轴心受压构件的整体稳定性
钢结构课件 轴心受压构件的整体稳定性

4.2.6 轴心受压构件扭转和弯扭屈曲
1、扭转屈曲
根据弹性稳定理论,两端铰支且翘曲无约束的杆件,其扭 转屈曲临界力,可由下式计算:
《钢结构稳定理论与设计》 陈骥 著
NE
fy
弹塑性阶段
N A
Nv0
W 1 N
NE
fy
相对初弯曲 ε0 = v0 / ρ = v0 / (W/A)
N [1 A 1
0
N
] NE
fy
N A
1
1000
i
1
1 N
N
E
fy
上式的解即为Perry-Robertson公式(柏利公式)
i0—截面关于剪心的极回转半径。i02
e02
ix2
i
2 y
引进扭转屈曲换算长细比z :
1、扭转屈曲
满足
I 0
z =5.07b/t
x (y) ≥ z =5.07b/t
z2
25.7
Ai02 It
25.7
Ix
Iy It
2t 2b3 12
25.7 4bt3 3
选择计算 §4.6 板件的稳定和屈曲后强度的利用
§4.3 实腹式柱和格构式柱的截面选择计算
4.3.1 实腹式柱的截面选择计算
1、实腹式轴心压杆的截面形式 ①考虑原则 ②常用截面
2、实腹式轴心压杆计算步骤
§4.3 实腹式柱和格构式柱的截面选择计算
B94-实际轴心受压构件整体稳定计算公式

x
x
x
x
格构式
y
x
y
x
y
x
x
x
x 焊接,翼缘为 轧制或剪切边
b类
c类
y
y
y
y
焊接,翼缘为轧
y 焊接,板件
x
制或剪切边 x
宽厚比≤20
c类
c类
轴心受压构件截面分类(板厚t≥40mm)
截面形式
对x轴
b x
y
h
轧制工字形 或H形截面
t<80mm
b类
t≥80mm
c类
y
x
x
y
焊接工字 形形截面
翼缘为焰切边
b类
y
边
轧制等 边角钢
对x轴
y x
y
xx
x
y
x
x
y
y
y
y
y
b类
y 轧制、焊接
x
x
轧制或 焊接
x
板件宽厚比
大于20
y x
y
x 轧制截面和翼 缘为焰切边的 焊接截面
y
x
y
x 焊接,板件 边缘焰切
对y轴 b类
轴心受压构件截面分类(板厚t<40mm)
截面形式
对x轴 对y轴
y
y
y
y
y
x
x
x
x
x
焊接
y
y
y
y
b类 b类
计算 l0
i
据
截面类型
查表
得到
代入公 式验算
N f
A
如何提高轴心受压构件整体稳定性 ?
由公式 N f 及 l0
习题4

(4)一.选择题1.轴心压杆整体稳定公式f AN ≤ϕ的意义为 。
A 、截面平均应力不超过材料的强度设计值;B 、截面最大应力不超过材料的强度设计值;C 、截面平均应力不超过构件的欧拉临界应力值;D 、构件轴心压力设计值不超过构件稳定极限承载力设计值。
2.用Q235钢和Q345钢分别制造一轴心受压柱,其截面和长细比相同,前者的稳定系数 后者的稳定系数。
A.大于B.小于C.等于或接近D.无法比较3. a 类截面的轴心压杆,其整体稳定系数值最高是由于 。
A 、截面是轧制截面;B 、截面的刚度最大;C 、初弯曲的影响最小;D 、残余应力的影响最小。
4.轴心受压构件的整体稳定系数ϕ与 等因素有关。
A.构件截面类别、两端连接构造、长细比B 构件截面类别、钢号、长细比C.构件截面类别、计算长度系数、长细比D.构件截面类别、两个方向的长度、长细比5.为防止钢构件中的板件失稳采取加劲肋措施,这一做法是为了 。
A 、改变板件的宽厚比;B 、增大截面面积;C 、改变截面上的应力分布状态;D 、增加截面的惯性矩。
6.轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,这是因为 。
A.格构式构件的整体稳定承载力高于同截面的实腹构件B 考虑强度降低的影响C.考虑剪切变形的影响D.考虑单肢失稳对构件承载力的影响7. 计算格构式压杆对虚轴x 轴的整体稳定性时,其稳定系数应根据 查表确定。
A 、x λB 、ax λC 、y λD 、oy λ8.双肢缀条式轴心受压柱绕实轴和虚轴等稳定的要求是( ),x 轴为虚轴。
A 、12027A A x y +=λλB 、 1227A A x y +=λλ C 、y x 00λλ= D 、y x λλ=9. 实腹式轴心压杆绕x 、y 轴的长细比分别为x λ、y λ,其稳定系数分别为y x ϕϕ,,若y x λλ=,则 。
A 、y x ϕϕ>B 、y x ϕϕ=C 、y x ϕϕ<D 、需根据稳定性分类判别10. 实腹式轴心受压构件应进行 。
4-轴压构件

e0
N
Nk
Nu
v
A B
O
v
Nk e 0
• 初始缺陷对轴心压杆稳定极限承载力的影响: 1)初弯曲和初偏心的影响 初弯曲(初偏心)越大,则变形越大,承载力越小。 压力一开始就产生挠曲,并随荷载增大而增大。
无论初弯曲(初偏心)多么小, Ncr≤ NE
z Nk
z e0
Nk
y0 y
y
y
y
Nk
Nk e 0
N /NE
y 0=0
1.0
y 0=0.3
0.5
y 0=0.1
0
N /NE
1.0
e0 = 0
e 0 = 0.3
0.5
e 0 = 0.1
0
y
2)残余应力的影响 按有效截面的惯性矩 Ie 近似计算两端铰接的 等截面轴压构件的临界力和临界应力:
b t
Ncr
iy
I y 45833 12.5cm A 293.6
第4章 单个构件的承载力-稳定性
l0x l0 y 6m
x l0x iy 600 21.9 27.4 150 y l0y iy 600 12.5 48 150
截面对x轴和y轴都为b类
一、截面几何特性:
毛面积:A 2 50 2 501 250cm2
净面积:An A 4d0t 250 - 4 2.4 2 230.8cm2 二、截面验算:
强度:
N An
4500103 23080
195.0 N
mm2
f 205 N mm2
4.3 轴心受压构件的整体稳定
4.3.1 理想轴心受压构件
钢结构轴心受压构件稳定性分析

建材发展导&!"构轴%受压构件*定性分.袁业宏摘要:阐述了钢结构体系中的稳定性的概念、分类和基本原理,介绍了钢结构轴心受压构件局部失稳的原理、形式和在钢结构设计中相的解s关键词:钢结构体稳定性;局部稳定性钢构具有度高构震性具有良好的塑性和韧性等特点,随着社会的展,钢结构不断得到了广泛的应用,在钢构设计中,受构件占50%以上,轴受压构件的工作也占50%以上,其中,受压构件稳定性成了钢构设计的一突,钢构体系中的受构件稳定性验算已变成了中。
1钢结构轴心受压构件整体稳定性的概念钢结构轴心受压构件是指轴心方向受到压力等构件,钢结构轴心受压构件体稳定性是指构或者构件处于稳定的平衡状态,处平衡位置的构或构件,在任微小界扰动下,将偏离其平衡位置。
当界扰动去除,仍自动回复到初始平衡位置。
这是一种理想状态,可以说构整体处稳定状态。
2失稳的概念及引起钢结构轴心受压构件失稳的主要原因处平衡位置的构或构件,在当界扰动去除,不回复到初始平衡位置,初始平衡状态就是稳定的平衡状态:随遇平衡状态是从稳定状态向稳定状态渡的一中间状态。
构或构件由平衡形的稳定性.从初始平衡位置转变到另一平衡位置,即称屈曲,或称失稳。
引起钢构轴受压构件失稳的主要原因一般有如下几点:2.1构度不构件面度以引起构件失稳。
度这一,解所具有的…钢结构轴心受构件面度,的塑性变形而失去。
轴受构件度验算公:!!#=N/A(!几是指构或者构件在稳定平衡状态下由所引起的应力(或内力)没有超的极限度,因此是一应。
极限度的取取决的特性,钢常取的屈点作极限度。
而,有极的,或者有的轴受,会因面的平应到设计度而失,是度计算起作用。
2.2构度不构件面度以引起构件失稳。
度这一,解所具有变形的o轴受构件的度是用构件"来度的,考虑到轴受构件的截面2个轴向,取面2轴线方向中一方用"咖表示,由此得到构件长细比计算公式仏)碍!["],由上式可知:长细比愈小,表示I构件的度愈大,反之刚度愈小。
钢结构稳定性例题

Iy
=
2 × tb3 12
=
2× 1 × 2× 503 12
=
41667cm4
ix =
Ix = A
145683 = 24.14cm 250
iy =
Iy = A
41667 = 12.91cm 250
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
二、截面验算:
1.强度:σ
=
N An
=
1
y
z0
一个斜缀条的长度为:l
=
l1
sin θ
=
41 sin 450
= 58cm
角钢的最小回转半径为:imin = 0.89cm
x
x
1
y
b
λ = l = 58 = 65.1
imin 0.89
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
λ = 65.1 属b类截面,查得ϕ=0.78
I x = 2× 50× 2.2× 24.12 +1.6× 463 /12 = 140756cm4 I y = 2× 2.2× 503 /12 = 45833cm4
ix =
Ix = A
140756 = 21.9cm; 293.6
iy =
Iy = A
45833 = 12.5cm 293.6
4.2 轴心受压构件的整体稳定性
z0 = 2.49cm,I1 = 592cm4
Iy
=
2×
592 +
75×
46 2
−
2.49
2
=
64222cm4
iy =
Iy = A
钢结构基础第六章 轴心受力构件-稳定

第六章 轴心受力构件
局部失稳产生的背景:
1.3 1.2 1.1 Isolated Local Mode
kL
PL ( EI )
PE PL
Brown Dede Tomblin Trovillion Zureick Euler Local Column Eq. 1
2 z 2 0
第六章 轴心受力构件
2. 弯扭屈曲
单轴对称截面
第六章 轴心受力构件
开口截面的弯扭屈曲临界力Nxz ,可由下式计算:
i0 N Ex N xz N z N xz N xz e0 0
2 2 2
NEx为关于对称轴x的欧拉临界力。 引进弯扭屈曲换算长细比xz:
2 xz
1 2
2 x
2 z
1 22 x2 2 z
2 e0 41 2 i0
2 2 x z
第六章 轴心受力构件
6.5 杆端约束对轴心受压构件整体稳定性的影响
实际压杆并非全部铰接,对于任意支承情况的压杆,其临 界力为:
N cr
EI
2
1. 轴心受压柱的实际承载力
压杆的压力挠度曲线
第六章 轴心受力构件
轴心受压柱按下式计算整体稳定:
N f
A
cr
fy
式中 N 轴心受压构件的压力设计值; A 构件的毛截面面积;
f 轴心受压构件的稳定系数 ; N
cr
fy
f 钢材的抗压强度设计值 。
钢结构第四章

1.轴心受压柱的实际承载力
轴心受压柱整体稳定计算:
N A f
4.23
式中N 轴心受压构件的压力设计值; A 构件的毛截面面积; 轴心受压构件的稳定系数,和截面类型、 构件长细比、所用钢种有关见附表17; f 钢材的抗压强度设计值,见附表11。
2.列入规范的轴心受压构件稳定系数
N A f
(6) 当截面有较大削弱时,还应验算净截面的强度,应使
N An f
(7) 验算刚度,柱和主要压杆,其容许长细比为[]=150, 对次要构件如支撑等则[]=200。
初定截面和长细比λ=100
查表λ→ 由 → A 计算i =l0 /λ i ,A→b, h,
A
A x 27 A1x
2 y
2 x 2 y 1
l0 x i ②求 x x ③查附表14确定分肢间距b,两分肢翼缘间的净空应大 于100mm,以便于油漆; 2 ④验算:刚度 0 x 2 x 1 [ ] 整稳 缀条柱 1 0.7max 分肢稳定: 缀板柱 0.5 1 max 1 40
失稳模式之间的耦合作用,局部和整体稳定的相关性。
4.2 轴心受压构件的整体稳定性
4.2.1 纵向残余应力对轴心受压构件整体稳定性的 影响
残余应力的测量及其分布
A、产生的原因:
①焊接时的不均匀加热和冷却; ②型钢热扎后的不均匀冷却; ③板边缘经火焰切割后的热塑性收缩; ④构件冷校正后产生的塑性变形。
2. 剪切变形对虚轴稳定性的影响 绕实轴屈曲时,剪切变形的影 响可忽略,弯曲失稳情况与实腹式 截面一样。
x
y x y
N f A
绕虚轴屈曲时,由于缀材刚
l1/2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a类:轧制圆管和宽高比小于0.8且绕强轴屈曲的轧制工
字钢;残余应力影响较小; c类:翼缘为轧制边或剪切边的绕弱轴屈曲的焊接工字 形截面和T字形截面;残余应力影响较大,并有弯扭失稳影 响;
第四章 轴心受力构件
第一节 轴心受力构件强度和刚度 第二节 实腹式轴心受压构件的弯曲屈曲 第三节 实腹式轴心受压构件的局部屈曲 第四节 实腹式轴心压杆设计 第五节 格构式轴心受压构件设计 第六节 柱头和柱脚 第七节 钢索简介
-
第一节 轴心受力构件强度和刚度
力沿轴线方向 1、概念:二力杆 约束:两端铰接
式中 0-相对初弯曲; =W/A-截面的核心距;
(4.
(1)杆件愈细长,值大N 值小,初弯曲不利影响愈大;
(2)不同截面形式的比值i/ 是不同的。i/ 值愈大,则
截面边缘纤维愈早屈服,初弯曲的不利影响也愈大。
-
截面回转半径与核心距的比值
由表可见:
(1)材料向弯曲轴聚集得多,则i/ 值大。 (2)i/ 值大的截面,表征塑性发展能力的形状系数也
理想条件:
(1)绝对直杆、材料均质、无荷载偏心、无初始应力、完全弹性; (2)不考虑剪力对临界力的影响- 作用
二、考虑剪力影响后构件的弹性弯曲失稳
总变形 yyM yv
总曲率:弯距曲率+剪力产生的附加曲率
剪力曲率: dyv VdMNdy
dx
dx dx
d 2 yv dx2
N
d2y dx2
式中: 表示单位剪力引起的剪切角:
(4.9
对x-x轴屈曲时:
N crx
2 EI x lo2x
k
y-y 对
轴屈曲时: Ncry
2EI y lo2y
k3
-
残余应力对弱轴的影响比 对强轴严重得多!
4、杆端约束对轴心受压构件整体稳定性的影响
杆件临界力:
N cr
2EI
l 2
- 计算长度系数
-
四、压杆曲线的确定
焊接工字形截面轴心受压柱稳定系数
1、受拉构件。
l0[]
i
l0 构件的计算长度;
i
I A
(截 4 面2 的 )回转半径;
[]构件的容许长取 细值 比详 ,见 其规
x
l0x ix
[ ]
y
l0y iy
[ ]
l0 x 构 件 对 x 轴 计 算 长 度 ;
ix Ix / A
l0 y 构 件 对 y 轴 计 算 长 度 ; iy Iy / A
2、分类
轴心受拉构件 轴心受压构件
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度
(承载能力极限状态) 稳定
刚度 (正常使用极限状态)
-
3、截面类型:
实腹式
型钢截面 组合截面
格构式
缀条式 缀板式
4、应用:网架、索杆体系、塔架、桁架等
-
1.桁架
3.塔架 2.网架
-
实腹式截面 热轧型钢 冷弯薄壁型钢
2
以下的柱间支撑
其它拉杆、支撑、系杆等
3
(张紧的圆钢除外)
250 200 350
350 300 400
直接承受动力 荷载的结构
250 —— ——
-
第二节 实腹式轴心受压构件的弯曲屈曲
强度破坏:应力超过设计强度;应力针对某个截面 稳定问题:达到某荷载值时变形将急剧增加,过渡到 不稳定的状态;变形针对整个结构。
比较大。
-
2、初始偏心的影响
Ed dI22 yx Ny N0 e
4.20
杆轴的挠曲线为:
ye0co k sx1 scikn o klsslikn x1
(4.21)
杆中央的最大挠度为:
ve0se2cN N E1
(4.22)
(1)当N 趋于NE时,挠度无穷大;
(2)初偏心越大,最终挠度也越大;
(3)初偏心对短杆影响比较明显,而初弯曲对中长杆影响
比较明显;
-
3、残余应力的影响 产生原因; 影响: 分布规律:
1)短柱试验法: 2)应力释放法:将短柱锯割成条以释放应力,然后测量 每条在应力释放后前长度以确定应变;
-
残余应力对压杆临界荷载的影响
图4.7残余应力对短柱段的影响
N cr 2 lE 2e I l22 E IIIe
cr22 E(IIe4.8)
-
12种不同截面尺寸, 不同残余应力和分布 以及不同钢材牌号轴 心压构件曲线。
轴心受压构件的柱子曲线分布在一个相当宽的 带状范围内,用单一柱子曲线,即用一个变量(长 细比)来反映显然是不够合理的。现在已有不少国 家包括我国在内已经采用多条柱子曲线。
-
五、我国规范的整体稳定计算 缺陷:初始弯曲+残余应力; 五个假定: 截面分类:abcd(不同截面类型、屈曲方向和不同 加工方法)
总曲率:
d2y dx2
E MI Nddx2y2
1N ddx2y2 ENI y0
N cr
NE
1 NE
绕实轴: 0 绕- 虚轴:
Ncr NE
几何缺陷:初始弯曲+初始偏心 三、实际构件的整体稳定
力学缺陷:残余应力
1、初始弯曲的影响
Edd I2y2xN(yv0siπ nlx)0
vmv0v1Nv0/Ncr
(1)当N 趋于NE时,挠度无穷大; (2)不管初弯曲多小,承载力总是小于NE
(3)初弯曲越大,最终挠度也越大;
-
截面屈服: N AW1 NN0vNEfy
(4.16)
取v0为L/1000,令0=v0/(W/A)= v0/= i /1000 ,
N A 11N 0NE fy
N A 110 ( 40 i.0 1 1 7N 1)N E fy
-
2、受压构件。 1)双轴对称截面
l0[]
i
(42
2)单轴对称截面 绕非对称轴:
l0[]
i
(42
绕对称轴:采用换算长细比,对于单角钢和双角钢截 面可采用简化公式。
-
受拉构件的容许长细比
表4-1
项次
构件名称
承受静力荷载或间接承受动力荷载的结构 吊车梁或吊车桁架
组合截面
-
格构式截面:由两个或多个型钢肢件通过缀材连接而成。
-
一、 强度计算
Nf
An
(41)
N — 轴心拉力或压力设计值; An — 构件的净截面面积; f — 钢材的抗拉(压)强度设计值
轴心受压构件,当截面无削弱时,强度不必计算。
-
二、刚度计算: 保证构件在运输、安装、使用时不产生过大变形
提高稳定性措施:增大截面惯性距,增强约束,减小 计算长度;
弯曲屈曲 轴压构件三种屈曲形态: 扭转屈曲
- 弯扭屈曲
一、理想构件弹性弯曲失稳
根据右图列平衡方程
EIdd2xy2 Ny0
解平衡方程:得
Ncr
π2EI l02
π λ 22E
A
σ c rN A c r π λ 2 2 E fp λ λ p π E /fp