扫描电子显微镜SEM

合集下载

扫描电镜SEM

扫描电镜SEM

扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。

扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。

目前的扫描电镜都配有X 射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。

电子束与固体样品的相互作用扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。

通过对这些信息的接受、放大和显示成像,获得对是试样表面性貌的观察。

具有高能量的入射电子束与固体样品的原子核及核外电子发生作用后,可产生多种物理信号如下图所示。

电子束和固体样品表面作用时的物理现象一、背射电子背射电子是指被固体样品原子反射回来的一部分入射电子,其中包括弹性背反射电子和非弹性背反射电子。

弹性背反射电子是指倍样品中原子和反弹回来的,散射角大于90度的那些入射电子,其能量基本上没有变化(能量为数千到数万电子伏)。

非弹性背反射电子是入射电子和核外电子撞击后产生非弹性散射,不仅能量变化,而且方向也发生变化。

非弹性背反射电子的能量范围很宽,从数十电子伏到数千电子伏。

从数量上看,弹性背反射电子远比非弹性背反射电子所占的份额多。

背反射电子的产生范围在100nm-1mm深度,如下图所示。

电子束在试样中的散射示意图背反射电子产额和二次电子产额与原子序束的关系背反射电子束成像分辨率一般为50-200nm(与电子束斑直径相当)。

背反射电子的产额随原子序数的增加而增加(右图),所以,利用背反射电子作为成像信号不仅能分析新貌特征,也可以用来显示原子序数衬度,定性进行成分分析。

二、二次电子二次电子是指背入射电子轰击出来的核外电子。

扫描电子显微镜及能谱仪SEM

扫描电子显微镜及能谱仪SEM

扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM扫描电子显微镜及能谱仪SEM是一种强大的实验仪器,它能够帮助我们开启微观世界的大门,从而深入了解物质在最基本层面的性质和结构。

本文将在以下几个方面对SEM及其应用进行介绍。

一、扫描电子显微镜SEM的原理扫描电子显微镜SEM是一种采用电子束的显微镜,通过高能电子束与样品相互作用,透过扫描线圈产生扫描信号,实现对样品表面形貌的观察和获取高清晰度的图像。

SEM和光学显微镜有很大的不同,光学显微镜是使用光来观察物质的显微镜,而SEM则是使用电子来观察物质。

扫描电子显微镜SEM的工作原理主要分为以下三个步骤:1、获得高能电子束:扫描电子显微镜SEM内部有个电子枪,电子枪发射出的电子经过加速器的加速器和聚焦极的聚焦,成为高能电子束。

2、扫描样品表面:高能电子束射向样品表面,样品表面反弹回来的电子信号被SEM仪器捕获。

3、产生扫描信号:把从样品表面反弹回来的电子信号进行放大,形成显微图像。

二、能谱仪的原理能谱仪是SEM中的重要组成部分,它可以检测电子在样品中的反应和监测样品中所含的化学元素,以及相应元素的含量。

能谱仪的工作原理是通过检测样品产生的X射线来分析样品组成,电子束与样品相互作用,产生一系列的X射线能量峰值。

每个元素都有不同能级的电子,其X射线产生的能量也分别对应不同的峰值。

因此,通过表征能谱仪所发现的不同X射线能量峰的位置和强度,可以确定样品中所含元素。

三、SEM的应用1、矿物学SEM被广泛应用于矿物学研究中,因为它能够提供很高的图像分辨率。

将样品与高能电子束相互作用可使样品表面反射的电子被收集,从而形成高分辨率的矿物学图像。

2、材料科学在材料科学中,SEM被用于表面形貌研究以及微观结构解析。

通过SEM可以获取材料的内部结构和力学特性,为材料研发和工业应用提供了有力支持。

3、医学SEM在医学领域也有极为重要的应用,例如用于人体组织医学研究。

SEM可以提供高质量且精细的人体组织图像,进一步促进了医学领域的研究和治疗。

扫描电子显微镜

扫描电子显微镜

扫描电子显微镜扫描电子显微镜是一种强大的工具,它可以帮助科学家观察到物质的更小的细节和结构。

本文将介绍扫描电子显微镜的原理、应用、发展历程以及未来发展趋势。

原理扫描电子显微镜(Scanning Electron Microscopy,SEM)是一种利用扫描电子束与物体相互作用而获得形貌和微区组织信息的显微分析仪器。

扫描电子显微镜的工作原理是,将高能电子轰击样品表面,使其表面电子被激发,发射出大量的二次电子。

这些二次电子被探测器接收并转换成负电荷信号,在特定条件下被扫描成像。

应用扫描电子显微镜广泛应用于多个领域,包括材料科学、生命科学、化学和地质学等。

以下是该技术在这些领域中的应用:•材料科学:用于获取材料的形貌、结构以及表面性质等信息。

•生命科学:用于观察细胞、细胞器、细胞表面的超微结构和蛋白质等生物分子的形态和结构。

•化学:用于观察化学反应过程表面形貌、结构的变化以及材料结构的演化过程等。

•地质学:用于研究各种矿物、岩石和地层等,以了解地质演化过程。

发展历程1950年,发明了透射式电子显微镜,但它只能用于真空环境下的样品。

1956年,Helmut Ruska和Max Knoll发明了扫描电子显微镜。

该技术能够在空气中观察样品,并获得更高的象素分辨率。

1965年, Hitachi公司普及了第一台商用扫描电子显微镜S-800。

自此以后,扫描电子显微镜技术得到了快速的发展。

未来发展趋势随着技术的发展,扫描电子显微镜的应用场景不断扩大。

今后,该技术将越来越多地应用于纳米材料和微细加工领域。

同时,随着计算机技术的发展,扫描电子显微镜将会实现更高的自动化和智能化,成为更加强大的工具。

结论扫描电子显微镜是一款横跨多个领域应用的重要科学工具,其在材料科学、生命科学、化学和地质学等领域均有广泛的应用。

虽然该技术已经发展多年,但随着技术和计算机技术的不断进步,扫描电子显微镜将会越来越强大,为人们探索科学世界提供更加强大的支持。

扫描电镜sem

扫描电镜sem

扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。

相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。

SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。

SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。

工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。

这些电子被加速器加速,形成高速的电子流。

电子束的能量通常在10-30 keV之间。

2.样品照射:电子束通过一个聚焦系统照射到样品表面。

电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。

3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。

常见的SEM信号检测器包括二次电子检测器和反射电子检测器。

这些探测器可以测量电子信号的强度和性质。

4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。

这些图像可以显示出样品表面的微观结构和形貌。

应用领域SEM在许多科学领域中都有广泛的应用。

以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。

它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。

这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。

生命科学SEM可以用于观察生物样品的微观结构。

比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。

这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。

纳米科学SEM在纳米科学领域中也有广泛的应用。

通过SEM可以对纳米材料进行表面形貌和结构的观察。

它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。

SEM扫描电子显微镜

SEM扫描电子显微镜

线扫描分析:
电子探针
将谱仪〔波、能〕固定在所要测量的某一元素特征X射线信 号〔波长或能量〕的位置,把电子束沿着指定的方向作直线轨 迹扫描,便可得到这一元素沿直线的浓度分布状况。转变位置 可得到另一元素的浓度分布状况。
面扫描分析〔X射线成像〕:
电子束在样品外表作光栅扫描,将谱仪〔波、能〕固定在 所要测量的某一元素特征X射线信号〔波长或能量〕的位置,此 时,在荧光屏上得到该元素的面分布图像。转变位置可得到另 一元素的浓度分布状况。也是用X射线调制图像的方法。
征X射线,分析特征X射线的波长〔或能量〕可知元素种类; 分析特征X射线的强度可知元素的含量。
➢ 其镜筒局部构造和SEM一样,检测局部使用X射线谱仪。
电子探针
X射线谱仪是电子探针的信号检测系统,分为: 能量分散谱仪〔EDS〕,简称能谱仪,用来测定X射线特征能量。 波长分散谱仪〔WDS〕,简称波谱仪,用来测定特征X射线波长。
对于纤维材料,用碳胶成束的粘接在样品台上即 可。
样品制备
粉末样品:留意粉末的量,铺开程度和喷金厚度。 粉末的量:用刮刀或牙签挑到双面导电胶〔2mm宽,8mm长〕,
均匀铺开,略压紧,多余的轻叩到废物瓶,或用洗耳球吹, 后者易污染。 铺开程度:粉末假设均匀,很少一点足矣,否则易导致粉末在 观看时剥离外表。喷金集中在外表,下面样品易导电性不佳, 观看比照度差,建议承受分散方式。
定量分析精度不如波谱仪。
电子探针
波谱仪
➢ 波谱仪主要由分光晶体和X射线检测系统组成。 ➢ 依据布拉格定律,从试样中发出的特征X射线,经过确定晶面间距的晶
体分光,波长不同的特征X射线将有不同的衍射角。通过连续地转变θ, 就可以在与X射线入射方向呈2θ的位置上测到不同波长的特征X射线信 号。 ➢ 依据莫塞莱定律可确定被测物质所含有的元素 。

扫描电子显微镜(SEM)简介

扫描电子显微镜(SEM)简介
关机与清理
完成观察后,关闭扫描电子显微镜主机和计 算机,清理样品台,保持仪器整洁。
注意事项
样品求
确保样品无金属屑、尘埃等杂质,以 免损坏镜体或影响成像质量。
避免过载
避免长时间连续使用仪器,以免造成 仪器过载。
保持清洁
定期清洁扫描电子显微镜的镜头和样 品台,以保持成像清晰。
操作人员要求
操作人员需经过专业培训,了解仪器 原理和操作方法,避免误操作导致仪 器损坏或人员伤害。
操作方式
有些SEM需要手动操作,而有 些型号则具有自动扫描和调整 功能。
适用领域
不同型号的SEM适用于不同的领 域,如材料科学、生物学等,选
择时应考虑实际应用需求。
04
SEM的操作与注意事项
操作步骤
01
02
03
开机与预热
首先打开电源,启动计算 机,并打开扫描电子显微 镜主机。预热约30分钟, 确保仪器稳定。
场发射电子源利用强电场作用下的金属尖端产生电子,具有高亮度、低束流的优点, 但需要保持清洁和稳定的尖端环境。
聚光镜
聚光镜是扫描电子显微镜中的重 要组成部分,它的作用是将电子 束汇聚成细束,并传递到样品表
面。
聚光镜通常由两级组成,第一级 聚光镜将电子束汇聚成较大直径 的束流,第二级聚光镜进一步缩
小束流直径,提高成像质量。
生态研究
环境SEM技术可以应用于生态研究中, 例如观察生物膜、土壤结构等,为环 境保护和治理提供有力支持。
THANKS
感谢观看
样品放置
将样品放置在样品台上, 确保样品稳定且无遮挡物。
调整工作距离
根据样品特性,调整工作 距离(WD)至适当位置, 以确保最佳成像效果。
操作步骤

SEM(扫描电子显微镜)的原理

SEM(扫描电子显微镜)的原理

SEM(扫描电子显微镜)的原理
SEM是一种通过高能电子束扫描样品表面并利用其所产生的
信号来形成图像的显微镜。

其原理是利用电子束与样品表面交互所产生的各种信号(如二次电子、反射电子、散射电子、背散射电子等)作为样品表面形貌信息的载体,经过放大和成像后形成对样品表面形貌的图像。

具体来说,SEM的主要原理包括:
1. 高能电子束的产生
SEM使用的电子束通常由热阴极或场发射型阴极产生。

电子
从阴极中发射出来后,经过加速管加速到几千伏至数十万伏的高能电子束。

2. 电子束的聚焦
SEM使用电磁聚焦系统将电子束聚焦到非常小的点上,从而
实现高分辨率成像。

聚焦系统通常由多组圆柱形或双凸透镜组成。

3. 样品表面的交互
高能电子束照射样品表面时,会与样品表面相互作用,产生各种不同的信号。

这些信号包括二次电子、反射电子、散射电子、背散射电子等,它们可以提供关于样品表面形貌、成分和结构的信息。

4. 信号的检测和处理
SEM的检测系统通常由二次电子检测器、反射电子检测器、消旋极检测器等多种类型的检测器组成。

这些检测器负责收集和处理样品表面产生的各种信号,经过放大和成像等处理后,成为最终的SEM图像。

综上所述,SEM主要通过高能电子束和样品表面信号的交互来实现图像的成像和分析。

它能够观察到样品表面微观结构的形貌、成分和表面化学性质等信息,具有广泛的应用价值。

利用扫描电子显微镜获取材料表面形貌信息

利用扫描电子显微镜获取材料表面形貌信息

利用扫描电子显微镜获取材料表面形貌信息扫描电子显微镜(Scanning Electron Microscope,SEM)是一种用于观察和分析材料表面形貌的高分辨率显微镜。

利用其高能电子束和探测器,SEM可以提供高放大倍率和出色的表面清晰度,为研究人员提供详细的材料表面形貌信息。

本文将介绍扫描电子显微镜的原理,操作方法以及其在材料科学中的应用。

首先,让我们来了解一下扫描电子显微镜的工作原理。

SEM采用的是电子束扫描观察的原理。

它通过在材料上扫描射出高能电子束,当电子束与样品表面相互作用时,会发生多种与电子互作用的物理现象,如散射、逸出电子和背散射等。

SEM探测器将这些信号转换成图像,并以高分辨率的方式显示在显示器上。

此外,SEM还可以利用特殊的探头扫描电子显微镜,通过测量振荡电势,进一步获得材料的表面化学成分分布。

接下来,我们将介绍如何操作扫描电子显微镜来获取材料表面形貌信息。

首先,样品需要被制备成适合SEM观察的形式。

通常情况下,需要将样品表面进行金属或碳层涂覆,以增加导电性,然后将样品固定在SEM样品支架上。

样品准备的质量直接影响着SEM观察结果的准确性和可靠性,因此样品制备过程一定要严格控制。

接下来,将样品装载到SEM的样品舱中,关闭操作室门,开始抽真空。

当真空达到要求后,可以开始调整SEM的参数,如电子束加速电压、工作距离和探测器的选择等。

一旦调整完毕,可以将电子束聚焦在样品表面并开始扫描。

同时,可以调整探测器的位置和参数,以获得不同深度的信息。

最后,观察和记录SEM图像,并进一步分析和处理图像数据,以获得材料表面的形貌和结构信息。

扫描电子显微镜在材料科学中有着广泛的应用。

首先,SEM可以用于研究微观结构和形貌。

通过观察样品的表面形貌,可以获得材料的纹理、粗糙度、颗粒大小等信息,帮助研究人员了解材料的制备过程和性能。

其次,SEM还可以帮助分析材料的化学成分分布。

通过能谱仪等设备,可以测量样品表面的元素分布情况,从而研究材料的成分和相对丰度。

扫描电子显微镜(SEM)-介绍-原理-结构-应用

扫描电子显微镜(SEM)-介绍-原理-结构-应用
扫描线圈 物镜 物镜光栏
探头
扫描发生器 显像管
视频放大器
光电倍增管
试样
光导管
试样台
扫描电子显微镜主要由以下四个部分组成: 1. 电子光学系统:作用是获得扫描电子束,
作为信号的激发源。 2. 信号收集及显示系统:作用是检测样品在
入射电子作用下产生的物理信号 3. 真空系统:用来在真空柱内产生真空 4. 电源系统:作用是提供扫描电镜各部分所
3.3 背散射电子
背散射(backscattered)电子是指入射电子在样 品中受到原子核的卢瑟福散射后被大角度反射,再 从样品上表面射出来的电子,这部分电子用于成像 就叫背散射成像。 背散射分为两大类:弹性背散射和非弹性背散射。 弹性散射不损失能量,只改变方向。非弹性散射不 仅改变方向,还损失能量。从数量上看,弹性背反 射电子远比非弹性背反射电子所占的份额多。背反 射电子的产生范围在100nm-1mm深度。
d4
光电倍增管
d3:扫描系统ຫໍສະໝຸດ 试样光导管d4:试样室
试样台
2.1.1 电子枪
电子枪:钨丝成V形,灯丝中通以加热电流, 当达到足够温度时(一般操作温度为 2700K),发射电子束。在10-6Torr的真空 下,其寿命平均约40—80小时。
电子束 光阑孔
2.1.2 电磁透镜
电磁透镜:透镜系统中所用的透镜都是缩 小透镜,起缩小光斑的作用。缩小透镜 将电子枪发射的直径为30μm左右的电 子束缩小成几十埃,由两个聚光镜和一 个末透镜完成,三个透镜的总缩小率约 为2000~3000倍
03
SEM工作原理
3 扫描电镜成像的物理信号
入射电子轰击样品产生的物理信号
电子束与样品原子间的相互作用是表 现样品形貌和内部结构信息的唯一途 径。入射电子与样品原子中的电子和 原子核会发生弹性碰撞和非弹性碰撞, 所产生各种电子信号和电磁辐射信号 都带有样品原子的信息,从不同角度 反映出了样品的表面形貌、内部结构、 所含元素成分、化学状态等。

扫描电子显微镜工作原理

扫描电子显微镜工作原理

扫描电子显微镜工作原理
扫描电子显微镜(Scanning Electron Microscope,SEM)是一种利用电子束扫描样品表面并通过感应信号形成显像的仪器。

其工作原理如下:
1. 电子源发射电子束:SEM中有一个电子枪,用于产生高能电子。

电子枪中通常会使用热阴极,通过加热或电子轰击方式将电子从阴极中释放出来。

2. 高能电子束聚焦:释放出来的电子会受到聚焦系统的控制,将电子束聚焦成一个非常细小的束斑。

聚焦系统通常包括透镜或电磁镜等。

3. 电子束扫描:经过聚焦的电子束被定向扫描到样品表面。

样品通常需要先制备成非导电表面或镀上导电层,以便电子束能够顺利地与样品相互作用。

4. 电子-样品相互作用:电子束与样品表面相互作用会产生多种效应,如散射、反射、透射等。

其中最常用的效应是二次电子发射(secondary electron emission)和后向散射电子(backscattered electron)的产生。

5. 信号收集:通过安装在SEM中的多种探测器,可以收集和测量与电子-样品相互作用相关的信号。

常用的探测器包括:二次电子探测器、后向散射电子探测器、X射线能谱仪等。

6. 信号转换和处理:收集到的信号会经过放大、滤波、数字化
等处理,并转化成图像或谱图。

7. 图像显示:最后,处理好的信号通过计算机和显示器进行图像重建和显示,使得研究人员可以观察到样品表面的微观结构和形貌。

扫描电子显微镜通过以上步骤实现样品表面的高分辨率成像,并能提供有关样品表面化学元素的分布信息。

它在材料科学、生物学、纳米学等领域发挥着重要作用。

SEM扫描电子显微镜PPT

SEM扫描电子显微镜PPT

环保材料与工艺
采用环保材料和工艺, 降低生产过程中的环境 污染。
安全操作规程
制定严格的安全操作规 程,确保操作人员和设 备安全。
THANKS FOR WATCHING
感谢您的观看
sem扫描电子显微镜
目 录
• 简介 • 应用领域 • 技术特点 • 操作与维护 • 未来发展与挑战
01 简介
定义与特点
定义
扫描电子显微镜(SEM)是一种利用 电子束扫描样品表面并收集其产生的 二次电子、背散射电子等信号来生成 样品表面形貌和成分信息的显微镜。
特点
SEM具有高分辨率、高放大倍数、高 景深等特点,能够观察样品的表面形 貌和微观结构,广泛应用于材料、生 物医学、环境等领域。
操作步骤
01
关机步骤
02
03
04
关闭SEM软件和电脑。
关闭显微镜主机,并将显微镜 归位。
关闭电源开关,确保电源完全 断开。
常见问题与解决方案
原因
可能是由于聚焦不准确或样品表 面不平整。
解决方案
重新调整聚焦或对样品表面进行 预处理,确保表面平整。
常见问题与解决方案
原因
可能是由于样品台倾斜或扫描参数设置不正确。
3
拓展多模式功能
开发具备多种模式(如透射、反射、能谱分析等) 的扫描电子显微镜,满足更多应用需求。
提高检测灵敏度与分辨率
优化电子光学系统
改进透镜、加速电压和探 测器等关键部件Biblioteka 提高成 像质量。发展超分辨技术
利用超分辨算法和纳米材 料等手段,突破光学衍射 极限,实现更高的分辨率。
提升信号处理能力
改进信号采集、处理和传 输技术,降低噪声干扰, 提高检测灵敏度。

扫描电子显微镜工作原理

扫描电子显微镜工作原理

扫描电子显微镜工作原理
扫描电子显微镜(Scanning Electron Microscope,SEM)是一
种利用电子束与样品相互作用,通过控制电子束扫描样品来获得高分辨率图像的仪器。

其工作原理可以概括如下:
1. 电子枪和聚焦系统:SEM中的电子枪产生高能量的电子束,通常使用热阴极或冷阴极发射电子。

聚焦系统根据需要将电子束聚焦成细束。

2. 射线系统:聚焦后的电子束进入射线系统,经过一系列的电磁透镜和偏转磁铁来控制和定位电子束的位置。

3. 样品台和扫描系统:待观察的样品放置于样品台上,样品台可以进行高精度的位置调整。

电子束从顶部进入,并通过电磁透镜附近的扫描线圈来控制水平和垂直方向的束斑位置,从而实现对样品表面的扫描。

4. 信号检测和图像重建:当电子束与样品相互作用时,会产生多种不同的信号。

最常用的信号有二次电子(SE)和背散射
电子(BSE)。

二次电子是由被电子束激发的表面原子或分子
所发射的电子。

背散射电子是由高能电子与样品原子核的相互作用而散射产生的电子。

这些信号被探测器捕捉,并转换为电信号传输到图像处理系统。

通过组合并处理这些信号,最终形成高分辨率的样品图像。

5. 系统控制和图像显示:扫描电子显微镜通常配备有相应的系统控制软件,可以实时调整电子束的参数、样品扫描范围和扫
描速度等。

图像可以通过电子束的扫描和控制以及信号检测系统的输出,转化为显示在显示器上的图像。

总结起来,扫描电子显微镜通过利用电子束与样品相互作用并检测所产生的信号,通过电子束的扫描和控制,最终生成高分辨率的样品图像。

扫描电子显微镜原理

扫描电子显微镜原理

扫描电子显微镜原理
扫描电子显微镜(Scanning Electron Microscope, SEM)是一种利用电子束照射样本表面,通过采集样本散射的次级电子、反射电子、透射电子等生成显微图像的设备。

其原理与传统光学显微镜不同,利用电子束的波粒二象性和电子与物质相互作用的性质来获得高分辨率的图像。

扫描电子显微镜由电子光源、电子光学系统、样本台以及信号检测和图像处理系统等组成。

首先,电子显微镜的电子光源发射出高能电子束,通常通过热丝发射电子的方式。

这些电子束会经过准直和聚焦装置,使其成为一束细且聚焦的电子束。

接下来,样本被放置在扫描电子显微镜的样本台上。

样本表面会与入射电子束相互作用,产生不同的信号。

其中,主要信号包括次级电子(Secondary Electron, SE)、反射电子(Backscattered Electron, BE)以及透射电子(Transmitted Electron, TE)。

次级电子主要由入射电子与样本表面原子的相互作用而产生,其被采集并转化为图像。

反射电子主要是在样本内部物质的相互作用下被散射回来的电子,同样被采集和转化为图像。

透射电子则是透过样本的电子,其传感元件可将其图像化。

这些信号被接收后,经过放大和转换为电子图像信号。

电子图像信号可以通过荧光屏或者光电二极管进行观测和记录。

最后,通过图像处理系统将电子信号转化为高分辨率的图像,该图像具有较高的对比度和分辨率,可以用来观察样本的细微特征。

扫描电子显微镜以其高分辨率和强大的观察能力被广泛应用于材料科学、生命科学、纳米技术以及表面科学等领域。

扫描电子显微镜原理

扫描电子显微镜原理

扫描电子显微镜原理扫描电子显微镜(Scanning Electron Microscope, SEM)是一种利用电子束来观察样品表面微观形貌和成分的高分辨率显微镜。

与光学显微镜相比,扫描电子显微镜具有更高的放大倍数和更高的分辨率,可以观察到更小尺度的细微结构。

其原理主要包括电子源、电子透镜系统、样品台、探针和检测器等几个部分。

首先,电子源产生的电子束是扫描电子显微镜的核心。

电子源通常采用热阴极或冷阴极发射电子,产生的电子束经过加速器加速后,形成高速、高能的电子束。

这些电子束的能量通常在几千至几十万电子伏特之间,高能的电子束可以穿透样品表面,形成高分辨率的显微图像。

其次,电子透镜系统是控制和聚焦电子束的关键部分。

电子束经过电子透镜系统的聚焦和控制后,可以形成非常细小的探针,可以在样品表面进行扫描。

电子透镜系统通常包括几个磁场和电场透镜,通过调节透镜的参数可以实现对电子束的聚焦和控制,从而获得高分辨率的显微图像。

样品台是扫描电子显微镜中支撑样品的部分,样品通常需要制备成非常薄的样品片或者表面导电涂层,以便电子束可以穿透或者散射到样品表面。

样品台通常可以实现样品的旋转、倾斜和移动,以便观察样品的不同部位和角度。

探针是电子束在样品表面扫描时的实际作用部分,电子束在样品表面扫描时,会与样品表面发生相互作用,产生不同的信号。

这些信号包括二次电子、反射电子、X射线等,通过探针和样品表面的相互作用,可以获取样品表面的形貌和成分信息。

最后,检测器是扫描电子显微镜中用于接收和检测样品表面信号的部分,不同的检测器可以接收和检测不同类型的信号。

常见的检测器包括二次电子检测器、反射电子检测器和X射线能谱仪等,通过这些检测器可以获取样品表面的形貌和成分信息。

综上所述,扫描电子显微镜的原理主要包括电子源、电子透镜系统、样品台、探针和检测器等几个部分。

通过这些部分的协同作用,可以实现对样品表面微观形貌和成分的高分辨率观察和分析,为材料科学、生物科学和纳米科学等领域的研究提供了重要的工具和手段。

扫描电子显微镜SEM

扫描电子显微镜SEM
第五章
扫描电镜分析
SEM-Scanning Electron Microscope
1
5.1 扫描电子显微镜的工作原理
2
5.1 扫描电子显微镜的工作原理
• 扫描电镜是用聚焦电子束在试样表面逐点扫描粒,成像信 号可以是二次电子、背散射电子或吸收电子。其中二次电 子是最主要 的成像信号。 • 由电子枪发射的能量为 5 ~ 35keV 的电子,以其交 叉斑 作为电子源,经二级聚光镜及物镜的缩小形成具有一定能 量、一定束流强度 和束斑直径的微细电子束,在扫描线 圈驱动下,于试样表面按一定时间、空间顺 序作栅网式 扫描。 • 聚焦电子束与试样相互作用,产生二次电子发射(以及其 它物理信号),二次电子发射量随试样表面形貌而变化。 二次电子信号被探测器收集 转换成电讯号,经视频放大 后输入到显像管栅极,调制与入射电子束同步扫描的 显 像管亮度,得到反映试样表面形貌的二次电子像。
(1)二次电子能谱特性; (2)入射电子的能量; (3)材料的原子序数; (4)样品倾斜角。
18
二次电子像的衬度可以分为以下几类:
(1)形貌衬度 (2)成分衬度 (3)电压衬度 (4)磁衬度(第一类) 右图为形貌衬度原理
19
二次电子像衬度的特点:
(1)分辨率高 (2)景深大,立体感强 (3)主要反应形貌衬度。
34
5.5 扫描电子显微镜样品制备---3
粉末试样的制备 先将导电胶或双面胶纸粘结在样品座上,再均匀地把粉末样撒在上面, 用洗耳球吹去未 粘住的粉末,再镀上一层导电膜,即可上电镜观察。 镀膜的方法有两种,一是真空镀膜,另一种是离子溅射镀膜。 离子溅射镀膜的 原理是:在低气压系统中,气体分子在相隔一定距 离的阳极和阴极之间的强电场作 用下电离成正离子和电子,正离子 飞向阴极,电子飞向阳极,二电极间形成辉光放 电,在辉光放电过 程中,具有一定动量的正离子撞击阴极,使阴极表面的原子被逐 出, 称为溅射,如果阴极表面为用来镀膜的材料(靶材),需要镀膜的样 品放在作 为阳极的样品台上,则被正离子轰击而溅射出来的靶材原 子沉积在试样上,形成一 定厚度的镀膜层。 离子溅射时常用的气体 为惰性气体氩,要求不高时,也可以用 空气,气压约为 5 X 10 -2 Torr 。离子溅射镀膜与真空镀膜相比,其主要优点是: ( 1 )装置结构简单,使用方便,溅射一次只需几分钟,而真空镀 膜则要半个小时以 上。 ( 2 )消耗贵金属少,每次仅约几毫克。( 3 )对同一种镀膜材料, 离子溅射镀膜质量好,能形成颗粒更细、更致密、更均 匀、附着力 更强的膜。

SEM扫描电子显微镜课件

SEM扫描电子显微镜课件

扫描电镜结构原理框图
扫描电镜结构 电子光学系统, 信号收集处理、图 像显示和记录系统, 真空系统, 三部分组成
扫描电镜结构原理
1、电子光学系统: 电子枪 电磁透镜(2个强磁1个弱磁)可使原来50μm电子束斑聚焦为6nm。 扫描线圈 样品室
电子束的滴状作用体积示意图
不同能量的电子束在样品中的作用模拟图
电子束在不同样品中的作用模拟图
但是,当电子束射入重元素样品中时,作用体积不呈滴状,而是半球状。电子束进入表面后立即向横向扩展,因此在分析重元素时,即使电子束的束斑很细小,也不能达到较高的分辨率。此时,二次电子的分辨率和背散射电子的分辨宰之间的差距明显变小。 由此可见,在其它条件相同的情况下(如信号噪音比、磁场条件及机械振动等),电子束的束斑大小、检测信号的类型以及检测部位的原子序数是影响扫描电子显微镜分辨率的三大因素。
五、特征X射线 当样品原子的内层电子被入射电子激发,原子就会处于能量较高的激发状态,此时外层电子将向内层跃迁以填补内层电子的空缺,从而使具有特征能量的X射线释放出来。 用X射线探测器测到样品微区中存在一种特征波长,就可以判定这个微区中存在着相应的元素。
六、俄歇电子 在特征x射线过程中,如果在原子内层电子能级跃迁过程中释放出来的能量并不以X射线的形式发射出去,而是用这部分能量把空位层内的另—个电子发射出去,这个被电离出来的电子称为~。 俄歇电子能量各有特征值,能量很低,一般为50-1500eV. 俄歇电子的平均白由程很小(1nm左右). 只有在距离表面层1nm左右范围内(即几个原子层厚度)逸出的俄歇电子才具备特征能量,因此俄歇电子特别适用于表面层的成分分析。
由于ZrO2相平均原子序数远高于Al2O3相和SiO2 相,所以图中白色相为斜锆石,小的白色粒状斜锆石与灰色莫来石混合区为莫来石-斜锆石共析体,基体灰色相为莫来石。

扫描电子显微镜

扫描电子显微镜

基本结构
结构示意图
1-镜筒;2-样品室;3-EDS探测器;4-监控器;5-EBSD探测器;6-计算机主机;7-开机/待机/关机按钮;8底座;9-WDS探测器。
基本原理
扫描电子显微镜电子枪发射出的电子束经过聚焦后汇聚成点光源;点光源在加速电压下形成高能电子束;高 能电子束经由两个电磁透镜被聚焦成直径微小的光点,在透过最后一级带有扫描线圈的电磁透镜后,电子束以光 栅状扫描的方式逐点轰击到样品表面,同时激发出不同深度的电子信号。此时,电子信号会被样品上方不同信号 接收器的探头接收,通过放大器同步传送到电脑显示屏,形成实时成像记录(图a)。由入射电子轰击样品表面激 发出来的电子信号有:俄歇电子(Au E)、二次电子(SE)、背散射电子(BSE)、X射线(特征X射线、连续X射 线)、阴极荧光(CL)、吸收电子(AE)和透射电子(图b)。每种电子信号的用途因作用深度而异。
2021年,全数字化扫描电子显微镜新品在无锡惠山发布。
类型
扫描电子显微镜类型多样,不同类型的扫描电子显微镜存在性能上的差异。根据电子枪种类可分为三种:场 发射电子枪、钨丝枪和六硼化镧 。其中,场发射扫描电子显微镜根据光源性能可分为冷场发射扫描电子显微镜 和热场发射扫描电子显微镜。冷场发射扫描电子显微镜对真空条件要求高,束流不稳定,发射体使用寿命短,需 要定时对针尖进行清洗,仅局限于单一的图像观察,应用范围有限;而热场发射扫描电子显微镜不仅连续工作时 间长,还能与多种附件搭配实现综合分析。在地质领域中,我们不仅需要对样品进行初步形貌观察,还需要结合 分析仪对样品的其它性质进行分析,所以热场发射扫描电子显微镜的应用更为广泛。
图 a.扫描电子显微镜原理图;b.扫描电子显微镜电子信号示意
图 a.扫描电子显微镜原理图;b.扫描电子显微镜电子信号示意图。

sem扫描电镜

sem扫描电镜
II. 背散射电子成像:入射电子与样品接触时,其中一部分几乎 不损失能量地在样品表面被弹性散射回来,这部分电子被称 为背散射电子。背散射电子的产额随样品的原子序数的增大 而增加,因此成像可以反映样品 的元素分布,及不同相成分 区域的轮廓。
二次电子像的信号是二次电子,用于表面形貌分析;背散射电子 像的信号是背散射电子,用于成分分析。因此二次电子像对形貌 敏感,背散射电子像对成扫描电子显微镜,简称为扫描电镜,英文缩写为SEM (Scanning Electron Microscope)。它是用细聚焦的 电子束轰击样品表面,通过电子与样品相互作用产生 的二次电子、背散射电子等对样品表面或断口形貌进 行观察和分析。SEM已广泛应用于材料、冶金、矿物、 生物学等领域。
图2 JSM-6301F场发射扫描电镜的结构
电子光学系统
组成:电子枪、电磁透镜、扫描线圈和样品室等部 件。
作用:获得扫描电子束、作为产生物理信号的激发 源。
为了获得较高的信号强度和图像分辨率,扫描电子 束应具有较高的亮度和尽可能小的束斑直径。
电子枪
✓ 利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大 多数扫描电镜采用热阴极电子枪。优点:灯丝价格便宜,真 空要求不高;缺点:发射效率低,发射源直径大,分辨率低。
✓ 现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子 枪,二次电子像的分辨率可达到2nm。
✓ 扫描电镜的分辨率与电子在试样上的最小扫描范围有关。通 常电压为1〜30kV。
图3 三种不同类型的电子枪材质
电磁透镜
➢ 作用:是把电子枪的束斑逐渐缩小,从原来直径约为50μm的 束斑缩小成一个只有几nm的细小束斑。
SEM的主要性能参数
分辨率 放大倍数 景深
分辨率

扫描电子显微镜

扫描电子显微镜

多模式和多功能:未来 的扫描电子显微镜将具 备多种模式和功能,例 如在观察形貌的同时进 行成分分析、晶体结构 分析等。此外,还将开 发出更多的附属功能, 如样品制备、图像处理 和分析等
扫描电子显微镜的发展趋势
自动化和智能化:随着 自动化和智能化技术的 不断发展,未来的扫描 电子显微镜将更加智能 化,具备自动调整参数 、自动聚焦、自动扫描 等功能。同时,还将引 入人工智能和机器学习 等技术,提高图像处理 和分析的自动化程度
高分辨率和高质量图像 :随着透射电镜等其他 电子显微技术的发展, 扫描电子显微镜的分辨 率和图像质量也将得到 进一步提高。同时,新 的探测器和信号处理技 术也将被引入,以提高 图像的信噪比和对比度
高速扫描和实时成像: 为了更好地观察动态过 程和实时变化,扫描电 子显微镜的扫描速度将 得到提高,同时配备更 快的电子束扫描系统和 更灵敏的探测器,实现 高速扫描和实时成像
扫描电子显微镜的应用领域
总之,扫描电子显微镜作为 一种高分辨率的电子显微技 术,在各个领域都有着广泛 的应用前景
随着技术的不断发展和进步, 相信它的应用领域将会越来 越广泛
4
扫描电子显微镜的发展趋势
扫描电子显微镜的发展趋势
随着科技的不断发展,扫描电子显微镜也在不断发展和改进,未来将会呈现出以下发展趋 势
材料科学:材料科学领域 需要对金属、陶瓷、聚合 物等材料的结构和性能进 行研究。扫描电子显微镜 能够提供高分辨率和高对 比度的图像,帮助研究人 员了解材料的微观结构和 性能之间的关系
扫描电子显微镜的应用前景
总之,扫描电子显微镜作为一种高分辨率的电 子显微技术,在各个领域都有着广泛的应用前

随着技术的不断发展和进步,相信它的应用领 域将会越来越广泛,为科学研究和技术创新做

扫描电子显微镜原理

扫描电子显微镜原理

扫描电子显微镜原理扫描电子显微镜(Scanning Electron Microscope,SEM)是一种用电子束替代光束对样品进行成像的高分辨率显微镜。

SEM具有非常高的分辨率和放大倍数,可以观察到微米到纳米级的细节。

其原理基于电子束与样品之间的相互作用,通过感应和检测来生成图像。

SEM的原理可以分为三个主要步骤:电子束产生和加速,电子束与样品交互,以及图像检测和生成。

首先,电子束产生和加速过程。

SEM使用热阴极发射枪或场发射枪来产生一个稳定且高能的电子束。

热阴极发射枪通过加热钨丝,使其发射电子;场发射枪则利用电场来加速和发射电子。

发射枪后方的聚束系统将电子束聚束成一个窄束。

接下来,电子束与样品交互。

电子束从顶部照射到样品表面,与样品表面的原子和分子发生相互作用。

主要有三种相互作用:散射,逸出和激发。

散射是电子与样品原子发生碰撞后的改变方向,逸出是电子穿透样品表面,进入真空中,激发是样品中的原子和分子受到电子束的能量激发。

最后,图像检测和生成过程。

SEM通过检测电子束与样品交互的结果来生成图像。

其主要包括二次电子检测和后向散射电子检测。

二次电子检测器探测到从样品表面发射的二次电子,而后向散射电子检测器则探测到从样品表面散射回来的电子。

二次电子图像提供了样品表面形貌的图像,而后向散射电子图像提供了更深入的结构和成分信息。

在SEM中,电子束的聚焦和扫描是通过一组聚束和偏转电磁透镜来实现的。

聚束透镜可以将电子束聚焦到非常小的尺寸,从而提高分辨率。

扫描透镜则通过逐个偏转电子束到样品的不同位置,从而形成样品的图像。

此外,SEM还可以通过斑点和线扫描的方式进行图像获取。

斑点扫描即电子束在一点上停留一段时间,然后再移动到下一个点。

线扫描则是电子束在样品上移动成一条线,然后再移动到下一行。

通过这两种扫描方式,可以获得高分辨率和比较快速的图像。

总结起来,扫描电子显微镜利用电子束与样品的相互作用生成图像。

通过电子束产生和加速、电子束与样品交互,以及图像检测和生成等过程,可以获得高分辨率的样品表面形貌以及更深入的结构和成分信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物镜用于聚焦, 是决定最终电 子探针直径的 重要透镜。物 镜若有瑕疵, 就无法形成很 细的电子探针, 之前的所有努 力也都会前功 尽弃。因此, 所有的电镜厂 家都在努力制 作性能优良的 物镜。
阴极荧光
可以通过固体的电子能带理论来解释阴极发光现象。 这些材料的特点是具有一个所有的电子能态都被占 据满的价带和一个空的导带;价带和导带之间有一 能量间隔为Egap的禁带。当高能束电子在这种材料 中受到非弹性散射时,充满价带的电子可以提升到 导带,使得价带留下空穴,而导带多出一个电子, 形成电子-空穴对。当没有偏压使得电子-空穴分离, 电子和空穴可能复合,与Egap相等的多余能量以光 子的形式释放出来。由于带间隔是严格确定的,所 以光子携带特征能量。
你爱,或者不爱 课就在这儿 不多不少
你来,或者不来 教室就在这儿 不喜不悲
你听,或者不听 我都在这儿 不离不弃
但愿,我的努力 能让这门课 走进你的心里
默然 寂静
相爱 欢喜
简介
• 扫描电子显微镜的简称为扫描电镜,英文缩写为 SEM (Scanning Electron Microscope)。SEM与电子 探针(EPMA)的功能和结构基本相同,但SEM一 般不带波谱仪(WDS)。它是用细聚焦的电子束轰 击样品表面,通过电子与样品相互作用产生的二次 电子、背散射电子等对样品表面或断口形貌进行观 察和分析。现在SEM都与能谱(EDS)组合,可以 进行成分分析。所以,SEM也是显微结构分析的主 要仪器,已广泛用于材料、冶金、矿物、生物学等 领域。
• 原子内层电子能级跃迁过程中释放出来的能量传 递给核外另一电子并打出,脱离原子变为二次电 子,这种二次电子叫做俄歇电子。因每一种原子 都有自己特定的壳层能量,所以它们的俄歇电子 能量也各有特征值,能量在50-1500eV范围内。 俄歇电子是由试样表面极有限的几个原子层中发 出的,这说明俄歇电子信号适用与表层化学成分 分析。
500~5000nm 100~1000nm
5~50nm 1nm
背散射电子 特征X射线
俄歇电子 二次电子
连续X射线
背散射电子空间分辨率 X射线的分辨率
背散射电子
• 受固体样品散射反射回来的那部分电子,占入射 电子的30%左右。
• 由两部分组成,一部分为弹性背散射电子,另一 部分为与原子核、核电子发生多次非弹性碰撞而 形成的电子。
胜利孳生了仇恨,因为被征服者不快乐,这也是下一次胜利的种子。
扫描电子显微分析
 Scanning Electron Microscopy (SEM)
AlphaGo
Qusetions
为什么使用SEM? SEM的原理?
SEM的信号? SEM的电子源的分类?
EDS中分析方法有哪几种?
我 的 课
历史回顾
• 扫描电镜的概念最早是由德国的Knoll在1935年提出 • 1938年Von Ardenne在透射电镜上加了个扫描线圈做
出了扫描透射显微镜(STEM). • 第一台SEM是1942年由Hill制成 • 1955年扫描电镜的研究取得较显著的突破,成像质量 有明显提高,并在1959年制成了第一台分辨率为10纳 米的扫描电镜。 • 第一台商业制造的扫描电镜是Cambridge Scientific
电子在磁场中运动,当电子运动方向与磁感应强度方向不平行时,将产生一个与运动方 向垂直的力(洛仑兹力)使电子运动方向发生偏转。
下图是一个电磁线圈。当电子沿线圈轴线运动时,电子运动方向与磁感应强度方向
一致,电子不受力,以直线运动通过线圈;当电子运动偏离轴线时,电子受磁场力的作用, 运动方向发生偏转,最后会聚在轴线上的一点。电子运动的轨迹是一个圆锥螺旋曲线 。
• 高分辨率SEM使用的电子枪是场发射电子枪 (Field Emission Electron Gun:FE电子枪)。 它利用的是在金属表面加以强电场时所产生的场
发射现象,实际的结构见图,阴极用细钨丝制成,
在钨丝上焊接相同的单晶钨,其尖端曲率半径为 100 nm左右,被称为发射体,在发射体对面设置 的金属板(引出电极)上施加数kV的正电圧时, 由于隧道效应,从发射体中就会发射电子,如果
问题
• 几种信号? • 几种常用? • 几种有用的信号?
电子与物质作用
电子与物质相互作用
电子与固体样品的相互作用
• 相互作用的区域明显随原子序数改变,从低序数 的“梨”形到高序数的“半球”形;
• 电子束能量越大,穿过特定的长度后保持的能量 越大,穿透的深度越大;根据Rutheford模型,电 子在样品中的弹性散射面与其能量的平方成反比。
在金属板(引出电极)的中央处开一小孔,电子
束会从孔中流出,因此在其下方设置的电极(加
速电极)上加以电圧,就能够获得一定能量的电
子束,为了产生场发射现象,发射体的尖端必须 保持清洁,需要设置在10-8Pa左右的超高真空中。
3肖特基发射电子枪
• 是利用在加热的金属表面外加高电场产生的肖特基 (Schottky emission)效应的电子枪,结构如图所示, 阴极(发射体)是ZrO/W,采用尖端曲率半径为几百 nm的钨单晶体,并镀上了ZrO覆盖层,ZrO覆盖层大 大地降低了功函数,因而在1800K左右较低阴极温度 下能发射很大的电流,如图31所示,为了屏蔽从发射 体中发射出热电子,在被叫做抑制电极的电极上加负 电圧。由于肖特基发射电子枪部分设置在10-7Pa左右 的超高真空中,发射体能保持高温,不吸附气体,因 此具有电子束流稳定度高的特点。
与场发射电子枪相比,肖特基发射电子枪的电子束
能量发散度稍大,但能获取大的探针电流,这一特点
适合于在观察形貌的同时进行各种分析,这种电子枪
有时也因为方便被称作热阴极场发射电子枪或热场发 射电子枪。
电子枪性能比较
电磁透镜
• 在电子枪的后方设置透镜,能够调节电子束的直径。SEM 需要很细的电子束。图中,在电子枪的后方设置了聚光镜 和物镜的两级透镜,从电子枪中发射出的电子束经过两级 透镜的聚焦形成电子探针。增强聚光镜的透镜作用,电子 探针以b/a的比例变细,如果减弱的话,电子探针则变粗。 此外,在聚光镜与物镜之间,设置开了小孔的薄金属板即 “光阑”。通过聚光镜的电子束撞到光阑后,有一部分的 电子束能通过小孔到达物镜。增大聚光镜的励磁电流,光 阑上的电子束会大大地发散开来,只有一小部分的电子束 能通过,所以到达物镜的电子数(包括探针电流)将会减 少。相反,减弱聚光镜的励磁电流,光阑上的电子束并不 会发生很大的发散,大部分的电子束通过光阑,到达物镜 的电子数很多。也就是说,调节聚光镜的励磁电流可以改 变电子探针的直径和探针电流。
• 是一种无损的分析方法,结合扫描电镜可提供与 形貌相关的高空间分辨率光谱结果,是纳米结构 和体材料的独特分析工具。利用阴极荧光谱,可 以在进行表面形貌分析的同时,研究半导体材料 的发光特性,尤其适合于各种半导体量子肼、量 子线、量子点等纳米结构的发光性能的研究。
• 阴极荧光谱通常作为扫描电子显微镜的一个附件 。比如场发射扫描电子显微镜,通常会配备一套 阴极荧光探头,以充分扩展仪器功能。
• 其能量大于50eV,绝大多数背散射电子能量损失 小于10% 。
• 电子产率η
二次电子
• 二次电子是指入射电子轰击出来的核外电子。由 于原子核和外层价电子间的结合能很小,当原子 的核外电子从入射电子获得了大于相应的结合能 的能量后,可脱离原子成为自由电子。如果这种 散射过程发生在比较接近样品表层处,那些能量 大于材料逸出功的自由电子可从样品表面逸出, 变成真空中的自由电子,即二次电子。其中价电 子约占90%。
短线圈磁场中的电子运动显示了电磁透镜聚焦成像的基本原理。实际电磁透镜中为
了增强磁感应强度,通常将线圈置于一个由软磁材料(纯铁或低碳钢)制成的具有内环形间 隙的壳子里。 电子在磁场中运动,当电子运动方向与磁感应强度方向不平行时,将产生一 个与运动方向垂直的力(洛仑兹力)使电子运动方向发生偏转。
下图是一个电磁线圈。当电子沿线圈轴线运动时,电子运动方向与磁感应强度方向一致 ,电子不受力,以直线运动通过线圈;当电子运动偏离轴线时,电子受磁场力的作用,运动 方向发生偏转,最后会聚在轴线上的一点。电子运动的轨迹是一个圆锥螺旋曲线。
• 电子光学系统(镜筒) • 偏转系统 • 信号检测放大系统 • 图像显示和记录系统 • 电源系统 • 和真空系统、电磁聚光镜、光栏、样品室等部件组 成。
• 作用:获得扫描电子束,作为使样品产生各种物 理信号的激发源。
电子源
• 电子枪是电子束的产生系统,图2是热发射电子枪 的构造图。将细(0.1 mm左右)钨丝做成的灯丝 (阴极)进行高温加热(2800K左右)后,会发 射热电子,此时给相向设置的金属板(阳极)加 以正高圧(1~30kV),热电子会汇集成电子束 流向阳极,若在阳极中央开一个孔,电子束会通 过这个孔流出,在阴极和阳极之间,设置电极并 加以负电圧,能够调整电子束的电流量,在这个 电极(被称为韦氏极)的作用下,电子束被细聚 焦,最细之处被称为交叉点(Crossover),成为实 际的光源(电子源),其直径为15~20μm。
Instruments公司在1965年制造的Mark I “Steroscan”。 • 1978年做出了第一台具有可变压强的商业制造的扫描
电镜
现状
• 目前扫描电镜的发展方向是采用场发射枪的高分 辨扫描电镜和可变压强的环境扫描电镜(也称可 变压扫描电镜)。
• 目前的高分辨扫描电镜可以达到1-2纳米,部分高 端高分辨扫描电镜已具有0.4纳米的分辨率。
扫描电镜中主要信号的信息深度
• 俄歇电子1nm (0.5-2 nm) • 二次电子5-50 nm • 背散射电子50-500 nm • X射线0.1-1μm
入射电子束和物质作用,可以 激发出原子的内层电子。外层 电子向内层跃迁过程中所释放 的能量,可能以X光的形式放 出,即产生特征X射线,也可 能又使核外另一电子激发成为 自由电子,这种自由电子就是 俄歇电子[1]。对于一个原子来 说,激发态原子在释放能量时只 能进行一种发射:特征X射线 或俄歇电子。原子序数大的元 素,特征X射线的发射几率较 大,原子序数小的元素,俄歇 电子发射几率较大,当原子序 数为33时,两种发射几率大致 相等。因此,俄歇电子能谱适 用于轻元素的分析。
相关文档
最新文档