简谐运动ppt课件
合集下载
简谐运动图象和公式教科ppt课件
6
一、简谐运动的图像
(3)从振动图象中分析有关物理量
从简谐运动的图像我们可以了解到物体在振动时的许多物 理量。比如,参看下图的振动图像可确定:
7
1.振幅A:图像的峰值。 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间。 3.任一时刻t的位移x:对应于图像上某一点的
坐标(t,x)。
8
22
课堂练习 1、右图中是甲乙两弹簧振子的振动图象,两
振动振幅之比为( 2∶1 ), 频率之比为( 1∶1 ),
甲和乙的相差为( )
2
23
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时, 试:大致画出它的振动图像?
24
从平衡位置O(向B)开始计时
从B 开始计时
1、振动图象(如图)
2、x-t图线是一 条质点做简谐
运动时,位移
随时间变化的
图象,不是轨
迹。
3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
4
一、简谐运动的图像
(2)简谐运动图象描述的振动物理量
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
5
一、简谐运动的图像
2、间接描述量 ①频率f=1/T ② x-t图线上任一点的切线的斜率等于v。
选修3-4 第一章 机械振动 §1.3 简谐运动的图象和公式
1
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢? 振幅(A) 周期和频率 2、单摆的周期与哪些因素有关?
与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动? 2
3
一、简谐运动的图像
一、简谐运动的图像
(3)从振动图象中分析有关物理量
从简谐运动的图像我们可以了解到物体在振动时的许多物 理量。比如,参看下图的振动图像可确定:
7
1.振幅A:图像的峰值。 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间。 3.任一时刻t的位移x:对应于图像上某一点的
坐标(t,x)。
8
22
课堂练习 1、右图中是甲乙两弹簧振子的振动图象,两
振动振幅之比为( 2∶1 ), 频率之比为( 1∶1 ),
甲和乙的相差为( )
2
23
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时, 试:大致画出它的振动图像?
24
从平衡位置O(向B)开始计时
从B 开始计时
1、振动图象(如图)
2、x-t图线是一 条质点做简谐
运动时,位移
随时间变化的
图象,不是轨
迹。
3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
4
一、简谐运动的图像
(2)简谐运动图象描述的振动物理量
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
5
一、简谐运动的图像
2、间接描述量 ①频率f=1/T ② x-t图线上任一点的切线的斜率等于v。
选修3-4 第一章 机械振动 §1.3 简谐运动的图象和公式
1
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢? 振幅(A) 周期和频率 2、单摆的周期与哪些因素有关?
与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动? 2
3
一、简谐运动的图像
《简谐运动的图象》课件
利用弹簧的伸缩产生简谐运动, 可以用于测量时间、频率等物理
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。
简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零
△ = 2( = 0,1,2, … )
(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )
A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零
△ = 2( = 0,1,2, … )
(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )
A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。
简谐运动详解ppt课件
(3)在平衡位置上方时,弹簧处于压缩状态(也可能拉伸),
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
则位移向上为负,小球合力为正,大小为:
F k(x x0 ) mg kx 或:F mg k(x0 x) kx 所以回复力与位移的关系为 F kx
总结:小球在运动过程中所受弹力和重力的合力大小 与小球偏离平衡位置的位移成正比,方向总和位移的
例3、如图5所示,一水平弹簧振子在A、B 间做简谐运动,平衡位置为O,已知振子 的质量为M.
(1) 简 谐 运 动 的 能 量 取 决 于 _振__幅__ , 物 体 振 动 时 动 能 和 __弹___性__势_能相互转化,总机械能__守__恒_.
(2)振子在振动过程中,下列说法中正确的是( ABD) A.振子在平衡位置,动能最大,势能最小 B.振子在最大位移处,势能最大,动能最小 C.振子在向平衡位置运动时,由于振子振幅减小,故
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的 作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和 回复力作用
C.振子由A向O运动过程中,回复力逐渐增大 D.振子由O向B运动过程中,回复力的方向指向平衡
位置
2.弹簧振子在AOB之间做简谐运动,O为平衡 位置,测得A、B之间的距离为8 cm,完成30
E
Ek
Ep
1 2
mvm2
E pm
又因为最大势能取决于振幅,所以:
简谐运动的能量与振幅有关,振幅越大,振动能量越 大;振幅越小,振动能量越小。
若阻力不能忽略不计,则振动能量减小,振幅减小,这不是简 谐运动,而是第4节将学习的阻尼振动。
A A--O O 0—A’ A’ A’--O O
位移的方向
正
正
—
通过分析右图体会一次完整的全振动, 特别要注意的是:一个周期时物体肯定回 到了出发位置,但物体回到出发位置的时 间不一定是一个周期。
简谐运动的描述课件正式版ppt
第二页,共18页。
一、振幅 (zhènfú):
1.定义:振动物体离开(lí kāi)平衡位置的最大距离, 叫做振动的振幅。
2.物理意义:振幅是描述振动(zhèndòng)强弱的 物理量。 3.单位:在国际单位制中,振幅的单位是米(m)。
第三页,共18页。
一、振幅 (zhènfú):
思考(sīkǎo)与 振幅和位移的区别?
结论(jiélùn):弹簧振子的周期由振动系统本身的质 量和劲度系数决定,而与其他因素无关。
第十一页,共18页。
… …
三、相位 (xiàngwèi)
相位是表示物体振动步调的物理量,用相位 来描述简谐运动(jiǎn xié yùn dònɡ)在一个全 振动中所处的阶段。
第十二页,共18页。
四、简谐运动(jiǎn xié yùn dònɡ)的表达式
第六页,共18页。
想一想:
12..若弹从簧振振子子经过完C成向一右次起,全经振过动怎样 ((zzěhnèynàndgò)n的g运)的动路才叫程完与成振一幅次之全间振动存?在怎 样的关系?
第七页,共18页。
二、周期(zhōuqī)和频率
①周期:做简谐运动的物体完成一次全振动所 需要的时间,叫做振动的周期,单位 (dānwèi):s。
简谐运动(jiǎn xié yùn dònɡ)的描述课件
第一页,共18页。
一、振幅 (zhènfú):
1.定义:振动(zhèndòng)物体离开平衡位置的最 大距离,叫做振动(zhèndòng)的振幅。
2.物理(wùlǐ)意义:振幅是描述振动强弱的物 理(wùlǐ)量。 3.单位:在国际单位制中,振幅的单位是米 (m)。
讨论:
(1)振幅等于最大位移的数值。 (2)对于一个给定的振动,振子的位移是时
一、振幅 (zhènfú):
1.定义:振动物体离开(lí kāi)平衡位置的最大距离, 叫做振动的振幅。
2.物理意义:振幅是描述振动(zhèndòng)强弱的 物理量。 3.单位:在国际单位制中,振幅的单位是米(m)。
第三页,共18页。
一、振幅 (zhènfú):
思考(sīkǎo)与 振幅和位移的区别?
结论(jiélùn):弹簧振子的周期由振动系统本身的质 量和劲度系数决定,而与其他因素无关。
第十一页,共18页。
… …
三、相位 (xiàngwèi)
相位是表示物体振动步调的物理量,用相位 来描述简谐运动(jiǎn xié yùn dònɡ)在一个全 振动中所处的阶段。
第十二页,共18页。
四、简谐运动(jiǎn xié yùn dònɡ)的表达式
第六页,共18页。
想一想:
12..若弹从簧振振子子经过完C成向一右次起,全经振过动怎样 ((zzěhnèynàndgò)n的g运)的动路才叫程完与成振一幅次之全间振动存?在怎 样的关系?
第七页,共18页。
二、周期(zhōuqī)和频率
①周期:做简谐运动的物体完成一次全振动所 需要的时间,叫做振动的周期,单位 (dānwèi):s。
简谐运动(jiǎn xié yùn dònɡ)的描述课件
第一页,共18页。
一、振幅 (zhènfú):
1.定义:振动(zhèndòng)物体离开平衡位置的最 大距离,叫做振动(zhèndòng)的振幅。
2.物理(wùlǐ)意义:振幅是描述振动强弱的物 理(wùlǐ)量。 3.单位:在国际单位制中,振幅的单位是米 (m)。
讨论:
(1)振幅等于最大位移的数值。 (2)对于一个给定的振动,振子的位移是时
简谐运动ppt课件
解:方法1
31.4
15.7
设振动方程为
0
x Acos(t 0 ) 15.7
31.4
1
t(s)
v0 A sin0 15.7cms 1 a0 2 Acos0 0
A vm 31.4cms 1
sin 0
v0
A
15.7 31.4
1 2
0
6
或
5 6
a0
0,则cos0
0
0
6
t 1 v 15.7cms 1 sin( 1 ) v v 1
两振动步调相反,称反相
0
2 超前于1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
谐振动的位移、速度、加速度之间的位相关系
x Acos( t 0 )
v
A
sin(
t
0
)
vm
cos(
t
0
2
)
a A 2 cos( t 0 ) am cos( t 0 )
x.v.a. x
衡位置的运动。
• 平衡位置:质点在某位置所受的力(或沿 运动方向受的力)等于0,则此位置称为平 衡位置。
•线性回复力:若作用于质点的力总与质点相对于平 衡位置的位移(线位移或角位移)成正比,且指向 平衡位置,则称此作用力为线性回复力。
若以平衡位置为原点,以X表示质点相对于平衡
位置的位移,则
f kx
3
a 0.12 2 cos( 0.5 ) 0.103
3
(3) 当x = -0.06m时,该时刻设为t1,得 cos(t ) 1
13
2
t 2 , 4
133 3
因该时刻速度为负,应舍去
简谐运动课件ppt
单摆的简谐运动
总结词
单摆的简谐运动是指一个质点在重力作用下做周期性振 动。
详细描述
单摆的简谐运动是指一个质点在重力作用下绕固定点做 周期性振动。当质点从平衡位置出发,受到重力的作用 向下加速运动,到达最低点时速度达到最大值,然后受 到回复力的作用开始向上减速运动,到达最高点时速度 为零。在摆动过程中,回复力与质点的位移成正比,当 质点回到平衡位置时,回复力为零,质点的速度达到最 大值。
结果
通过实验,可以观察到弹簧振子 的振动轨迹呈正弦波形,并记录
下振幅、周期等数据。
分析
根据记录的数据,可以计算出弹 簧振子的振动频率和相位差,进
一步分析简谐运动的特性。
讨论
简谐运动在现实生活中有着广泛 的应用,如钟摆、乐器振动等。 通过实验,可以深入理解简谐运 动的原理,为后续的学习和实际
应用打下基础。
简谐运动的平衡位置是指 物体受到的回复力为零的 位置,通常也是振动的中 心点。
回复力
回复力是指使物体返回平 衡位置并指向平衡位置的 力,它是使物体做简谐运 动的力。
简谐运动的特点
往复性
简谐运动是一种往复运动 ,物体在运动过程中会不 断重复往返于平衡位置和 最大位移处。
周期性
简谐运动是一种周期性运 动,其运动周期是固定的 ,与振幅和角频率有关。
实验器材与步骤
器材:弹簧振子、示波器、数据采集器、电脑 等。
011. 准备实验器材,源自弹簧振子连接到数据 采集器上。03
02
步骤
04
2. 启动实验,观察弹簧振子的振动情况, 记录振幅、周期等数据。
3. 使用示波器观察振动的波形,了解相位 的概念。
05
06
4. 分析实验数据,得出结论。