 均为正实数)求出是解题关键.14.(2021春•莆田期中)阅读下面材料:同学们上学期学习分式,整式还有这个学期的二次根式,小明发现像m +n ,mnp 如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是他把这样的式子命名为神奇对称式.他还发现像m 2+n 2,(m ﹣1)(n ﹣1)等神奇对称式都可以用mn ,m +n 表示.例如:m 2+n 2=(m +n )2﹣2mn ,(m ﹣1)(n ﹣1)=mn ﹣(m +n )+1.于是丽丽把mn 和m +n 称为基本神奇对称式.请根据以上材料解决下列问题:(1)代数式①2,②m 2﹣n 2,③n m ,x ≥0,y ≥0,z ≥0)中,属于神奇对称式的是 (填序号);(2)已知(x ﹣m )(x ﹣n )=x 2﹣px +q .①若p =3,q =﹣2,则神奇对称式1m +1n= ;②―q =0,求神奇对称式m 31m +n 31n的最小值.思路引领:(1)根据神奇对称式的概念进行判断;(2)①首先利用多项式乘多项式的计算法则计算求得mn ,m +n 的值,然后利用分式的计算法则进行计算;②利用分式的运算法则将原式进行化简,然后代入求值,结合配方法求代数式的最值.解:(1①是神奇对称式;只有当m +n =0或m ﹣n =0时,m 2﹣n 2=n 2﹣m 2,∴m 2﹣n 2不一定等于n 2﹣m 2,故②不是神奇对称式;只有当m =n ≠0或m =﹣n 时,n m =m n ,∴n m 不一定等于m n ,故③不是神奇对称式;++④是神奇对称式;故答案为:①④;(2)①∵(x﹣m)(x﹣n)=x2﹣(m+n)x+mn==x2﹣px+q,∴m+n=p=3,mn=q=﹣2,∴1m+1n=m nmn=―32,故答案为:―3 2;②∵(x﹣m)(x﹣n)=x2﹣(m+n)x+mn==x2﹣px+q,∴m+n=p,mn=q,原式=m2+1m+n2+1n=(m+n)2﹣2mn+m n mn=p2﹣2q+p q,q,∴p=±q,当p=q时,原式=p2﹣2q+1=(p﹣1)2≥0,∴此时,原式的最小值是0;当p=﹣q时,原式=p2﹣2q﹣1=(p﹣1)2﹣2≥﹣2,∴此时,原式的最小值是﹣2;综上,m31m+n31n的最小值是﹣2.总结提升:本题考查多项式乘多项式的运算,分式的混合运算,二次根式的混合运算,理解新定义,掌握运算法则是解题关键.。
初中数学课堂变式训练的有效设计——以“列一元一次方程解行程应用题”为例
变式练习的设计可以从不同的维度人手 , 笔者 以一跑道 问题 为例展示 讨论 。
例 2: 东 与 小 明在 40 环 形 跑 道 上 训 练跑 小 0m 步, 小东 的速度是 30 / i, 明的速 度是 20 m/ 2 m mn小 80 mn 如果 两人从 同一 起 点 同 时反 向 出发 , i, 问几 分钟
30 0 0立方 米 , 如果 同 时进 水 , 问几 小 时 可 以将 池 请
18 0
生形成相关技能。只要我们充分理解变式训练的相 关心理机制 , 切合把握数学新课 程的原则, 教学设计
就会如鱼得水 , 课堂互动也能游刃有余 , 教学质量才 能稳中有升。
[ 参考 文献 】
[] 1 王守恒. 教育学新论 [ . M] 中国科学技术 大学 出版社 , 0 . 2 4 0
机械地应付教 师布 置的任务 而变通 能力不强。我们认 为 , 念、 概 定理与推理 过程 的学 习是 数 学思维的基 本形式 , 这些解决 问
题的策略可以应用于所有 的相 关情境 中。本 文结合教 学 实例提 出了数 学课 堂 变式 训练 的操 作 方法 , 以期让 学生不被教 师的
主观臆断所局 限。 让学生跳 出思 维的 牢笼 获取 问题 解决 的“ 真经” 从 而在 更广 阔 的视 野 中获 取数 学营养 而成 为创 新型 的 ,
基 于变 式训练 的初 中数 学教 学模型 根据美国心理学家安德森的认知理论 , 结合数 学教学实践 , 我们试图重新架构初 中数学教学 的程
初中数学变式训练
初中数学教学变式训练题1、一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,他如果以每秒6米的速度划行多少秒才能追上快艇?变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?(从先行20米改为先行了20秒)变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题现有甲、乙两人比赛跑步,甲的速度是10米/秒,乙的速度是8米/秒,他们两人同地出发(1)两人同时相向而行经过几秒两人相遇。
(2)两人同时同向而行经过几秒两第一次相遇。
(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。
变式3:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对?如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇?2、16的算术平方根是。
变式1:16的平方根是。
变式2:的平方根是。
变式3:已知a的算术方根是2,则a= 。
3、“求证:顺次连结四边形各边中点所得的四边形是平行四边形.”变式1:顺次连结梯形各边中点所得的四边形是什么四边形?变式2:顺次连结矩形各边中点所得的四边形是什么四边形?变式3:顺次连结菱形各边中点所得的四边形是什么四边形?变式4:顺次连结正方形各边中点所得的四边形是什么四边形?变式5:顺次连结什么四边形中点可以得到平行四边形?变式6:顺次连结什么四边形中点可以得到矩形?4、例题:如图1,在平行四边形ABCD中,E、F分别是OB、OD的中点,四边形AECF是平行四边形吗?请说明理由。
图1变式训练:变式1:若将例题中的已知条件E、F分别是OB、OD的中点改为点E、F三等分对角线BD,其它条件不变,问上述结论成立吗?为什么?变式2:若将例题中的已知条件E、F分别是OB、OD的中点改为BE=DF,其它条件不变,结论成立吗?为什么?变式3:若将例题中的已知条件E、F分别是OB、OD的中点改为E、F为直线BD上两点且BE=DF,结论成立吗?为什么?5、如图14,已知,是一次函数的图象和反比例函数的图象的两个交点.求反比例函数和一次函数的解析式;变式一、求直线与轴的交点的坐标及△的面积;变式二、求方程的解(请直接写出答案);变式三、求不等式的解集(请直接写出案).6、已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是: ____________.(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:____________.并证明你的结论(3)运用:已知三角形ABC,AB=5cm,AC=3cm,分别以AB、BC、CA为边作正方形(如图3),则图中阴影部分的面积和最大值是. ____________7、正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上.分别连接BD、BF、FD,得到△BFD.(1)在图①~图③中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长 1 3 4△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图③证明你的猜想.8、如图(1),四边形ABCD内部有一点P,使得S△APD +S△BPC=S△PAB+S△PCD填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
变式教学在初中数学中的应用举例
变式教学在初中数学中的应用举例摘要:变式教学作为一种有效的教学模式,在中学数学教学中十分常见。
本文以初中数学教学为载体,以举例研究为主要方式,从数学概念教学中的变式、一题多解性变式、多题一解性变式及一题多变性变式进行了举例研究。
以期为优化初中数学教学起到一定的参考借鉴意义。
关键词:变式教学;初中数学;应用所谓变式教学是指在教学中从一道母题出发,通过改变母题的条件、问题或改变母题设计的数学情境,重新进行探讨的一种教学方法。
教师在进行课堂教学的时候,必须抓住核心,不断进行变式,多方面、多角度地引导学生理解相关知识。
建构主义的数学学习观认为:数学学习是学习者主动的构建活动,而并非是被动地接受过程,因此我们就不能期望单纯通过“传授”而使学生获得真正的数学知识,与此相反,我们必须肯定学习过程的创造(再创造)性质以及学生的创造性才能。
而此时,变式教学显得尤为重要。
在变式教学中,把学习数学的主动权交给学生,教师成为学生学习活动的促进者,在肯定学生主体地位的前提下,教师又在教学活动中发挥着主导作用。
前苏联教育家苏霍姆林斯基说过:“兴趣的源泉藏在深处”。
灵活运用变式教学,引导学生多角度去审视、探索问题,可激发学生学习数学和思考问题的兴趣,增强数学课堂教学的有效性。
变式是多样的,本文主要针对初中数学教学,从数学概念教学中的变式、一题多解性变式、多题一解性变式及一题多变性变式进行了举例研究:一、数学概念教学中的变式数学概念很多时候都是非常抽象的,怎样使学生对数学概念理解起来通俗易懂呢?不妨尝试对数学概念进行适当的变式,使抽象的概念通俗化,更容易让学生接受。
反思:通过这样的变式训练,可以使学生在理解定义的时候,不仅仅是从定义本身的角度去理解,而是结合具体的问题有针对性的进行理解,学生学习起来不会觉得那么枯燥,而且对定义的理解会更加的透彻。
另一方面,学生以后学习二次函数,反比例函数等函数定义的时候可以以一次函数定义的理解为基础进行类比学习,达到深化知识的效果!二、一题多解性变式一题多解变式训练,即引导学生对同一题目从不同角度、不同方位快速联想及思考问题,探求不同的解答方案,从而拓宽思路,培养思维的敏捷性。
初中数学中的几道变式训练题
初中数学中的几道变式训练题一、已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。
变式1:在△ABC中,AB=AC,∠OA=4,OB=6,OC=2求∠AOC的度数。
变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?二、已知:C为AB上一点,△ACM和△CBN为等边三角形(如图所示)求证:AN=BMAB COACAB CO(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。
问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。
探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗?探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗?探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗?三、轴对称:已知直线l 及同侧两点A 、B ,试在直线l 上选一点C ,使点C 到点A 、B 的距离和最小。
变式1:如图,请你设计出两种方案的路线和最短的行走路线(画图并说明理由)方案1:小华由家先去河边,再去姥姥家;MACBBAl方案2:小华由家先去姥姥家,再去河边;变式2:已知: AB 、AC 表示两条交叉的小河, P 点是河水化验室, 现想从P 点出发, 先到AB 河取点水样, 然后再到AC 河取点水样, 最后回到P 处化验河水, 怎么走路程最短呢?实验员小王说:“我从P 点笔直向A 走, 同时取好两河水样再原路返回, 这样走, 路最近。
初中数学变式训练题2
初中数学变式教学研究-----------10道变式题1:平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-) 变式1:平面直角坐标系中,已知A(6,3),B (1,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(1,0)(6,0)变式2:平面直角坐标系中,已知A(0,2),B (5, 2),点C 是x 轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(1,0)(4,0)(5,0)变式3:平面直角坐标系中,已知A(2,2),B (-2,2),点C 是坐标轴上的点,若△ABC 为直角三角形,则满足要求的所有点C 有 个.答案 8个2.平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-) 变式1:平面直角坐标系中,已知A(1,0),B (5, 0),点C 是直线2y x =-上的点,若△ABC 为直角三角形,则点C 的坐标为 .答案(1,-1)(5,3)(275-,271-)(275+,271+) 变式2:平面直角坐标系中,已知A(-2,0),B (2, 0),点C 是双曲线 上的点,若△ABC 为直角三角形,则满足要求的点C 的个数为 个.答案 3变式3:平面直角坐标系中,已知A(3,0),B (0, 4),点C 是抛物线 的对称轴上的点,若△ABC 为直角三角形,则点C 的坐标为 .答案(4,2)(4,7)(4, )3.平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直x y 2=1682+-=x x y 43角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-)变式1:平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,点D 在平面直角坐标系内,使 A 、B 、C 、D 为矩形,则点C 的坐标为 .答案(0,0)(49-,0)(0,316-) 变式2:平面直角坐标系中,已知A(0,2),B (5, 2),点C 是x 轴上的点,点D 在第一象限内,使 A 、B 、C 、D 为矩形,则点D 的坐标为 .答案(1,4)(4,4)变式3:平面直角坐标系中,已知A(1,0),B (5, 0),点C 是直线2y x =-上的点,点C 是坐标轴上的点,点D 在平面内,使 A 、B 、C 、D 为顶点的四边形为矩形,则点C 的坐标为 .答案(1,-1)(5,3)(275-,271-)(275+,271+)4:直角梯形ABCD 中,AD=1, BC=4 , DC =4。
初中数学人教版七年级下册教材变式题组
初中数学人教版七年级下册教材变式题组(一)满分(100分,时间:90分钟)一、 选择题1、P45.4、若点P 在第二象限,到x 轴距离2个单位长度,到y 轴距离4个单位长度,则点P 的坐标为( )(A ) (2,-4) (B )(4,-2) (C )(-2,4) (D )(-4,2)2、P61.3、同一平面内的四条直线若a ⊥b,b ⊥c,c ⊥d ,则下列式子成立的是( )(A )a ∥d (B)b ⊥d (C)a ⊥d (D)b ∥c3、P15例、下列命题是真命题的是( )(A )下线a ⊥b,c ⊥b,则a ⊥c(B )直线外一点到这条直线的垂线段,叫做点到直线的距离。
(C )三角形的外角大于三角形的任意一内角(D )若直线a ∥b,b ∥c,则a ∥c4、P23.6、直线AB ∥CD ,∠A=70°,∠C=40°,则∠E=( )(A )30° (B )40° (C )60° (D )70°5、在三角形、四边形、正五边形、正六边形中,不能单独镶嵌平面的是( )A .三角形B .四边形C .正五边形D .正六边形6、(P98,1)把方程132=-y x 用含x 的代数式表示y 的形式为( ) A .233-=x y B .123-=x y C .323-=x y D .233x y -= 7、(P116)把二元一次方程的每组解可看成是平面直角坐标系内一点的坐标。
如方程53=+y x 的解:x=2,y=-1则其坐标为(2,-1),试判断下列各点的坐标是方程53=+y x 的解的是( )A.(1,-2)B.(-1,2)C.(0,5)D.(2,0)8、若关于x 的不等式m x m ->-1)1(的解集是1-<x ,则m 的取值范围是( )A.1>mB.1<mC.1≠mD.1-<m9、关于x 的不等式03>-a x 只有3个负整数解,则a 的取值范围是( )A. 912<≤-aB.912≤<-aC.34-≤<-aD. 34-<≤-a10、下列调查中,调查方式选择正确的是( )(A )为了解生产的50枚炮弹的杀伤半径,选择全面调查。
变式训练案例
A
D
A
D
F
A
D
F
F
B E C GB 图1
EC
G
B
图2
CE G 图3
欢迎指导,谢谢!
•
在初中数学的教学过程中,老师经常会发现
一种现象,很多学生对一种固定的题目模式较容
易掌握,而对较灵活的题型缺乏理解、感知,改
变已知条件,变换了图形位置后就束手无策,学
生的思维常常局限于一些固定的框框里,以致产
生厌学,缺乏自信心。
•ቤተ መጻሕፍቲ ባይዱ
以“变式教学”为研究平台,培养和发展学
生的学习兴趣,调动学生的学习积极性,开发学
AC=CB
AD
B
N
∴△ADC≌△CEB (AAS)
∴AD=CE,DC=EB ∴DE=DC-CE=BE-AD
练习:如图1,四边形ABCD是正方形,AB=BC,∠B=∠BCD=90°, 点E是边BC的中点,∠AEF=90°,EF交正方形外角∠DCG的平分 线CF于点F. (1)求证:AE=EF(提示:在AB上截取BH=BE,连接HE,构造 全等三角形,经过推理使问题得到解决). (2)如图2,如果把“点E是边BC的中点”改为“点E是边BC上 (除B,C外)的任意一点”,其他条件不变,那么结论 “AE=EF”仍然成立吗?说明理由. (3)如图3,点E是BC的延长线上(除C点外)的任意一点,其 他条件不变,结论“AE=EF”是否成立?说明理由.
求证: ①△ADC≌△CEB;②DE=AD+BE. (2)当直线MN绕点C旋转到图2的位置时,
求证:DE=AD-BE. (3)当直线MN绕点C旋转到图3的位置时,请直接
写出DE,AD,BE之间的数量关系.
初二数学变式练习题
初二数学变式练习题1. 小明和小红同时从A地出发,走向B地,两人的行走速度分别为5 km/h和7 km/h。
已知A地到B地的距离为25 km,请问他们什么时候会相遇?解析:设小明走了t小时后相遇,那么小红已经走了t-1小时。
小明走的距离为5t km,小红走的距离为7(t-1) km。
根据题意,5t + 7(t-1) = 25。
解得t=3,所以他们会在3小时后相遇。
2. 某班级有40名男生和35名女生。
如果男生人数增加了20%,女生人数减少了15%,请问两者人数相等时,班级总共有多少名学生?解析:设女生人数为x,则男生人数为1.2x。
根据题意,x + 1.2x = 40 + 35。
解得x = 35,所以两者人数相等时,班级总共有(35 + 42) = 77名学生。
3. 甲乙丙三人共有1000元钱,甲拥有的钱比乙多200元,乙拥有的钱比丙多400元。
请问三人各自拥有多少钱?解析:设丙拥有的钱为x,则乙拥有的钱为x + 400,甲拥有的钱为x + 600。
根据题意,x + (x + 400) + (x + 600) = 1000。
解得x = 100,所以甲拥有的钱为700元,乙拥有的钱为500元,丙拥有的钱为100元。
4. 小明的成绩比班级平均成绩高12分,比班级最低成绩高24分。
如果小明的成绩是班级成绩的平均值,且班级人数为50人,请问班级的总分是多少?解析:设班级总分为x,班级平均成绩为y。
根据题意,x/50 = y。
小明的成绩为y + 12,班级最低成绩为y - 24。
根据题意,(x - 24 - (y - 24)) / 50 = y + 12。
解得x = 3325,所以班级的总分是3325分。
5. 甲乙两个容器的容量之比是4:5,已知甲容器中有30升的水,请问两个容器中共有多少升的水?解析:设乙容器中有x升的水。
根据题意,30 / x = 5 / 4。
解得x = 24,所以两个容器中共有30 + 24 = 54升的水。
人教版苏科版初中数学—变量之间的关系(经典例题 )
班级小组姓名成绩满分(120)一、用表格表示的变量间关系(一)变量、自变量和因变量的定义(共4小题,每题3分,题组共计12分)例1.小明的妈妈自小明出生时起每隔一段时间就给小明称一下体重,得到下面的数据:从表中可以得到:小明体重的变化是随小明的的变化而变化的,这两个变量中,是自变量,是因变量,虽然随着年龄的增大,小明的体重,但体重增加的速度越来越.例1.变式1.据国家统计局统计,新中国成立以来至2000年我国各项税收收入合计如下表:从表中可以得出:新中国成立以来我国的税收收入总体趋势是,其中,年与5年前相比,增长百分数最大,年与5年前相比增长百分数最小,算一算,2000年与1950年相比,税收收入增长了倍.(保留一位小数)例1.变式2.某电动车厂2014年各月份生产电动车的数量情况如下表:(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?例1.变式3.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.(1)找出题目中的自变量和因变量.(2)印制一本纪念册的制版费为多少元?(3)若印制2千册,则共需多少费用?(二)用表格表示的变量间关系(共4小题,每题3分,题组共计12分)cm的长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量例2.要画一个面积为202分别为()A.常量为20,变量为,x yB.常量为20,y,变量为xC.常量为20,x变量为yD.常量为x,y,变量为20例2.变式1.赵先生手中有一张记录他从出生到24岁期间的身高情况表:下列说法错误的是()A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到24岁平均每年增高7.1cmD.赵先生的身高从0岁到24岁平均每年增高5.1cm例2.变式2.2002年1~12月某地大米的平均价格如下表表示:(1)表中反映了哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米的平均价格在上涨?哪一段时间大米的平均价格在下落?(4)从表中可以得到该地大米的平均价格变化方面的哪些信息?平均价格比年初降低了,还是上涨了?例2.变式3.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y (cm)与所挂物体的质量x (kg)的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内)你能说出此时弹簧的长度吗?二、用关系式表示的变量间关系(一)用关系式表示两个变量之间的关系(共4小题,每题3分,题组共计12分)例3.我国政府为解决老百姓看病难的问题,决定大幅度下调药品价格.某种药品在2009年涨价30%,2013年降价70%至a ,那么这种药品在2009年涨价前的价格为.例3.变式1.如图,ABC ∆的底边BC 的长是10cm ,当顶点A 在BC 的垂线PD 上由点D 向上移动时,三角形的面积随之发生了变化.(1)在这个变化的过程中,自变量是,因变量是.(2)如果AD 长为x (cm ),面积为y (2cm ),则y =.(3)当AD BC =时,ABC ∆的面积为.例3.变式2.如图,圆柱的底面半径为2cm ,当圆柱的高由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量是,因变量是.(2)如果圆柱的高为x (cm ),圆柱的体积V (3cm )与x 的关系式为.(3)当圆柱的高由2cm 变化到4cm 时,圆柱的体积由3cm 变化到3cm .(4)当圆柱的高每增加1cm 时,它的体积增加3cm .例3.变式3.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温升高8℃,烧了x 分钟后的水温为y ℃,当水烧开时就不再烧了.(1)y 与x 的关系式为,其中自变量是,它应在范围内变化.(2)1x =时,y =;5x =时,y =.(3)x =时,48y =;x =时,80y =.(二)列关系式并求值(共4小题,每题3分,题组共计12分)例4.学校为优胜班级买篮球作为奖品,若一个篮球30元,总价y 元随篮球个数x 的变化而变化,写出y 与x 的关系式:,其中自变量是,因变量是.当篮球个数为10时,总价为.例4.变式1.齿轮每分钟转120转,如果n (转)表示转数,t (分)表示转动时间,那么n 与t 之间的关系式是,其中为变量,为常量.当10t =时,n=.例4.变式2.一个梯形,它的下底比上底长2cm ,它的高为3cm ,设它的上底长为x cm ,它的面积为y 2cm .(1)写出y 与x 之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x 由5变到7时,y 如何变化?(3)用表格表示当x 从3变到10时(每次增加1),y 的相应值.(4)当x 每增加1时,y 如何变化?说明你的理由.(5)这个梯形的面积能等于92cm 吗?能等于22cm 吗?为什么?例4.变式3.ABC ∆的底边BC 为8cm ,当BC 边上的高从小到大变化时,ABC ∆的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)ABC ∆的面积y 2cm 与高x cm 之间的关系式是什么?(3)当x 增加1cm 时,y 如何变化?(三)关系式的综合应用(共4小题,每题3分,题组共计12分)例5.根据如图所示的程序计算y 值,若输入的x 值为1-,则输出的结果为()A.72B.94C.1D.92例5.变式1.在关系式35y x =+中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是自变量,它的值与x 的值无关;④y 与x 的关系不能用表格表示;⑤y 与x 的关系可以用表格表示。
初中数学教材变式题
变式题1、原题: 计算:2)32(-.(9年级上册P5第2(4)题)变式1 填空: 94= ,412= .变式2 当x 时,式子231-x 在实数范围内有意义?变式3 若23-n 是整数,求正整数n 的值(至少写出3个). 变式4 是否存在正整数n ,使得231+n 是有理数?若存在,求出一个n 的值;若不存在,说明理由.2、原题: 四边形ABCD 是正方形,点E 是边BC 的中点,∠AEF = 90︒,且EF 交正方形外角的平分线CF 于点F .求证:AE = EF .(提示:取AB 的中点G ,连结EG )(8年级下册P122页第15题)变式1 连结AC ,则点A 、E 、C 、F 四点在一个圆上(利用圆周角的性质,结论AE = EF 立即自明).变式2 连结AH ,则AH = AB + CH ,∠BAE =∠EAH .变式3 如图,设E 是边BC 上的任意一点,① AE ⊥EF ,② CF 是正方形外角的平分线,③ AE = EF .则可得 ①② ⇒ ③,①③ ⇒ ②,②③ ⇒ ①,共三个命题,不难证明它们都是正确的.变式4 如图,E 是正方形ABCD 中BC 边上的任意一点,连结AE ,过E 作EF ⊥AE 交CD 于H ,设∠BAE = α,∠EAH = β.求tan α + tan β 的值.变式5 如图,正三角形ABC 中,E 是BC 边(不含端点B 、C )上任意一点,D 是BC 延长线上一点,F 是∠ACD 的平分线上一点.(1)若∠AEF = 60°,求证:AE = EF ;(2)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,其它条件不变,请你猜想:当∠A n E n F n= °时,结论A n E n = E n F n 仍然成立?(直接写出答案,不需要证明)︒⨯-1802nn 变式6 如图,矩形ABCD 中(AB <BC ),E 是边BC 上的动点(不包括端点),作∠AEF = 90︒,使EF 交矩形的外角平分线CF 于点F .(1)试问边BC 上是否存在点E ,使得EF = AE ?说明理由;(2)试探究点E 在边BC 的何处时,使得1=-ABBCAE EF 成立?E α β DA B C HH C E D A B F FD BE C A AB C E FD3、原题:如图,在平面直角坐标系中,矩形OABC 的边OC 在x 轴上,边OA 在y 轴上,点D 在边OC 上,将△DBC 沿BD 所在的直线翻折,使点C 落在对角线OB 上的点E 处,直线BD 交y 轴于点F ,线段OA 的长是04822=-+x x 的一个根,且53=∠ABO Sin . 请解答下列问题: (1)求点B 的坐标;(2)求直线BD 的解析式; (3)在x 轴上是否存在一点P ,使△APO 与△AOB 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由。
初中数学中的几道变式题所引发的思考的研1
《初中数学中的几道变式题所引发的思考的研究》结题报告一、课题提出的背景和意义素质教育是以培养具有创造性思维和创造能力的人才为目标而进行的创新教育为归宿的教育。
在课堂教学中落实素质教育,就要贯穿“学生为主体,训练为主线,能力为主攻”的原则。
现代数学课程标准指出:数学教学不仅仅要使学生获得数学基础知识,基本技能,更要获得数学思想和观念,形成良好的数学思维品质,要通过各种途径,让学生体会数学思考和创造的过程,增强学习的兴趣和自信心,不断提高自主学习的能力。
所以加强在教学中注重变式训练,可以促使学生的思维向多层次、多方向发散,帮助学生在问题的解答过程中去寻找解类似问题的思路、方法,有意识地展现教学过程中教师与学生数学思维活动的过程,充分调动学生学习的积极性、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。
所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。
数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。
.变式其实就是创新。
当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。
实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。
通过多问、多思、多用等激发学生思维的积极性和深刻性。
下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
二、理论依据最早对“变式”定义的是张兆琪1981年在《天津教育》发表题为“变式在小学数学教学中的应用”,定义为“在形成数学概念、掌握数学规律的过程中, 教师提供给学生的感性材料,要不断变化其表现形式,使那些非本质属性变化出现,而使其本质属性在所有材料中都出现,这种方法在心理学上称为“变式”。
初中数学之变式训练
【模拟试题】一、选择题1. “x 的2倍与3的差不大于8”列出的不等式是( )A. 2x -3≤8B. 2x -3≥8C. 2x -3<8D. 2x -3>8 2.下列不等式一定成立的是( )A. 5a >4aB. x +2<x +3C. -a >-2aD.a a 24> 3. 如果x <-3,那么下列不等式成立的是( )A. x 2>-3xB. x 2≥-3xC. x 2<-3xD. x 2≤-3x 4. 不等式-3x +6>0的正整数有( )A. 1个B. 2个C. 3个D. 无数多个 5. 若m 满足|m |>m ,则m 一定是( )A. 正数B. 负数C. 非负数D. 任意有理数 6. 在数轴上与原点的距离小于8的点对应的x 满足( )A. -8<x <8B. x <-8或x >8C. x <8D. x >87. 若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是( )A. m <11B. m >11C. m ≤11D. m ≥118. 要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A. m >23,n >-31B. m >3,n >-3C. m <23,n <-31D. m <23,n >-31二、填空题9. 不等式6-2x >0的解集是________.10. 当x ________时,代数式523--x 的值是非正数.11. 当m ________时,不等式(2-m )x <8的解集为x >m -28.12. 若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________. 13. 已知三角形的两边为3和4,则第三边a 的取值范围是________.14. 不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为________. 15. 已知一次函数y =(m +4)x -3+n (其中x 是自变量),当m 、n 为________时,函数图象与y 轴的交点在x 轴下方.16. 某种商品的价格第一年上升了10%,第二年下降了(m -5)%(m >5)后,仍不低于原价,则m 的值应为________.三、解答题17. 解不等式(组)(1)-2(x -3)>1 (2)⎪⎩⎪⎨⎧-<-+≤-3314)3(265x x x x18. 画出函数y =3x +12的图象,并回答下列问题: (1)当x 为什么值时,y >0?(2)如果这个函数y 的值满足-6≤y ≤6,求相应的x 的取值范围.19. 已知方程组⎩⎨⎧=+-=+2212y x m y x 的解x 、y 满足x +y >0,求m 的取值范围.120. 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.的冷藏费.(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求y 1和y 2与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?21. 某童装厂,现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L 、M 两种型号的童装共50套.已知做一套L 型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元,做一套M 型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L 型号的童装套数为x (套),用这些布料生产两种型号的童装所获得利润为y (元).(1)写出y (元)关于x (套)的代数式,并求出x 的取值范围.(2)该厂生产这批童装中,当L 型号的童装为多少套时,能使该厂的利润最大?最大利润是多少?玩数学------------变式训练一1、(2008山东模拟)如图所示,等腰Rt △ABC 中,P 是斜边BC 的中点,以P 为顶点的直角边分别与边AB 、AC 交于点E 、F ,连结EF .当∠EPF 绕顶点P 旋转时(点E 不与A 、B 重合),△PEF 也始终是等腰直角三角形,请说明理由.2、一位同学拿了两块45三角尺MNK △,ACB △做了一个探究活动:将MNK △ 的直角顶点M 放在ABC △的斜边AB 的中点处,设4AC BC ==.BK图(1)N图(2)BN图(3)(1)如图(1),两三角尺的重叠部分为ACM△,则重叠部分的面积为,周长为.(2)将图(1)中的MNK△绕顶点M逆时针旋转45,得到图26(2),此时重叠部分的面积为,周长为.(3)如果将MNK△绕M旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为。
初中数学教学变式训练(含示范课课程设计、学科学习情况总结)
初中数学教学变式训练第一篇范文:初中数学教学变式训练在初中数学教学中,变式训练是一种重要的教学方法。
它旨在通过多种形式的题目设置,让学生在变化中掌握数学概念、原理和方法,培养学生的数学思维能力和解决问题的能力。
本文将从教学实际出发,探讨如何有效地进行初中数学教学变式训练。
二、变式训练的原则1.针对性:变式训练应针对学生的学习需求和教学目标,有目的地选择或设计题目,使学生在变化中掌握数学知识。
2.层次性:变式训练应遵循由浅入深、由易到难的原则,分层次地设置题目,使学生在逐步解决问题的过程中提高数学能力。
3.多样性:变式训练应注重题目的多样性,包括不同类型、不同背景、不同难度的题目,以丰富学生的数学思维。
4.创新性:变式训练应注重题目的创新性,引导学生从不同角度思考问题,培养学生的创新意识和解决问题的能力。
三、变式训练的设计与实施1.课前准备:教师应根据教学内容和学生的学习情况,选取或设计具有代表性的题目,并分析题目的关键点和考察目标。
2.课堂讲解:在课堂上,教师应引导学生分析题目的基本结构,揭示题目的本质特征,让学生在变化中理解数学知识。
3.课后练习:教师应布置相应的课后练习,让学生在自主学习中巩固所学知识,提高解决问题的能力。
4.反馈与评价:教师应及时对学生的练习情况进行反馈,针对学生的问题进行讲解和指导,鼓励学生积极参与讨论和思考。
四、变式训练的注意事项1.关注学生的个体差异:在变式训练中,教师应关注学生的个体差异,根据学生的实际情况调整题目的难度和教学策略。
2.注重数学思维的培养:变式训练的目的是培养学生的数学思维能力,教师应引导学生从多个角度分析问题,提高学生的思维品质。
3.创设良好的学习氛围:教师应营造轻松、愉快的学习氛围,激发学生的学习兴趣,使学生在愉悦的情感中学习数学。
4.合理分配教学时间:教师应合理分配教学时间,确保变式训练的实施,同时兼顾其他教学内容的学习。
总之,在初中数学教学中,变式训练是一种有效提高学生数学能力的教学方法。
专题10 一次函数的三种压轴应用问题-2023年初中数学8年级下册同步压轴题(学生版)
专题10 一次函数的三种压轴应用问题类型一、分配方案问题例.某水果超市欲购进甲,乙两种水果进行销售.甲种水果每千克的价格为a元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为26元/千克.设水果超市购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)a=____(2)求y与x之间的函数关系式;(3)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W(元)最少?【变式训练1】为了净化空气,美化校园环境,某学校计划种植A,B两种树木.已知购买20棵A种树木和15棵B种树木共花费2680元;购买10棵A种树木和20棵B种树木共花费2240元.(1)求A,B两种树木的单价分别为多少元.(2)如果购买A种树木有优惠,优惠方案是:购买A种树木超过20棵时,超出部分可以享受八折优惠.若该学校购买m(m>0,且m为整数)棵A种树木花费w元,求w与m之间的函数关系式.(3)在(2)的条件下,该学校决定在A,B两种树木中购买其中一种,且数量超过20棵,请你帮助该学校判断选择购买哪种树木更省钱.【变式训练2】我校为了丰富校园活动,计划购买乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若购买两种球拍刚好用去8000元,则购买两种球拍各多少副?(2)若购买羽毛球拍的数量不少于乒乓球拍的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.【变式训练3】某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.(1)现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元,该公司有哪几种进货方案?(2)在第(1)小题的条件下,该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用第(2)小题中所求得的最大利润再次进货,请直接写出获得最大利润的进货方案.类型二、最大利润问题例.某书店计划同时购进A,B两类图书,已知购进3本A类图书和4本B类图书共需288元;购进6本A 类图书和2本B类图书共需306元,(1)A,B两类图书每本的进价各是多少元?(2)该书店计划用4500元全部购进两类图书,设购进A类x本,B类y本.①求y关于x的关系式;②进货时,A类图书的购进数量不少于60本,已知A类图书每本的售价为38元,B类图书每本的售价为50元,若书店全部售完可获利W元,求W关于x的关系式,并说明应该如何进货才能使书店所获利润最大,最大利润为多少元?【变式训练1】为了防范疫情,顺利复学,某市教育局决定从甲、乙两地用汽车向A、B两校运送口罩,甲、乙两地分别可提供口罩40万个、10万个;A、B两校分别需要口罩30万个、20万个两地到A、B两校的路程如表(每万个口罩每千米运费为2元).设甲地运往A校x万个口罩:(1)根据题意,在答题卡中填该表:(2)设总运费为W元,求W与x的函数关系式;当甲地运往A校多少万个口罩时总运费最少?最少的运费是多少元?【变式训练2】为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A型消毒液的数量不超过67瓶,请设计出最省钱的购买方案,并求出最少费用.【变式训练3】某扶贫小组实施产业扶贫,帮助贫困农户进行盆景的培植和销售,在第一期培植销售完成后,统计发现,若2盆A种盆景和1盆B种盆景共获利润340元;如果3盆A种盆景和2盆B种盆景共获利润560元.(1)每盆A种盆景、B种盆景的利润各是多少元?(2)为更好服务于农户,扶贫小组决定进行二期盆景培植,培植A种、B种盆景的总数量100盆,若要求第二期A种盆景的数量不超过B种盆景数量的3倍,当A种、B种盆景各多少盆时,总利润最高,最高利润是多少?类型三、几何问题例.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船海里;(2)求出l1和l2的解析式;(3)求公安快艇追上走私船的时间.【变式训练1】为发展旅游经济,某景区对门票采用灵活的售票方法吸引游客.设某旅游团路人数为x人,非节假日购票款为1y (元),节假日购票款为2y (元),1y 、2y 与x 之间的函数图像如图所示.(1)非节假日门票定价为______元/人.(2)求当10x 时,2y 与x 之间的函数关系式。
专题07 一元一次方程实际应用的六种考法-2023年初中数学7年级上册同步压轴题(学生版)
专题07 一元一次方程实际应用的六种考法1. 数字问题例.(1)把100拆分成2个数的和,使得第一个数加3,第二个数减3,得到的结果相等.则拆分成的这两个数分别是和;(2)把100拆分成2个数的和,使得第一个数乘2.第二个数除以2,得到的结果相等.则拆分成的这两个数分别是和;(3)把100拆分成4个数的和,使得第一个数加5,第二个数减5,第三个数乘5,第4个数除以5,得到的的结果都相等,问拆分成的这四个数分别是多少.【变式训练1】将连续的奇数1,3,5,7,9,……排成如图所示的数表.(1)写出数表所表示的规律;(至少写出4个)(2)若将方框上下左右移动,可框住另外的9个数.若9个数之和等于297,求方框里中间数是多少?【变式训练2】如图所示的10×5(行×列)的数阵,是由一些连续奇数组成的.(1)形如图框中的四个数,设第一行的第一个数为x,用含x的式子表示另外三个数;(2)若这样框中的四个数的和是200,求出这四个数;(3)是否存在这样的四个数,它们的和为296?为什么?【变式训练3】将连续的偶数0,2,4,6,8,…排成如图所示的数表.(1)十字形框内的五个数之和是中间数的______;若设十字形框内的五个数中最中间一个数是x,用代数式表示十字形框内五个数之和为______;(2)若将十字形框上下左右移动,可框住另外五个数,这五个数还有上述规律吗?直接写出答案,不需要证明;(3)十字形框能否框到五个数,使这五个数之和等于2400呢?若能,请写出这五个数,若不能,请说明理由.2.配套问题例.列方程解应用题某啤酒公司的啤酒车间先将散装啤酒灌装成瓶装啤酒,再将瓶装啤酒装箱出车间.该车间有灌装、装箱生产线共21条,每条灌装生产线每小时装350瓶,每条装箱生产线每小时装450瓶.某日,生产前车间内已有未装箱的瓶装啤酒5200瓶,8:00开始,车间内的生产线全部投入生产.(1)若当日到10:00时,该车间内未装箱的瓶装啤酒达到5500瓶.设灌装生产线有x条,当日到10:00时,灌装生产线共装多少瓶啤酒(用含x的代数式表示)?该车间内灌装生产线有多少条?(2)若该日车间工作8小时,灌装生产线设计多少条时?该日车间内的瓶装啤酒恰好全部装箱?【变式训练1】小林到某纸箱厂参加社会实践,该厂计划用50张白板纸制作某种型号的长方体纸箱.如图,每张白板纸可以用A,B,两种方法剪裁,其中A种裁法:一张白板纸裁成4个侧面;B种裁法:一张白板纸裁成2个侧面与4个底面.且四个侧面和两个底面恰好能做成一个纸箱.设按A种方法剪裁的有x张白板纸.(1)按B种方法剪裁的有______张白板纸;(用含x的代数式表示)(2)将50张白板纸裁剪完后,可以制作该种型号的长方体纸箱多少个?【变式训练2】某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)现库存有布料300m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料227m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?(本问直接写出结果)【变式训练3】某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?3. 销售利润问题例.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店老板共获利157元.甲、乙两件服装的成本各为多少元?【变式训练1】“虎年大吉,岁岁平安”,为了喜迎新春,某水果店在春节期间推出水果篮和坚果礼盒,每个水果篮的成本为200元,每盒坚果礼盒的成本为150元,每个水果篮的售价比每盒坚果礼盒的售价多100元,售卖1个水果篮获得的利润和售卖2盒坚果礼盒获得的利润相同.(1)求每个水果篮和每盒坚果礼盒的售价;(2)在年末时,该水果店购进水果篮1250个和坚果礼盒1200盒,进行“新春特惠”促销活动.水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒,每个水果篮在售价的基础上打九折后再参与店内“每满100元减m元”的活动,每盒坚果礼盒直接参与店内“每满100元减m元”的活动.售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有50个没办法售出.若该水果店获得的利润率为20%,求m的值.【变式训练2】某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为300元.(1)A、B两种产品的销售单价分别是多少元?(2)今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高2a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2%3a.求a的值.【变式训练3】某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【变式训练4】武汉大洋百货经销甲、乙两种服装,甲种服装每件进价500元,售价800元;乙种服装商品每件售价1200元,可盈利50%.(1)每件甲种服装利润率为,乙种服装每件进价为元;(2)若该商场同时购进甲、乙两种服装共40件,恰好总进价用去27500元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,武汉大洋百货实行“满1000元减500元的优惠”(比如:某顾客购物1200元,他只需付款700元).到了晚上八点后,又推出“先打折”,再参与“满1000元减500元”的活动.张先生买了一件标价为3200元的羽绒服,张先生发现竟然比没打折前多付了20元钱问大洋百货商场晚上八点后推出的活动是先打多少折之后再参加活动?4. 工程问题例.某工程队承包德阿公路绵竹市境内一段长为1755米的道路改造工程,由甲、乙两个施工小队分别从南、北两端同时施工.已知甲队比乙队平均每天多施工3米,经过5天施工后,两个小队共完成施工路段135米.(1)求甲、乙两个小队平均每天各施工多少米?(2)为加快进度,通过改进施工技术,在剩余的工程中,甲队平均每天能比原来多施工1米,乙队平均每天能比原来多施工2米,甲、乙同时按此施工,能够比原来提前多少天完成道路改造任务?【变式训练1】某校职工周转房已经落成,有一些结构相同的房间需要粉刷墙面.已知3名一级技工去粉刷8个房间,结果有30m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间,另外又多粉刷20m2墙面.每名一级技工比二级技工一天多粉刷12m2墙面.(1)求每个房间需要粉刷的墙面面积;(列方程解决问题)(2)若粉刷1m2墙面给付一级技工6元费用,给付二级技工5.5元费用,问一级技工和二级技工每人每天各挣多少工钱?【变式训练2】湖北荆宜高速公路是“国家高速公路网规划”中的建设工程,该工程预算国拨总投资为24亿元,分土建、路面、设施三个建设项目,路面投资占土建投资的45,设施投资比土建投资少40%、由于物价的上涨,工程建设实际总投资随之增长,路面投资的增长率是土建投资增长率的2.5倍,设施投资的增长率达到路面投资增长率的2倍,(1)三个项目的预算投资分别是多少亿元?(2)由于合理施工,使公路提前半年通车,每月可通行车辆100万辆,每辆车的平均收益为40元.这样,可将提前半年通车收益的70%用于该工程建设的实际投资,减少了国拨投资,使预算国拨总投资减少的百分率与土建投资的增长率相同,该工程的实际总投资是多少亿元?5. 行程问题例.甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,甲、乙两人间的距离为(km)s )与甲行驶的时间为(h)t 之间的关系如图所示.(1)以下是点M 、点N 、点P 所代表的实际意义,请将M 、N 、P 填入对应的横线上.①甲到达终点_________.②甲乙两人相遇_________.③乙到达终点_________.(2)AB 两地之间的路程为_________千米;(3)求甲、乙各自的速度;(4)如果乙到达A 地后立刻原路原速返回到B 地,在甲到达B 地的过程中,甲出发_________小时,甲乙相距100千米.【变式训练1】为抗击疫情,支援B 市,A 市某蔬菜公司紧急调运两车蔬菜运往B 市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是_______km/h,乙车出发时速度是_______km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.【变式训练2】随着互联网的普及和城市交通的多样化,人们出行的时间与方式有了更多的选择,某市有出租车、滴滴快车等网约车,收费标准见下图.(1)若乘坐这两种网约车的里程数都是9公里,则发现乘坐出租车最节省钱,求乘坐出租车费用为多少元?(2)若从甲地到乙地,乘坐滴滴快车比出租车多用15元,求甲、乙两地间的里程数.【变式训练3】A、B两地相距480km,C地在A、B两地之间.一辆轿车以100km/h的速度从A地出发匀速行驶,前往B地.同时,一辆货车以80km/h的速度从B地岀发,匀速行驶,前往A地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km时,求轿车行驶的时间;(3)若轿车到达B地后,立刻以120km/h的速度原路返回,再次经过C地,两次经过C地的时间间隔为2.2h,求C地距离A地路程.6. 方案问题例.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你如何购买门票才能最省钱?【变式训练1】2021年“双十一”期间,很多国货品牌受到人们的青睐,销量大幅增长.某平台的体育用品旗舰店实行优惠销售,规定如下:对原价160元/件的某款运动速干衣和20元/双的某款运动棉袜开展促销活动,活动期间向客户提供两种优惠方案.方案A :买一件运动速干衣送一双运动棉袜;方案B :运动速干衣和运动棉袜均按9折付款.某户外俱乐部准备购买运动速干衣30件,运动棉袜x 双(30x >).(1)若该户外俱乐部按方案A 购买,需付款_______元(用含x 的代数式表示);若该户外俱乐部按方案B 购买,需付款_______元(用含x 的代数式表示).(2)若x =40,通过计算说明此时按哪种方案购买较为合算:(3)当购买运动棉袜多少双时两种方案付款相同.【变式训练2】某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a + 小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b + 小时.(1)当1a b ==时,两条生产线的加工时间分别是多少小时?(2)某一天,该企业把5吨原材料分配到A 、B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?【变式训练3】某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?课后作业1.[教材改编]改编华师版七年级下册数学教材第19页的部分内容.问题3课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要__________天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?[拓展]在问题3中,如果两人合作完成后共得报酬450元,工作量相同部分的报酬,师徒按3:2分配,余下的工作量所得报酬分配给该部分完成者,请直接写出师徒各得的报酬.2.为打造“安全、环保、生态”的某河流公园,某市设立若干河流排污治理点(每处需安装相同长度的排污治理管道),一天甲队3名工人去完成5个治理点管道铺设,但还有60米管道未来得及完成,乙队4名工人完成5个治理点后,仍多铺设了40米管道,每名甲队工人比乙队工人每天多铺设20米管道.(1)求每个排污治理点需铺设的管道长度;(2)已知每位甲队工人每天需支付费用500元,每名乙队工人每天需支付400元,该市共设立50个排污治理点,另有5880米的同样的污水排放管道也需要安装.现有甲队3名工人,乙队4名工人来安装管道,方案一:全部由甲队安装;方案二:全部由乙队安装;(不到一天按一天算).若要使总费用最少,应选择哪种方案?请通过计算说明.3.为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?4.某次篮球联赛积分榜如下表所示:(1)通过观察积分表,填空:胜一场得分,负一场得分.(2)雄鹰队也参加了本次篮球联赛,获得积分25分,问雄鹰队的胜、负场次情况.(3)联赛中还有一个队伍,队长电话向当地组织者汇报,说队伍在比赛中获得胜场和负场的积分一样多,请你通过数学计算判断该队长是否说谎.x x≥名学生组成的旅游团,准备到某地旅游,甲,乙两家旅行社的服务质量相5.假期,某校4位教师和()1同,且报价都是每人200元.经过协商,甲旅行社表示若4位游客全额收费,则给予其余游客七折优惠;乙旅行社表示若游客5人以上(含5人)可给予每位游客八折优惠.(1)若有10名学生参加旅游团,这个旅游团选择甲旅行社的总费用是_____________元,选择乙旅行社的总费用是_____________元,选择_____________旅行社更省钱.(2)根据学生人数,该旅游团选择哪一家旅行社支付的旅游总费用较少?6.材料一:对于任意一个四位正整数t,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之差的绝对值的3倍,则称这个四位数t 为“好运数”.例如:7632t =,因为72363+=-,所以7632是“好运数”.材料二:将一个四位正整数m 的百位数字和十位数字交换位置后,得到一个新的四位数m ',规定:F (m )=m ﹣m ',例如:F (2146)=2146﹣2416=﹣270.(1)判断7302,1345是否为“好运数”,并说明理由;(2)“好运数”n 的千位上的数字是十位上的数字的2倍,个位上的数字是1,求()F n 的最大值.7.如图,A 、B 两地相距90千米,从A 到B 的地形依次为:50千米平直公路,20千米上坡公路,20千米平直公路.甲从A 地开汽车前往B 地,乙从B 地骑摩托车前往A 地,汽车上坡的速度为100千米/小时,平直公路的速度为120千米/小时;摩托车下坡的速度为80千米/小时,平直公路的速度为60千米/小时;甲、乙两人同时出发.(1)求甲从A 到B 地所需要的时间.(2)求乙从B 到C 地所需要的时间.(3)求两人出发后经过多少时间相遇?8.如图是某月的月历.(1)带阴影的方框中的9个数的和与方框正中心的数有什么关系?(2)如果将带阴影的方框移至图1的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框的大小,将方框移动几个位置试一试,你能得出什么结论?请说明其中的理由.(4)这个结论对于任何一个月的月历都成立吗?(5)如图2,如果带阴影的方框里的数是4个,请直接写出你发现的结论.。
七年级数学上册精选例题变式全解析
讲次01 有理数的分类及数轴考点一、有理数分类按照整数和分数的分类【注意】0既不是正数也不是负数。
按正数、负数、和零的关系分类有理数分类注意事项:1.无限不循环的小数不是有理数,比如:圆周率。
2.无限循环的小数是有理数,比如:0.6666666…3.如200%,6/3能约分成整数的数不能算做分数考点二、数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度(重点)画数轴步骤:画直线-取原点-规定正方向-单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. 实心点表示包括本数,空心点表示不包括本数。
命题角度一 正负数在实际生活中的应用例题1.如果向东走2m 记为2m +,则向西走3m 可记为( ) A .3m +B .2m +C .3m -D .2m -【解析】若向东走2m 记作+2m ,则向西走3m 记作-3m ,选C .变式1.如果+20%表示增加20%,那么﹣6%表示( ) A .增加14%B .增加6%C .减少6%D .减少26%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.选C .变式2.四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A .+10B .﹣20C .﹣3D .+5 【分析】质量偏差越少越好,最符合规定的是﹣3. 【解析】最符合规定的是﹣3,选C . 【小结】本题主要考查负数的意义.变式3.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置( ) A .在书店 B .在花店 C .在学校D .不在上述地方【分析】由题意知,可看作书店为原点,花店位于书店西边100米处,即-100米,学校位于书店东边50米处,即+50米,解答出即可.【解析】根据题意:小明从书店沿街向东走了20米,接着又向西走了–30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.选C .【小结】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.命题角度二有理数的分类例题2.把下列各数填入它所在的数集的括号里.﹣12,+5,﹣6.3,0,﹣1213,245,6.9,﹣7,210,0.031,﹣43,﹣10%正数集合:{…}整数集合:{…}非负数集合:{…}负分数集合:{…}.【解析】正数集合:{+5,245,6.9,210,0.031 …};整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,245,6.9,210,0.031 …};负分数集合:{﹣12,﹣6.3,﹣1213,﹣10% …}.故答案为{+5,245,6.9,210,0.031…};{+5,0,﹣7,210,﹣43…};{+5,0,245,6.9,210,0.031 …};{﹣12,﹣6.3,﹣1213,﹣10%…}.变式1.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.【解析】正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.变式2.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2016,﹣15%,﹣0.618,712,﹣9,﹣23,0,3.14,﹣72(2)上图中,这两个圈的重叠部分表示什么数的集合?(3)列式并计算:在(1)的数据中,求最大的数与最小的数的和.【解析】(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合;(3)最大数是2016,最小数是72-,∴最大的数与最小的数之和2016(72)1944+-=.命题角度三数轴的三要素及画法例题3.下列数轴画正确的是()A.B.C.D.【解析】A、没有单位长度,故错误;B、没有正方向,故错误;C、原点、正方向、单位长度都符合数轴的条件,故正确;D、数轴的左边单位长度的表示有错误.选C.变式1.下列图中数轴画法不正确...的有().(1)(2)(3)(4)(5)A.2个B.3个C.4个D.5个【解析】(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.选C.变式2.下列各图表示数轴正确的是()A.B.C.D.【解析】各图表示数轴正确的是:.选C.命题角度四用数轴上的点表示有理数例题4.如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5 B.﹣2.5 C.﹣0.5 D.0.5【解析】由数轴可知小手遮挡住的点在-1和0之间,而选项中的数只有-0.5在-1和0之间,所以小手遮挡住的点表示的数可能是-0.5,选C.变式1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1【解析】数轴上蝴蝶所在点表示的数可能为-1,选D.【小结】考查有理数与数轴上点关系,任何一个有理数都可以用数轴上点表示,在数轴上,原点左边点表示负数,原点右边点表示正数,右边的点表示的数比左边的点表示的数大.变式2.如图,25倒数在数轴上表示的点位于下列两个点之间( )A.点E和点F B.点F和点G C.点F和点G D.点G和点H【解析】25的倒数是52,∴52在G和H之间,选D.变式3.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【解析】∵|a|=-a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧,选B.命题角度五利用数轴表示有理数的大小例题5.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【解析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,变式1.,在数轴上位置如图所示,则,,,的大小顺序是( )A.B.C.D.【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【解析】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,选D.变式2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.选D.变式3.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<-1B.n>3C.m<-n D.m>-n【解析】由数轴可得,-1<m<0<2<n<3,选项A错误,选项B错误,∴m>-n,选项C错误,选项D正确命题角度六 数轴上的动点问题例题6.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m 、n 、p 、q ,如图2,先让圆周上表示m 的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是( )A .mB .nC .pD .q【解析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m ,q ,p ,n 的点重合.2019÷4=504...3,故-2016与n 点重合.变式1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为( ) A .﹣2B .﹣6C .﹣3 或﹣5D .无法确定【分析】分两种情况讨论:把表示﹣4的点向左移动1个单位长度或向右移动1个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.【解析】把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.选C . 【小结】考查数轴:数轴三要素(正方向、原点和单位长度);数轴上原点左边点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.变式2.已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、﹣1,那么|a +1|表示为( ) A .A 、B 两点间的距离 B .A 、C 两点间的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和 【解析】因为1(1)a a +=--,所以1a +表示A 点与C 点之间的距离,选B变式3.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A与表示1的点重合,滚动一周后到达点B,点B表示的数是()A.﹣2πB.1﹣2πC.﹣πD.1﹣π【解析】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB之间的距离为圆的周长=2π,A点在数轴上表示1的点的左边.∴A点对应的数是1﹣2π.选B.讲次02 绝对值与相反数考点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.考点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学变式训练
一、概念的变式训练
数学思维能力的发展离不开数学概念的形成,尤其是对概念的内涵和外延的理解。
因而在概念形成过程中的训练主要是通过多方面呈现概念的外延和触及一些“貌似神离”的情况,以便突出概念的内涵,使学生能深刻、准确地理解掌握概念。
如在学习平方根的概念时,可以设计这样的变式训练,
例题:16的平方根是。
变式1:16的正的平方根是。
16的负的平方根是。
变式2:的正的平方根是。
变式3:已知的平方根是,则= 。
二、公式、法则、定理等的变式训练
数学基础知识、基本概念(定义、定理、性质、公式、法则)是解决数学问题并产生新问题的起点。
在复习公式、定理的教学中,不要直接呈现现成的结论,而应充分利用特例、实验等手段,设计系列问题变式。
利用问题变式来明确定理、公式和法则的条件、结论、适用范围、注意事项等关键之处,进而培养学生严密的逻辑推理论证能力和正确的演算能力。
从而引发学生遐思绵绵,培养学生数学思维的灵活性和思考问题的深刻性。
例1、出示变式判断题,并给出图示说明,让学生理解正误的原因。
(1)经过半径外端的直线是圆的切线.(×)图1
(2)垂直于半径的直线是圆的切线. (×)图2
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.(√)图3
图1 图2 图3
例2、完全平方公式“”的新课讲授时我设置了如下的变式训练:
计算:(1) , (2) ,
(3) ,(4)。
比如在学习了完全平方公式后,对于的展开为三项二次式,学生基本上都能够掌握,但是这还不能说明学生已经掌握了完全平方公式。
通过下面的变形:
学生通过完成上述填空,不但深化了对完全平方公式的理解,而且锻炼了学生的逆向思维能力。
最后在学生能纯熟的运用完全平方公式后,老师再提出变形:
例3如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC 的面积为S,则()
A.S=2 B.S=2.4 C.S=4 D.S与BE长度有关
变式一、3、如图,矩形中,cm,cm,点为边上的任意一点,
四边形也是矩形,,则.
变式二、正方形、正方形和正方形的位置如图4所示,点在线段上,正方形的边长为4,则的面积为:(A)10 (B)12
(C)14 (D)16
例3、例如:“求证:顺次连结四边形各边中点所得的四边形是平行四边形o”一
般学生解决这个问题是不困难的,顺题深入还可以提出以下问题。
变式1:顺次连结梯形各边中点所得的四边形是什么四边形?
变式2:顺次连结矩形各边中点所得的四边形是什么四边形?
变式3:顺次连结菱形各边中点所得的四边形是什么四边形?
变式4:顺次连结正方形各边中点所得的四边形是什么四边形?
变式5:顺次连结什么四边形中点可以得到平行四边形?
变式6:顺次连结什么四边形中点可以得到矩形?
三、题目形式的变式训练
例题的教学采取学生议练,教师点拨、评讲相结合,着重引导学生解决如何设所求
函数的解析式、怎样建立方程组。
从例题出发,组织变式训练,提高训练效率。
1、多题一解,培养学生触一通类的数学思维能力。
例题:已知二次函数的图像经过、、三点,求这个二次函数的解析式。
变式1:已知二次函数的图像经过一次函数的图像与轴、轴的交点A、C,并且经过点,求这个二次函数的解析式。
变式2:已知抛物线经过两点、。
且对称轴是直线,求这条抛物线的解析式。
变式3:已知一次函数的图像经过点,且在轴上的截距是-1,它与二次函数的图像相交于、两点,又知二次函数的对称轴是直线,求这两个函数的解析式。
2、一题多变,培养学生思维的深刻性。
例题:如图1,在平行四边形ABCD中,E、F分别是OB、OD的中点,四边形AECF 是平行四边形吗?请说明理由。
(引导学生分析,完成此例题)
图1
变式训练:
变式1:若将例题中的已知条件E、F分别是OB、OD的中点改为点E、F三等分对角线BD,其它条件不变,问上述结论成立吗?为什么?
变式2:若将例题中的已知条件E、F分别是OB、OD的中点改为BE=DF,其它条件不变,结论成立吗?为什么?
变式3:若将例题中的已知条件E、F分别是OB、OD的中点改为E、F为直线BD上两点且BE=DF,结论成立吗?为什么?
变式4:如图2:在平行四边形ABCD中,H、G、E、F分别为线段BO、DO、AO、CO 的中点,问四边形EGFH是平行四边形吗?为什么?若结论成立,那么直线EG、FH有什么位置关系?
图2 图3
变式5:如图3在平行四边形ABCD中,E、F是对角线AC上的两个点;G、H是对角线BD上的两点。
已知AE=CF,DG=BH,上述结论仍旧成立吗?
四、思维变式教学
思维变式往往指题目变式(多题一解)与方法变式 (一题多解)的综合。
“数学是训练思维的体操”,在初中数学复习教学过程中,要尽量让学生体会到蕴藏在数学问题中的“生命”价值,充分利用问题变式培养学生思维的严谨性、灵活性、深刻性、敏捷性、发散性和独创性,使学生举一反三、融会贯通,从而从多角度、多层次、全方位地去思考问题、寻求答案的优良思维品质。
例1、在复习求一元二次方程:x’—5x+6=0的根时,可以进行以下变式:
变式1:你能结合二次函数图像求出x’—5x+6 >0的x取值范围吗?
变式2:你能结合二次函数图像求出/—5x+6 <0的x取值范围吗?
例2、写出符合以下三个条件的一个函数解析式要求:写出过程
1>过点(3,1)
2>在第一象限内,y随x的增大而减小
3>当自变量的值是2时,函数值小于2
例3、如图14,已知,是一次函数的图象和反比例函数的图象的两个交点.求反比例函数和一次函数的解析式;
变式一、求直线与轴的交点的坐标及△
的面积;
变式二、求方程的解(请直接写出答案);
变式三、求不等式的解集(请直接写出案).
例4、已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),
△ABE与△ADG的面积关系是: ____________.
(2)引申:当正方形AEFG旋转任意一个角度时(如图2),
△ABE与△ADG的面积关系是:____________.并证明你的结论
(3)运用:已知三角形ABC,AB=5cm,AC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),
则图中阴影部分的面积和最大值是. ____________
五、条件变化的变式训练
解题方法的变式训练也就是我们常说的“一题多变”类训练。
在教学中老师要善于设置“一题多解”类变式训练,引导学生能从不同的角度,不同的条件,同一的思想方法来思考解决不同几个问题,使学生从单一的思维模式中解放出来,达到以创新方式来解答问题,培养学生思维的开阔性、发散性和灵活性。
例1、正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上.分别连接BD、BF、FD,得到△BFD.
(1)在图①~图③中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均
为3,请通过计算填写下表:
正方形CEFG的边长 1 3 4
△BFD的面积
(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图
③证明你的猜想.
例2、如图(1),四边形ABCD内部有一点P,使得S
△APD +S
△BPC
=S
△PAB
+S
△PCD
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;
(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);
(3)将图③中的△
ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。
在图④中,∠AFB与∠α的数量关系是________________;在图⑤中,∠AFB与∠α的数量关系是________________。
请你任选其中一个结论证明。
初中数学复习课问题变式教学中变式方式、形式以及内容,要根据教材的内容和学生的情况来安排,因材施教是课堂教学永远要坚持的原则,恰当合理的问题变式,有助于学生把知识学活,实践证明,变式教学能摆脱“题海”变被动思维为主动自觉思维,形成“趣学”、“乐学”的氛围,让学生成为学习的主人,减小差生面,培养学生良好的思维品质,提高教学效益。
有助于学生举一反三、触类旁通,有助于学生产生学习的“最佳动机”和激发学生的灵感,它能升华学生的思维,为学生后续学习创造更好的条件、打下更坚实的基础。