数学三模拟试题

合集下载

2023年江苏省扬州市中考三模数学试题(含答案)

2023年江苏省扬州市中考三模数学试题(含答案)

扬州九年级第三次模拟考试数学试卷一、选择题(每题3分,共24分)1.如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A .B .C .D .2的值等于( )A .0.3B .C .0.03D .3.据报道,2023年1月研究人员通过研究获得了XBB.1.5病毒毒株,该毒株体积很小,呈颗粒圆形或椭圆形,直径大概为,已知,则用科学记数法表示为()A .B .C .D .4.如图所示几何体是由一个球体和一个圆柱组成的,它从上面看到的形状图是()A .B .C .D .5.如图,,,,则的度数是()A .30°B .40°C .50°D .80°6.已知是整数,当的值是( )A .5B .6C .7D .87.如图,在菱形纸片中,,,分别剪出扇形和,恰好能作为一个锥圆的侧面和底面.若点在上,则的最大值是()0.3±0.03±85nm 91nm 10m -=85nm 60.8510m -⨯70.8510m-⨯88.510m-⨯98510m-⨯a b ∥380∠=︒1220∠-∠=︒1∠x x -x ABCD 6AB =60ABC ∠=︒ABC O O BD BDA .B .C .D .8.如图,点与点关于原点对称.,,,、是的三等分点.反比例函数()的图象经过点,.若的面积为3,则的值为()A .4B .5C .6D .7二、填空题(每题3分共30分)9.若式子在实数范围内有意义,则的取值范围是______.10.因式分解______.11.若一组数据2,3,4,5,7的方差是,另一组数据11,12,13,14,15的方差是,则______(填“>”“<”或“=”).12.一个圆锥的侧面展开图时一个圆心角为216°、半径为的扇形,这个圆锥的底面圆半径为______.13.如图,一副直角三角板(,)按如图所示的位置摆放,如果,那么的度数为______.14.规定一种新的运算:,求的解是______.15.如图,点、、在上,的半径为3,,则的长为______.1-2-1+2+A B 90ACB ∠=︒AC BC =45CAD ∠=︒A E DF ky x=0k >A E ACE △k 1x x-x 4a a 3-=21S 22S 21S 22S 15cm cm 30ACB ∠=︒45BED ∠=︒AC DE ∥EBC ∠*2a b a b =--211*132x x-+=A B C O O AOC ABC ∠=∠AC16.已知,点,,在反比例函数(为常数,)的图像上,则,,的大小关系是______.(用“>”连接)17.如图,点在双曲线()上,点在双曲线(),点在轴的正半轴上,若、、、构成的四边形为正方形,则对角线的长是______.18.如图,在中,,点是的外心,连接并延长交边于点,,,则的值为______.三、解答题(本大题共有10小题,共96分)19.(8分)计算:(1);(2).20.(8分)解不等式组,并写出该不等式组的整数解.21.(8分)树人学校想了解学生家长对“双减”政策的认知情况,随机抽取了部分学生家长进行调查,将抽查的数据结果进行统计,并绘制两幅不完整的统计图(:不太了解,0a b c >>>()1,A a b y -()2,B a c y -()3,C c a y -ky x=k 0k >1y 2y 3y ()5,D m -30y x =-0x <B 12y x=0x <A y A B C D AC ABC △ABC ACB ∠=∠O ABC △CO AB P 3AP =4BP =cos ABC ∠0112452-++︒--53222x x x x +⎛⎫+-÷⎪--⎝⎭()4132235x x x ->-⎧⎪⎨-≤⎪⎩A:基本了解,:比较了解,:非常了解).请根据图中提供的信息回答以下问题:(1)请直接写出这次被调查的学生家长共有______人;(2)请补全条形统计图;(3)试求出扇形统计图中“比较了解”部分所对的圆心角度数;(4)该学校共有6800名学生家长,估计对“双减”政策了解程度为“非常了解”的学生家长大约有多少?22.(8分)把算珠放在计数器的3根插棒上可以构成一个数,例如:如图摆放的算珠表示数210.(1)若将一颗算珠任意摆放在这3根插棒上,则构成的数是三位数的概率是______;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这3根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.23.(10分)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天.该景点在设施改造后平均每天用水多少吨?24.(10分)在中,,是的中点,是的中点,过点作交的延长线于点.(1)求证:;(2)证明四边形是菱形.25.(10分)已知:为的直径,为圆心,点为圆上一点,过点作的切线交的延长线于点,点为上一点,且,连接交于点.B C D Rt ABC △90BAC ∠=︒D BC E AD A AF BC ∥BE F AEF DEB ≌△△ADCF BD O O A B O DA F C O AB AC =BC AD E(1)如图1,求证:;(2)如图2,点为内部一点,连接,.若,的半径为10,,求的长.26.(10分)如图是边长为1的正方形网格,每个小正方形的顶点叫格点,的顶点都在格点上.仅用无刻度的直尺,按要求画出下列图形.(1)的周长为______;(2)如图,点、分别是与竖格线和横格线的交点,画出点关于过点竖格线的对称点;(3)请在图中画出的角平分线.27.(12分)(1)【基础巩固】如图1,内接于,若,弦______;(2)【问题探究】如图2,四边形内接于,若,,点为弧上一动点(不与点,点重合).求证:;(3)【解决问题】如图3,一块空地由三条直路(线段、、)和一条道路劣弧围成,已知千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?求其最大值;若不存在,说明理由.ABF ABC ∠=∠H O OH CH 90OHC HCA ∠=∠=︒O 6OH =DA ABC △ABC △D P AB P D Q ABC △BE ABC △O 60C ∠=︒AB =r =ABCD O 60ADC ∠=︒AD DC =B AC A C AB BC BD +=AD AB BC CDCM DM ==60DMC ∠=︒ CD M C D PP CDDM MC CP PD DMCP28.(12分)在平面直角坐标系中,已知抛物线()与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:______,______,______;(2)如图1,直线交轴于点,若,求抛物线的解析式;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;②设(),请直接写出的最大值.2446y ax ax a =++-0a >x A B A B y C D 6a =A B C D A B D DC x E 4tan 3AED ∠=N OC P P x Q AN F F FH DE ⊥H P t f FP FH =+t f 5t m -<≤0m <f初三数学三模答案一、选择题1.C 2.A 3.C 4.C 5.C 6.A 7.B 8.A二.填空题9. 10. 11.> 12.9 13.15° 14. 15.16. 171819.(本题满分8分)(1)2 (2)20.(本题满分8分)解不等式①得:解不等式②得:不等式组的解集是:整数解是:3,421.(本题满分8分)(1)这次抽样调查的家长有(人);(2)表示“基本了解”的人数为:(人),表示“非常了解”的人数为:(人)图略(3)“比较了解”部分所对应的圆心角是:(4)(人)22.(本题满分8分)(1)(2)画树状图如下:共有9种等可能的结果,其中构成的数是三位数且是回文数的结果有2种,∴构成的数是三位数且是回文数的概率为.23.(本题满分10分)解:设该景点在设施改造后平均每天用水吨,则在改造前平均每天用水吨,根据题意,得.0x ≠()()2121a a a +-57x =123y y y >>3x -2x >4x ≤24x <≤510%50÷=5030%15⨯=505152010---=2036014450⨯=︒︒106800136050⨯=1329x 2x 202052x x-=解得.经检验:是原方程的解,且符合题意.答:该景点在设施改造后平均每天用水2吨.24.(本题满分10分)(1)∵,∴,∵是的中点,是边上的中线,∴,,在和中,,∴;(2)由(1)知,,则.∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形.25.(本题满分10分)(1)证明:∵为的直径,∴,∴,∵是的切线,∴,∴,∴,∵,∴,∵,∴;(2)解:连接,∵,∴,∴,∵,∴,∴,即,∴,∵,∴,∴,∵,的半径为10,∴,,∴.26.(本题满分10分)(1)的周长(2)如图,点即为所求;(3)如图,线段即为所求.2x =2x =AF BC ∥AFE DBE ∠=∠E AD AD BC AE DE=BD CD =AFE △DBE △AFE DBEFEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFE DBE ≌△△AFE DBE ≌△△AF DB =DB DC =AFCD =AF BC ∥ADCF 90BAC ∠=︒D BC E AD 12AD DC BC ==ADCF BD O 90BAD ∠=︒90D ABD ︒∠+∠=FB O 90FBD ∠=︒90FBA ABD ︒∠+∠=FBA D ∠=∠AB AC =C ABC ∠=∠C D ∠=∠ABF ABC ∠=∠OC 90OHC HCA ∠=∠=︒AC OH ∥ACO COH ∠=∠OB OC =OBC OCB ∠=∠ABC CBO ACB OCB ∠+∠=∠+∠ABD ACO ∠=∠ABD COH ∠=∠90H BAD ︒∠=∠=ABD HOC ∽△△2AB BDOH OC==6OH=O 212AB OH ==20BD =16DA ==ABC △549=++=Q BE27.(本题满分12分)(1)2(2)证明:在上取点,使,连接,,∵,,∴为等边三角形,∴,,∵四边形为圆的内接四边形,∴,∴,∵,∴,∴,∴,∴为等边三角形,∴,,∴,∴,∴,∴;(3)解:存在.∵千米,∴当取得最大值时,四边形的周长最大,连接,过点作于点,设,∵,,,∴,∴,∴,∴,BD E BE BC =EC AC AD CD =60ADC ∠=︒ADC △DC AC =60DCA ∠=︒ABCD O 180ABC ADC ︒∠+∠=120ABC ︒∠=AD CD = AD CD=ABD CBD ∠=∠60CBD ∠=︒BEC △BC CE =60BCE ∠=︒BCA ECD ∠=∠()SAS ACB DCE ≌△△AB DE =DB DE BE AB BC =+=+CM DM ==DP CP +DMCP PM O OHDM ⊥H OH x =DM CM =OM OM =DO CO =()SSS DOM COM ≌△△1302DMO CMO DMC ︒∠=∠=∠=HM=DH =-∵,∴,∴或(舍去),∴,∴,∴、、、四点共圆,∴,由(2)可知,故当是直径时,最大值为2,∵四边形的周长,∴四边形的周长的最大值为:即四条慢跑道总长度(即四边形的周长)的最大值为.28.(本题满分12分)(1)、、的坐标分别为、、;(2),令,则,则点,函数的对称轴为,故点的坐标为,由点、的坐标得,直线的表达式为:,令,则,故点,则,,解得:,∴抛物线的表达式为:.(3)①如图,作与的延长线交于点,由(2)知,抛物线的表达式为:,故点、的坐标分别为、,则点,由点、的坐标得,直线的表达式为:;设点,则点;则,222DH OH OD +=)2221x +=12x =1x =12OH =1OM =D P C M 120DPC ︒∠=DP CP PM +=PM PD PC +DMCP DM CM PC PD PD PC =+++=++DMCP 2+DMCP 2+A B D ()3,0-()1,0-()2,6--2446y ax ax a =++-0x =46y a =-()0,46C a -2x =-D ()2,6--C D CD 246y ax a =+-0y =32x a =-32,0E a ⎛⎫- ⎪⎝⎭32OE a =-644332OC a tan AED OE a -∠===-23a =22810333y x x =+-PF ED J 22810333y x x =+-A C ()5,0-100,3⎛⎫- ⎪⎝⎭50,3N ⎛⎫- ⎪⎝⎭A N AN 1533y x =--22810,333P t t t ⎛⎫+- ⎪⎝⎭15,33F t t ⎛⎫-- ⎪⎝⎭225333PF t t =--+由点、的坐标得,直线的表达式为:,则点,故,∵,轴,故,,∴,故,则,;②(且);∴当时,;当时,. 5,02E ⎛⎫ ⎪⎝⎭C CE 41033y x =-410,33J t t ⎛⎫- ⎪⎝⎭5533FJ t =-+FH DE ⊥JF y ∥90FHJ EOC ︒∠=∠=FJH ECO ∠=∠FJH ECO ∽△△FH FJ OE CE =1OE FH FJ t CE=⨯=-+()2225283143333f PF FH t t t t t =+=--++-+=--+()2228226433333f t t t =--+=-++5t m -<≤0m <53m -<<-2max 28433f m m =--+30m -≤<max 263f =。

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京市高三三模数学模拟试题一、单选题1.如图,集合A B 、均为U 的子集,()U A B ⋂ð表示的区域为()A .IB .IIC .IIID .IV【正确答案】D【分析】由补集和交集的概念求解即可.【详解】由补集的概念,U A ð表示的区域如下图所示阴影区域,∴()U A B ⋂ð表示的区域为下图所示阴影区域,即为图中的区域Ⅳ.故选:D.2.在下列四个函数中,在定义域内单调递增的有()A .()tan =f x xB .()f x x =C .()2xf x =D .()2f x x=【正确答案】C【分析】A.利用正切函数的性质判断;B.利用绝对值函数的性质判断;C.利用指数函数的性质判断;D.利用二次函数的性质判断.【详解】解:A.()tan =f x x 的增区间为πππ,π,Z 22k k k ⎛⎫-+∈ ⎪⎝⎭,在整个定义域上不单调,故错误;B.()f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;C.()2xf x =在R 上递增,故正确;D.()2f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;故选:C3.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.4.已知tan 2x =,则tan 4x π⎛⎫+ ⎪⎝⎭的值为()A .3B .-3C .13D .34-【正确答案】B【分析】利用两角和的正切公式求解.【详解】解:因为tan 2x =,所以πtan tanπ214tan 3π41211tan tan 4x x x ++⎛⎫+===- ⎪-⋅⎝⎭-⋅,故选:B5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2023年5月1日12350002023年5月15日6035500注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升【正确答案】D【分析】分析表中数据,得出行驶路径和耗油量,可计算结果.【详解】由表中的数据可知,行驶路径500千米耗油量为60升,则该车每100千米平均耗油量为60125=升.故选:D6.已知||1,||0OA OB OA OB =⋅=,点C 在AOB ∠内,且30AOC ∠=︒.设()OC mOA nOB m n =+∈R、,则mn等于()A .13B .3CD 【正确答案】B【分析】由题意可得OA OB ⊥,建立坐标系,由已知条件可得()OC m =,进而可得tan 30︒==,即可得答案.【详解】解:因为||1,||0OA OB OA OB =⋅=,所以OA OB ⊥ ,又因为点C 在AOB ∠内,且30AOC ∠=︒,建立如图所示的坐标系:则(1,0)OA = ,OB =,又因为()OC mOA nOB m n =+∈R、,所以()OC m =,所以tan 303m ︒==,所以3mn=.故选:B.7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .【正确答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.8.已知{}n a 为无穷等差数列,则“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【分析】根据等差数列性质结合充分、必要条件分析判断.【详解】“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”,不能推出“存在2k ≥且*k ∈N ,使得0k a =”,例如32n a n =-,则121,1a a ==-,即1,2i j ==,满足120i j a a a a +=+=,但令320k a k =-=,则*32k =∉N ,故不存在存在2k ≥且*k ∈N ,使得0k a =,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的不充分条件;若“存在2k ≥且*k ∈N ,使得0k a =”,则取11,1i k j k =-≥=+,则1120i j k k k a a a a a -++=+==,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要条件;综上所述:“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要不充分条件.故选:B.9.十八世纪,瑞士数学家欧拉研究调和级数时,得到了以下结果:当n 很大时,1111ln 23n nγ++++=+ (其中γ为常数,其近似值为0.577)据此,可以估计111200012000230000+++ 的值为()A .4ln10B .ln6C .ln2D .3ln2【正确答案】D【分析】根据已知结论得两个等式相减即可得解.【详解】由题意得1111ln300002330000γ++++=+ ,1111ln200002320000γ++++=+ ,两式相减得,111300003ln 30000ln 20000ln ln 200012000230000200002+++=-== .故选:D .10.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.已知常数0,0p q ≥≥,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个;③若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.上述命题中,正确命题的个数是()A .0B .1C .2D .3【正确答案】D【分析】根据“距离坐标”的定义,依次分析各命题即可得答案.【详解】解:①,若0p q ==,则“距离坐标”为()0,0的点是两条直线的交点O ,因此有且仅有1个,故正确.②,若0pq =,且0p q +≠,则“距离坐标”为()0,q 或(),0p 的点有且仅有2个,故正确.③若0pq ≠,则0,0p q ≠≠,“距离坐标”为(),p q 的点有且仅有4个,为123,,,M M M M ,如图,故正确.故正确的命题个数为3个.故选:D二、填空题11.若5(1a =+,a b 为有理数),则a b +=_______________.【正确答案】120【分析】利用二项式定理展开5(1并计算,再利用有理项、无理项求解作答.【详解】由二项式定理得:1234555555513C 9C 97644(1=+++++=+依题意,76a +=+,a b 为有理数,因此76,44a b ==,所以120a b +=.故12012.银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,但记得密码的最后1位是偶数,则在第一次没有按对的条件下第2次按对的概率是_________.【正确答案】14/0.25【分析】根据条件概率公式直接计算即可.【详解】记事件A :第一次没有按对密码;事件B :第二次按对密码;()45P A =,()411545P AB =⨯=,()()()14P AB P B A P A ∴==.故答案为.14三、双空题13.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知14b c a -=,2sin 3sin B C =,则bc=_______,cos A 的值为________.【正确答案】3214-【分析】利用正弦定理边角互化即可求得b c,利用余弦定理即可求得cos A .【详解】因为ABC 中,2sin 3sin B C =,所以由正弦定理可得23b c =,即32b c =.又因为14b c a -=,所以2a c =,所以由余弦定理可得()2222223212cos 32422c c c b c a A bc c c ⎛⎫+- ⎪+-⎝⎭===-⨯⨯,故32;14-14.已知n S 是数列{}n a 的前n 项和,且对任意的正整数n ,都满足:11122n nn a a +-=+,若112a =,则3a =________,2023S =______________.【正确答案】11220232024【分析】直接利用条件可递推出第三项,利用累加法可得数列通项再用裂项相消法求和即可.【详解】由11122n n n a a +-=+和112a =可得:21232311111146,612,a a a a a a -=⇒=∴-=⇒=即3a =112;由11122n n n a a +-=+可得:()112211111112,21,...,4n n n n n n a a a a a a ----=-=--=,累加得()()()124111111211n n n n a a a n n n n +--=⇒==-++,所以20231111112023 (1223202320242024)S ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故112,20232024四、填空题15.已知曲线:44C x x y y -=.①若00(,)P x y 为曲线C 上一点,则0020x y ->;②曲线C 在()0,1-处的切线斜率为0;③R,20m x y m ∃∈-+=与曲线C 有四个交点;④直线20x y m -+=与曲线C无公共点当且仅当((),0,m ∈-∞⋃+∞.其中所有正确结论的序号是_____________.【正确答案】①②【分析】分x 、y 的符号情况化简曲线C 的方程,从而可画出曲线C 的图象,结合图象逐一分析即可.【详解】当0x ≥,0y ≥时,曲线C 的方程为2244x y -=,即2214x y -=,曲线C 是双曲线的一部分;当0x ≥,0y <时,曲线C 的方程为2244x y +=,即2214x y +=,曲线C 是椭圆的一部分;当0x <,0y ≥时,曲线C 的方程为2244x y --=,曲线C 不存在;当0x <,0y <时,曲线C 的方程为2244x y -+=,即2214x y -=,曲线C 是双曲线的一部分;双曲线2214x y -=和2214y x -=有一条共同的渐近线20x y -=,综上,可作出曲线C的图象,如图:由图象可知曲线C 的图象上的点都在直线20x y -=的下方,所以当00(,)P x y 在曲线C 上时,有0020x y ->,故①正确;设过点()0,1-的直线l 的方程是1y kx =-,若直线l 与椭圆2214x y +=相切,则由22114y kx x y =-⎧⎪⎨+=⎪⎩得221408()k x kx -+=,2640k ∆==,得0k =;若直线l 与双曲线2214x y -=相切,则由22114y kx x y =-⎧⎪⎨-=⎪⎩得22(41)80k x kx --=,则2410k -≠且2640k ∆==,得0k =,此时直线l 的方程是1y =-,与曲线C 相切,故②正确;直线20x y m -+=是表示与直线20x y -=平行或重合的直线,由曲线C 的图象可知,直线20x y m -+=与曲线C 不可能有四个交点,故③错误;设直线20x y n -+=与椭圆2214x y +=相切,则由222014x y n x y -+=⎧⎪⎨+=⎪⎩得228440y ny n -+-=,所以221632(4)0n n ∆=--=,解得n =±C的图象,取n =-,即直线20x y --=与曲线C 相切,所以若直线20x y m -+=与曲线C 无公共点,结合曲线C 的图象,0m ≥或m <-.故①②.方法点睛:1.曲线方程中带有绝对值,一般是分绝对值里的式子的符号讨论去绝对值;2.直线与曲线的交点问题常采用数形结合的方法.五、解答题16.在ABC 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC 存在.求ABC 的面积条件①:sin 47A =;条件②:sin B =【正确答案】(1)4π;(2)【分析】(1)直接由正弦定理边化角,结合倍角公式即可求解;(2)若选①:由正弦定理及倍角公式得4sin 23B =,ABC 不存在;若选②:先判断cos 0B >,再由sin 2B =求出cos B ,由73a b =及余弦定理求得a ,再计算面积即可.【详解】(1)由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又3sin 7A =,故sin 21B =,又()0,B π∈,故22B π=,4B π=;(2)若选①:由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又sin 47A =,故4sin 23B =,此时ABC 不存在;若选②:由7cos 06a B b =>,又sin 2B =,则1cos 2B =,73a b =,由余弦定理得2222cos b a c ac B =+-,即2276483a a a ⎛⎫=+- ⎪⎝⎭,解得3a =或245a =-(舍去),故ABC的面积为1sin 2ac B =.17.如图,在四棱锥P ABCD -中,PA ⊥底面,,//ABCD AD AB AB DC ⊥,2,1AD DC AP AB ====,点E 为棱PC的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AB P --的余弦值.【正确答案】(1)证明见解析;(2(3.【分析】(1)可以建立空间直角坐标系,利用向量数量积来证明BE DC ⊥,;(2)向量法:先求平面PBD 的法向量A ,然后利用公式1sin cos ,n BE n BE n BEθ⋅==⋅ 求直线BE 与平面PBD 所成角的正弦值;(3)向量法:先求平面ABF 和平面PBA 的法向量12,n n ,再利用公式121212cos ,n n n n n n ⋅=⋅ 来求二面角F AB P --的余弦值.【详解】依题意,以点E 为原点建立空间直角坐标系(如图),可得(1,0,0),(2,2,0)B C ,(0,2,0),(0,0,2)D P ,由点E 为棱PC 的中点,得()1,1,1E .(1)向量()0,1,1BE = ,()2,0,0DC = ,故0BE DC ⋅= .∴BE CD ⊥.(2)向量(1,2,0),(1,0,2)BD PB =-=- ,设()1,,n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎨⋅=⎩,即2020x y x z -+=⎧⎨-=⎩,不妨令1z =,可得()2,1,1n = 为平面PBD 的一个法向量.于是有3cos ,||||62n BE n BE n BE ⨯〈〉==⨯⨯ ,∴直线BE 与平面PBD 所成角的正弦值为33.(3)()2,2,2,(2,2,0),(1,0,0),CP AC AB =--== ,由点F 在棱PC 上,故(12,22,2)BF BC CF BC lCP l l l =+=+=-- ,由BF AC ⊥,得+22(12)(22=0)l l --,解得34l =,即113,,222BF ⎛⎫=- ⎪⎝⎭.设1(,,)n x y z = 为平面ABF 的法向量,则1100n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即01130222x x y z =⎧⎪⎨-++=⎪⎩,不妨令1z =,可得1(0,3,1)n =- 为平面ABF 的一个法向量.取平面PAB 的法向量2(0,1,0)n = ,则121212310cos ,1010n n n n n n ⋅===-⋅ .易知,二面角F AB P --31010.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数X ;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【正确答案】(1)91%(2)见解析(3)两次活动效果均好.详见解析【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数;(2)随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望;(3)根据后继一周都有提升可得两次活动效果均好.【详解】(1)表中十二周“水站诚信度”的平均数:959892889494838085929596191%12100x +++++++++++=⨯=.(2)随机变量X 的可能取值为0,1,2,3,()1212044464P X ==⨯⨯=,()3211211444444P X ==⨯⨯+⨯⨯1231444464+⨯⨯=,()3213212444444P X ==⨯⨯+⨯⨯3233044464+⨯⨯=,()32318344464P X ==⨯⨯=,∴X 的分布列为:X 0123P 1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%94%→和80%到85%看出,后继一周都有提升.本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.已知函数()ln f x ax x x =-.(1)当1a =时,求()f x 的零点;(2)讨论()f x 在[]1,e 上的最大值;(3)是否存在实数a ,使得对任意0x >,都有()f x a ≤?若存在,求a 的取值范围;若不存在,说明理由.【正确答案】(1)ex =(2)答案见解析(3)存在,a 的取值范围是1a =【分析】(1)利用导函数判断()f x 的单调性,进而判断零点的情况即可;(2)利用导函数判断()f x 在区间[]1,e 的单调性,进而求最值即可;(3)由题意只需()max f x a ≤即可,利用(2)中结论即1e 0a a --≤,利用导数求a 的范围即可.【详解】(1)()ln f x ax x x =-的定义域为()0,∞+,当1a =时,()ln f x x x x =-,()ln f x x '=-,所以当()0,1x ∈时,()0f x ¢>,()f x 单调递增,当()1,x ∈+∞时,()0f x '<,()f x 单调递减,又因为当0x →时()0f x >,()11f =,()e 0f =,所以()f x 仅有一个零点,e x =.(2)()1ln f x a x =--',令()0f x '=,解得1e a x -=,在区间()0,∞+内,x ()10,e a -1e a -()1e,a -+∞()f x '+0-()f x 单调递增极大值单调递减当1e 1a -≤(即1a ≤)时,在[]1,e 上()f x 单调递减,()max ()1f x f a ==,当1e e a -≥(即2a ≥)时,在[]1,e 上()f x 单调递增,()max ()e e e f x f a ==-,当11e e a -<<(即12a <<)时,在1e ,e a -⎡⎤⎣⎦上()f x 单调递增,在11,e a -⎡⎤⎣⎦上()f x 单调递减,()()1111max ()e e e 1e a a a a f x f a a ----==--=.综上所述,当1a ≤时,()f x 的最大值为a ,当2a ≥时,()f x 的最大值为e e a -,当12a <<时,()f x 的最大值为1e a -.(3)由(2)知在()0,∞+上,()11max ()ee a af x f --==,构造函数()()11e e a a g a f a a --=-=-,由题意应使()0g a ≤,()1e 1a g a -'=-,令()0g a '=,解得1a =.a (),1-∞1()1,+∞()g a '-0+()g a 单调递减极小值单调递增所以()min ()10g a g ==,所以使()0g a ≤的实数a 只有1a =,即a 的取值范围是1a =.20.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【正确答案】(Ⅰ(Ⅱ)1;(Ⅲ)平行,理由见解析.【详解】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;(Ⅱ)由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与3x =相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;(Ⅲ)分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c所以椭圆C 的离心率c e a ==.(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线D E 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线D E 的斜率10121DE k -==-,所以//BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233{(1)x y y k x +==-,得2222(13)6330k x k x k +-+-=.所以2122613k x x k +=+,21223313k x x k -=+.直线BM 的斜率11212323BM y x y x k x +---=-.因为()()()()()()()11212121131232132BM k x x k x x x x k x x -+--------=--121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=--0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.21.若项数为()3N N ≥的数列12:,,,N N A a a a 满足:()*11,N 2,3,,i a a i N =∈= ,且存在{}2,3,,1M N ∈- ,使得{}{}11,2,111,2,1n n n M a a M n N +⎧≤≤-⎪-∈⎨--≤≤-⎪⎩,则称数列N A 具有性质P .(1)①若3N =,写出所有具有性质P 的数列3A ;②若44,3N a ==,写出一个具有性质P 的数列4A ;(2)若2024N =,数列2024A 具有性质P ,求2024A 的最大项的最小值;(3)已知数列1212:,,,,:,,,N N N N A a a a B b b b 均具有性质P ,且对任意{},1,2,,i j N ∈ ,当i j ≠时,都有,i j i j a a b b ≠≠.记集合{}112,,,N T a a a = ,{}212,,,N T b b b = ,求12T T ⋂中元素个数的最小值.【正确答案】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)1013(3)3【分析】(1)直接根据性质P 的概念一一列举即可;(2)根据性质P 及累加法得M a M ≥和2025M a M ≥-,两式相加即可求解;(3)根据性质P 及累加法得23M a N ≤-,23M b N ≤-,求出并集中元素个数的最大值,从而求出交集中的元素个数最小值.【详解】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)当2024N =时,{}2,3,,2023M ∈ .由12111,1,,1M M a a a a a -=-≥-≥ ,累加得M a M ≥;又由20242023202411,1,,1M M a a a a a +≥-≥-≥ ,累加得2025M a M ≥-;相加得22025M a ≥,又*M a ∈N ,所以1013M a ≥.所以数列2024A 的最大项M a 的最小值为1013,一个满足条件的数列为()()1,2,,101320261014,1015,,2024n n n a n n ⎧=⎪=⎨-=⎪⎩ ;(3)由12111,2,,2M M a a a a a -=-≤-≤ ,累加得21M a M ≤-.又1M N ≤-,所以23M a N ≤-,同理,23M b N ≤-,所以{}()12121,2,,23,card 23T T N T T N ⋃⊆-⋃≤- ,因为()()12card card T T N ==,所以()()()()121212card card card card 3T T T T T T ⋂=+-⋃≥,所以12T T ⋂中元素个数的最小值为3,一组满足条件的数列为()()()()()11211,2,,1222,3,,12425n n n n n N a b n n N N n N N n N ⎧=⎧-=-⎪⎪==-=-⎨⎨-=⎪⎩⎪-=⎩ ,此时{}121,24,25T T N N ⋂=--.思路点睛:此题考查数列与集合结合的新定义问题,属于难题,关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。

湖南省岳阳市湘阴县2023届数学三下期末统考模拟试题含解析

湖南省岳阳市湘阴县2023届数学三下期末统考模拟试题含解析

湖南省岳阳市湘阴县2023届数学三下期末统考模拟试题一、认真计算。

1.口算6.2-0.7= 22×4= 0÷43= 4.5+2.3=630÷9= 13×30= 4800÷6= 120×4=2.用竖式计算。

(带*要验算)⨯8.4-7.5 *292÷46754⨯*4496÷6.4+7.7 36553.脱式计算.28×25÷7603÷9×85135+85÷5 72-72÷8707÷(152-145)612÷3÷2二、我会判断。

(对的画√,错的画×)4.因为624÷6的商是三位数,所以三位数除以一位数的商一定是三位数.(______)5.1除以任何数都得1._____.(判断对错)6.正方形的面积是边长的4倍.(____)7.0.9和1.0之间没有小数。

(________)8.7分还可以写成0.07元。

(______)。

三、精挑细选。

(把正确答案的序号填在括号里)9.一台机器3分印80张名片,照这样的速度,30分能印()张名片。

A.240 B.2400 C.80010.两个两位数相乘,积最小是( ).A.100 B.110 C.100011.世界最高峰珠穆朗玛峰约8848米,约是()千米。

A.9000 B.8000 C.912.下面算式中,商不是三位数的算式是()A.464÷8B.244÷2C.375÷313.下列算式中,商中间有0的算式是()。

A.502÷3 B.800÷7 C.216÷2 D.660÷3四、快乐填空。

14.30平方米=(____)平方分米800平方分米=(____)平方米48时=(____)日36个月=(____)年15.在计算90-10×3时,先算(_______),再算(_______),得数是(______).16.上北,下________,左________,右________。

2023届山东省高考模拟练习(三)数学试题

2023届山东省高考模拟练习(三)数学试题
7.已知宽为 的走廊与另外一条走廊垂直相连,若长为 的细杆能水平地通过拐角,则另外一条走廊的宽度至少是( ).
A. B. C. D.
8.函数 ,若方程 只有三个根 ,且 ,则 取值范围是( ).
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
(1)求证:AE⊥平面PBC;
(2)是否存在点F使平面AEF与平面PCD所成的锐二面角为30°?若存在试确定点F的位置;若不存在请说明理由.
20.(本小题满分12分)端午假期即将到来某超市举办“高考高粽”有奖促销活动凡持高考准考证考生及家长在端午节期间消费每超过600元(含600元)均可抽奖一次抽奖箱里有10个形状、大小完全相同的小球(其中红球有3个黑球有7个)抽奖方案设置两种顾客自行选择其中的一种方案.
9.直线 与圆 交于 两点, 为圆上任意一点,则( ).
A.线段 最短长度为 B. 的面积最大值为
C.无论 为何值, 与圆相交D.不存在 ,使 取得最大值
10.正方体 的边长为2,Q为棱 的中点,点 分别为线段 上两动点(含端点),记直线 与面 所成角分别为 ,且 ,则( ).
A.存在点 使得 B. 为定值
(2)若小杰消费恰好满1000元试比较说明小杰选择哪一种抽奖方案更合算?
21.(本小题满分12分)已知点N为圆C1:(x+1)2+y2=16上一动点圆心C1关于y轴的对称点为C2点MP分别是线段C1NC2N上的点且 • =0 =2 .
(1)求点M的轨迹方程;
(2)过点A(﹣20)且斜率为k(k>0)的直线与点M的轨迹交于AG两点点H在点M的轨迹上GA⊥HA当2|AG|=|AH|时证明: <k<2.

2023学年广东省佛山市禅城区四校联考中考三模数学试题(解析版)

2023学年广东省佛山市禅城区四校联考中考三模数学试题(解析版)

2023年初三模拟考试数学满分为120分,考试时间90分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数为( )A. 13−B. 1C.D. π 【答案】A【解析】【分析】先根据负指数幂进行计算,再根据实数的大小比较法则比较数的大小,即可得到答案. 【详解】解:1133−= , 11π3∴<<<, 故选:A .【点睛】本题考查了实数的大小比较,负指数幂,熟练掌握:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2. 如图,a b ∥,130∠=°,则2∠的度数是( )A. 150°B. 145°C. 35°D. 30°【答案】D【解析】 【分析】根据两直线平行,内错角相等可直接得到答案.【详解】∵,130a b ∠=° ,∴2130∠=∠=°,故选:D .【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.3. 当前随着新一轮科技革命和产业变革孕育兴起,新能源汽车产业正进入加速发展的新阶段.下列图案是我国的一些国产新能源车企的车标,车标图案既是轴对称图形,又是中心对称图形的是( )A.B. C. D.【答案】C【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、该图形不是轴对称图形,也不是中心对称图形,不符合题意;B 、该图形是轴对称图形,不是中心对称图形,不符合题意;C 、该图形既是中心对称图形又是轴对称图形,符合题意;D 、该图形不是轴对称图形,是中心对称图形,不符合题意.故选:C .【点睛】本题考查了轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的概念是解题关键. 4. 下列各式中,正确的是( )A. B. 5=C. 6=D. = 【答案】D【解析】【详解】解:AB ,故本选项错误,不符合题意;CD故选:D .【点睛】本题主要考查了二次根式的加法、乘法、除法等知识点,熟练掌握二次根式的相关运算法则是解题的关键.5. 在平面直角坐标系中,将点(1,1)−向右平移2个单位后,得到点的坐标是( )A. (3,1)−B. (1,1)C. (1,3)−D. (1,1)−− 【答案】B【解析】【分析】把点()1,1−的横坐标加2,纵坐标不变,据此即可解答.【详解】解:点()1,1−向右平移2个单位长度后得到的点的坐标为()1,1.故选:B .【点睛】本题主要考查了坐标与图形变化﹣平移.掌握平移的规律“左右横,上下纵,正加负减”是解答本题的关键.6. 如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是( )A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 三角形两边之和大于第三边【答案】B【解析】【分析】由直线公理可直接得出答案. 法用几何知识解释应是:两点确定一条直线.故选:B .【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.7. 如图是一个可以自由转动的转盘.转动转盘,当指针停止转动时,指针落在红色区域的概率是( )A. 1B. 23C. 12D. 13【答案】D【解析】【分析】用红色区域的圆心角除以周角度数即可. 【详解】解:转动转盘,当指针停止转动时,指针落在红色区域的概率是12013603°=°, 故选:D .【点睛】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.8. 如图,以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,已知13OA OA =',若四边形ABCD 的面积是2,则四边形A B C D ′′′′的面积是( )A. 3B. 6C. 9D. 18【答案】D【解析】 【分析】直接利用位似图形的性质得出面积比进而得出答案.【详解】解: 以点O 为位似中心,作四边形ABCD 的位似图形A B C D ′′′′,13OA OA =', 21139ABCDA B C D S S ′′′′ ∴== 四边形四边形, 四边形ABCD 的面积是2,∴四边形A B C D ′′′′的面积是18,故选:D .【点睛】本题主要考查了位似变换,正确得出面积比是解决此题的关键.9. 如图,在ABC 中,AB AC BC >>,按如下步骤作图.第一步:作BAC ∠的平分线AD 交BC 于点D ;第二步:作AD 的垂直平分线EF ,交AC 于点E ,交AB 于点F ;第三步:连接DE .则下列结论正确的是( )A. DE AB ∥B. EF 平分ACC. CD DE =D. CD BD =【答案】A【解析】 【分析】如图,由角平分线和垂直平分线的性质可得1223∠=∠∠=∠、,进而得到13∠=∠,最后运用平行线的判定定理即可说明B 选项正确.【详解】解:如图:∵AD 是BAC ∠的角平分,EF AD 的中垂线,∴12∠=∠,AE DE =,∴23∠∠=,∴13∠=∠,∴DE AB ∥.故选:A .【点睛】本题主要考查了角平分线的定义、垂直平分线的性质以及平行线的判定,灵活运用相关知识成为解答本题的关键.10. 某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流()A I 与电阻()R Ω的关系图象,该图象经过点()8800.25P ,.根据图象可知,下列说法正确的是( )A. 当0.25I <时,880R <B. I 与R 的函数关系式是()2000I R R >C. 当1000R >时,0.22I >D. 当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【解析】【分析】设I 与R 的函数关系式是()0U I R R >,利用待定系数法求出()2200I R R>,然后求出当1000R =时, 2200.221000I =,再由2200>,得到I 随R 增大而减小,由此对各选项逐一判断即可. 【详解】解:设I 与R 的函数关系式是()0U IR R >, ∵该图象经过点()8800.25P ,, ∴()0.250880U R =>, ∴220U =,∴I 与R 的函数关系式是()2200IR R >,故B 不符合题意; 当1000R =时, 2200.221000I=, ∵2200>,∴I 随R 增大而减小,∴当0.25I <时,880R >,当1000R >时,0.22I <,当8801000R <<时,I 的取值范围是0.220.25I <<,故A 、C 不符合题意,D 符合题意;故选D .【点睛】本题主要考查了反比例函数的实际应用,正确求出反比例函数解析式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11. 若实数a ,b 满足2(2)|3|0a b −++=,则ab =_________.【答案】6−【分析】根据非负数的性质列出算式求出a ,b 的值,代入计算即可得到答案.【详解】解: 2(2)|3|0a b −++=,2(2)|3|00a b ≥−+≥,, 2030a b ∴−=+=,,23a b ∴==−,,()236ab ∴=×−=−,故答案为:6−.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 12. 如果一个三角形两边的长分别等于一元二次方程217660x x −+=的两个实数根,那么这个三角形的第三边的长可能是20吗?__________.(填“可能”或“不可能”)【答案】不可能【解析】【分析】先求出方程的解,再根据三角形三边关系定理判断即可得到答案.【详解】解: 217660x x −+=,()()1160x x ∴−−=, 11x ∴=或6x =,即三边为6、11、20,61120+< ,不符合三角形三边关系定理,∴这个三角形的第三边的长不可能是20,故答案为:不可能.【点睛】本题考查了解一元二次方程,三角形三边关系定理的应用,能求出一元二次方程的解是解此题的关键.13. 化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为110 时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷,丁烷的分子结构式如图所示,则第7个庚烷分子结构式中“H ”的个数是_________.【答案】16【分析】根据题目中的图形,可以发现“H ”的个数的变化特点,然后即可写出第7个庚烷分子结构式中“H ”的个数.详解】解:由图可得:甲烷分子结构中“H ”的个数是:2214+×=,乙烷分子结构中“H ”的个数是:2226+×=,丙烷分子结构中“H ”的个数是:2238+×=,……∴庚烷分子结构中“H ”的个数是:22716+×=,故答案为:16.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现“H ”的个数的变化特点. 14. 如图,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,依次连接E 、G 、F 、H 得到四边形是__________.【答案】平行四边形【解析】【分析】根据中位线性质和平行四边形的判定条件,即可解答;【详解】解: E 、F 分别是AD 、BC 的中点,G 、H 分别是BD 、AC 的中点,,GF DC EH DC ∴∥∥,且11,22GF CD EH CD ==, GF EH ∴∥且GF EH =,∴四边形GFHE 为平行四边形,故答案为:平行四边形.【点睛】本题考查了中位线的性质,平行四边形的判定,能判断出GF 是BCD △的中位线,EH 是ACD 的中位线是解题的关键.15. 如图,AD 是一根3cm 的绳子,一端拴在柱子(点A )上,另一端(点D )拴着一只羊,EABC 为一道围墙,3AE >cm ,2AB =cm ,120ABC ∠=°,则羊最大的活动区域的面积是__________.(结果保【的留π)【答案】229cm 12π 【解析】【分析】羊最大的活动区域的面积是一个扇形+一个小扇形的面积.详解】解:如图所示:大扇形的圆心角是90度,半径是3, ∴面积229039cm 3604ππ°×°==, 小扇形圆心角是18012600°−°=°,半径是1, ∴面积226011cm 3606ππ°×°==,则羊最大的活动区域的面积是()2929cm 412ππ=, 故答案为:229cm 12π. 【点睛】本题关键是从图中找出小羊的活动区域是由哪几个图形组成的.三、解答题(一)(本大题共3小题,每小题8分,共24分)16. 求不等式组()3135131x x x x + >− −≥−的解集,并把不等式组的解集在数轴上表示出来.【答案】不等式组的解集为13x −≤<,图见解析【解析】【分析】先分别求出每一个不等式的解集,再根据不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无处找,即可得到解集,在数轴上画出解集即可.【【详解】解:()3135131x x x x + >− −≥−①②,解不等式①可得:()331x x +>−,333x x +>−,333x x −>−−,26x −>−,3x <,解不等式②可得:5133x x −≥−,5313x x −≥−,22x ≥−,1x ≥−,∴不等式组的解集为13x −≤<,在数轴上表示为:.大中间找,大大小小无处找,是解题的关键.17. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,调查统计了部分学生一周的课外阅读时长(单位:小时),整理数据后绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为__________,图①中m 的值为__________;(2)求统计的这部分学生一周课外阅读时长的平均数、众数和中位数.【答案】(1)20;30(2)统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8【解析】【分析】(1)用条形统计图中的数据除以扇形统计图中对应的占比,即可得到总人数;再用学生一周的课外阅读时长为9小时的人数除以总人数,即可得到m的值;(2)按照平均数,众数和中位数的概念,依次求出即可.【小问1详解】解:本次接受调查的人数为315%20÷=(人);根据条形统计图,学生一周的课外阅读时长为9小时的人数为6人,故学生一周的课外阅读时长为9小时的人数占比为6200.330÷==%,30m∴=,故答案为:20;30【小问2详解】解:36748596210820x×+×+×+×+×=,观察条形统计图,9出出现的次数最多,故众数为9;将这组数据从小到大排列,其中位于中间的两个数都是8,故中位数为8,∴统计的这部分学生一周课外阅读时长的平均数、众数和中位数分别为8,9,8.键.18. 按下列程序计算,把答案填写在表格内,并回答下列问题:(1)根据上述计算你发现了什么规律?(2)你能说明你发现的规律是正确的吗?【答案】(1)输入除0以外的数,输出结果都为1;(2)见解析【解析】【分析】(1)输入-2时,输出结果为1,输入13−时,输出结果为1,即可得;(2)结合题意可将程序表示:221()(0)x x x x x+÷−≠,进行计算即可得. 【详解】解:(1)输入-2时,输出结果为1,输入13−时,输出结果为1,故可得规律:输入除0以外的数,输出结果都为1; (2)结合题意可将程序表示为:221()(0)x x x x x+÷−≠, 222221111()11x x x x x x x x x x x+÷−=+−=+−=,所以发现的规律是正确的.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序和运算法则.四、解答题(二)(本大题共3小题,每小题9分,共27分)19. 佛山奇龙大桥犹如一架巨大的竖琴,横跨于东平水道上,是禅城区的“东大门”,大桥采用独塔斜拉桥结构,全长395米,已知主塔AB 垂直于桥面BC 于点B ,其中两条斜拉索AD 、AC 与桥面BC 的夹角分别为60°和45°,两固定点D 、C 之间的距离约为60m ,求主塔AB 的高度.(结果保留整数,参考数1.41≈1.73≈)【答案】141m 【解析】【分析】在Rt △ABD中,利用正切的定义求出=AB ,然后根据45C ∠=°得出AB BC =,列方程求出BD 即可解答. 【详解】解:∵AB BC ⊥,∴90ABC ∠=°, 在Rt △ABD中,tan 60AB BD =⋅°=,在Rt ABC △中,45C ∠=°,为∴AB BC=,∴AB BD CD=+,60BD=+,∴)301 BD=m,∴)16090141.3141 AB BC==30++=+=≈m.答:主塔AB的高度约为141m.【点睛】本题主要考查了解直角三角形的应用,熟练掌握正切的定义是解题的关键.20. 某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)(1)分别求出y1、y2的函数关系式(不写自变量取值范围);(2)通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?【答案】(1)y1=273x−+;y2=13x2﹣4x+13;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=+=,解得237kb=−=.∴y1=﹣23x+7.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+13.(2)收益W =y 1﹣y 2, =﹣23x+7﹣(13x 2﹣4x+13) =﹣13(x ﹣5)2+73, ∵a =﹣13<0,∴当x =5时,W 最大值=73. 故5月出售每千克收益最大,最大为73元. 【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法21. 如图,在△ABC 中,以边AB 为直径作⊙O ,交AC 于点D ,点E 为边BC 上一点,连接DE .给出下列信息:①AB =BC ;②∠DEC =90°;③DE 是⊙O 的切线.(1)请在上述3条信息中选择其中两条作为条件,剩下的一条作为结论,组成一个命题.你选择的两个条件是______,结论是______(只要填写序号).判断此命题是否正确,并说明理由; (2)在(1)的条件下,若CD =5,CE =4,求⊙O 的直径.【答案】(1)①和②,③,真命题,证明见解析;(答案不唯一) (2)254【解析】【分析】(1)选择①和②为条件,③为结论,连接OD ,由等边对等角可得出∠A =∠C ,∠A =∠ODA ,即可推出∠C =∠ODA ,从而可证明//OD BC ,再根据平行线的性质和∠DEC =90°,可证明∠ODE =∠DEC =90°,即OD DE ⊥,说明DE 是⊙O 的切线;(2)连接BD ,由直径所对圆周角为直角得出DB AC ⊥.再结合等腰三角形三线合一的性质可得出AD =CD =5.又易证 ABD CDE ,即得出AB ADCD CE=,代入数据即可求出AB 的长. 【小问1详解】解:选择①和②为条件,③为结论,且该命题为真命题. 证明:如图,连接OD , ∵AB =BC , ∴∠A =∠C . ∵OA =OD , ∴∠A =∠ODA , ∴∠C =∠ODA , ∴//OD BC . ∵∠DEC =90°,∴∠ODE =∠DEC =90°,即OD DE ⊥, ∴DE 是⊙O 的切线.故答案为:①和②,③;(答案不唯一) 【小问2详解】 解:如图,连接BD , ∵AB 为直径,∴90ADB ∠=°,即DB AC ⊥. ∵AB =BC , ∴AD =CD =5.在ABD △和CDE 中90ADB DEC A C ∠=∠=° ∠=∠,∴ ABD CDE , ∴AB AD CD CE=,即554AB =, ∴254AB =. 故圆O 的直径为254.【点睛】本题考查等腰三角形的性质,平行线的判定和性质,切线的判定和性质,圆周角定理以及三角形相似的判定和性质.解题的关键是连接常用的辅助线.五、解答题(三)(本大题共2小题,每小题12分,共24分)22. 在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”,例如(3,3)−−、(1,1)、(2023,2023)都是“不动点”,已知双曲线9y x=. (1)求双曲线9y x=上的“不动点”; (2)若抛物线23y ax x c =−+(a 、c 为常数)上有且只有一个“不动点”. ①当1a >时,求c 的取值范围; ②如果1a =,过双曲线9y x=图象上第一象限的“不动点”作平行于x 轴的直线l ,若抛物线上有四个点到l 的距离为m ,直接写出m 的取值范围.【答案】(1)双曲线9y x=上的“不动点”为()3,3和()3,3−−; (2)①04c <<;②504m <<【解析】【分析】(1)根据定义设“不动点”为(),x x ,即可求解;(2)①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x ,根据抛物线上有且只有一个“不动点”,列不等式求解;②根据题意先求出抛物线解析式和直线l ,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C ,可得AB 即可求出答案. 【小问1详解】 解:设双曲线9y x=上的“不动点”为(),x x ,则9x x=,解得:13x =,23x =-, ∴双曲线9y x=上的“不动点”为()3,3和()3,3−−; 【小问2详解】解:①设抛物线23y ax x c =−+(a 、c 为常数)上的“不动点”为(),x x , 则23x ax x c =−+,∵抛物线上有且只有一个“不动点”,∴关于x 的一元二次方程240ax x c −+=有两个相等的实数根, ∴()224440b ac ac −−−==, 解得:4a c=, ∵1a >, ∴4>1c, ∴04c <<; ②当1a =时,则41c=, 解得:4c =,∴抛物线为234y x x =−+, 由(1)得:双曲线9y x=在第一象限上的“不动点”为()3,3, ∴直线l 即直线3y =,∵223734+24y x x x =−+=−, ∴抛物线顶点坐标为37,24,对称轴为直线32x =,设直线r 在直线l 下方且到直线l 的距离为m ,直线32x =交直线l 于点A ,交直线r 于点C , ∴AC m =,3,32A, ∴75344AB =−=, 设直线t 与直线r 关于直线l 对称,∵当点C 在点B 上方时,抛物线上四个点到l 的距离为m , ∴504m <<; 【点睛】本题考查反比例函数图像与性质、二次函数的图像与性质、新定义问题的求解等,综合性强、难度大.23. 如图1,在矩形ABCD 中,5AB =,3AD =,点P 在线段AB 上运动,设AP x =,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 为折痕与AD 或AB 的交点,点F 为折痕与BC 或CD 的交点),再将纸片还原.(1)①当0x =时,折痕EF 的长为__________; ②当x =__________时,点E 与点A 重合.(2)当点P 与点B 重合时,在图2中画出四边形DEPF ,求证:四边形DEPF 为菱形,并求出菱形DEPF 的周长;(3)如图3,若点E 在边AD 上,点F 在边CD 上,线段DP 与EF 相交于点M ;连接EP ,FP ,用含x 的代数式表示四边形DEPF 的面积. 【答案】(1)①5;②3 (2)证明见解析,周长为685(3)33271224x x x++【解析】【分析】(1)①当0x =时,折痕EF 的长正好等于矩形的长为5;②当点E 与点A 重合时,画出符合要求的图形,根据折叠的性质即可得到答案;(2)由由折叠的性质可得:DE PE DF PF DEF PEF ==∠=∠,,,由矩形的性质可得AB CD ,从而得到PEF DFE ∠=∠,则DFE DEF ∠=∠,从而得到DE PD DF PF ===,即可得证,设DF x =,则DF PF x ==,5CF x =−,在Rt CFP △中,222CF PC PF +=,解方程即可得到答案; (3)作FGAB ⊥,交AB 于G ,在Rt AEP △中,222AE AP EP +=,由勾股定理可得,296xAE −=,则296x DE PE +==,通过证明AEP GPF ∽,可得AP EP FG PF =,即2963x x PF+=,可得29+2x PF x=,最后由APE DEPFAPFD S S S =− 四边形梯形即可得到答案. 【小问1详解】解:① 折叠纸片,使点D 与点P 重合,得折痕EF ,∴当0AP x ==时,点D 与点P 重合,即为A D 、重合,B C 、重合,5EF AB CD ∴===,故答案为:5;②当点E 与点A 重合时,如图所示:由折叠的性质可得:3AD AP ==,∴当3x =时,点E 与点A 重合,故答案为:3; 【小问2详解】,由折叠性质可得:DE PE DF PF DEF PEF ==∠=∠,,, 四边形ABCD 为矩形,AB CD ∴∥,PEF DFE ∴∠=∠,DFE DEF ∴∠=∠,DE PD DF PF ∴===,∴四边形DEPF 为菱形,设DF x =,则DF PF x ==,5CF x =−,的在Rt CFP △中,222CF PC PF +=,()22253x x ∴−+=, 解得:751x =, ∴菱形DEPF 的周长为1768455×=; 【小问3详解】 解:如图所示,作FGAB ⊥,交AB 于G ,,则四边形ADFG 为矩形,3FG AD ∴==,由折叠的性质可得:90DE PE DF PF EPF EDF ==∠=∠=°,,, 设AE a =,则3DE PE a ==−, 在Rt AEP △中,222AE AP EP +=, 即()2223a x a +=−,解得:296x a −=,296x AE −∴=,296x DE PE +==, 9090EPA FPG EPA AEP ∠+∠=°∠+∠=° ,, AEP FPG ∴∠=∠,90EAP FGP ∠=∠=° , AEP GPF ∴ ∽,AP EP FG PF∴=,即2963x x PF+=,29+2x PF x∴=,第21页/共22页22319+19327322261224APE DEPF APFD x x x x S S S x x x x−=−=+×−⋅=++ 四边形梯形. 【点睛】本题主要考查了折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质、勾股定理,熟练在掌握折叠的性质、矩形的性质、菱形的判定与性质、相似三角形的判定与性质,添加适当的辅助线,是解题的关键.第22页/共22页。

2023届南通三模数学试题及答案

2023届南通三模数学试题及答案

南通市2023届高三第三次调研测试(考前模拟)数 学注意事项:1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 作答选择题时,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案。

非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;不准使用铅笔和涂改液。

3. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

4. 本试卷共6页,22小题,满分150分。

考试用时120分钟。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若“()0,πsin 2sin 0x x k x ∃∈−,<”为假命题,则k 的取值范围为( ). A. (,2]−∞−B. (,2]−∞C. (,2)−∞−D. (,2)−∞2. 复数22021202212i 3i 2022i 2023i z =+++++的虚部为( ).A. 1012B. 1011−C. 1011D. 20223. 平面向量a ,b 满足,240a a b −⋅−=,||3b =,则||a 最大值是( ).A. 3B. 4C. 5D. 64. 某同学在课外阅读时了解到概率统计中的切比雪夫不等式,该不等式可以使人们在随机变量X 的期望()E X 和方差()D X 存在但其分布未知的情况下,对事件“|()|X E X ε−…”的概率作出上限估计,其中ε为任意正实数.切比雪夫不等式的形式为:(|()|)((),)P X E X f D X εε−厔,其中((),)f D X ε是关于()D X 和ε的表达式.由于记忆模糊,该同学只能确定((),)f D X ε的具体形式是下列四个选项中的某一种.请你根据所学相关知识,确定该形式是( ). A. 2()D X ε⋅B. 21()D X ε⋅C.2()D X ε D.2()D X ε5. 已知三棱锥P ABC −,Q 为BC 中点,2PB PC AB BC AC =====,侧面PBC ⊥底面ABC ,则过点Q 的平面截该三棱锥外接球所得截面面积的取值范围为( ). A. 5ππ,3⎡⎤⎢⎥⎣⎦B. π2π,23⎡⎤⎢⎥⎣⎦C. 2π,2π3⎡⎤⎢⎥⎣⎦D. []π,2π6. 抛物线24y x =的焦点为F ,过点F 的直线l 交抛物线于,A B 两点,以AB 为直径的圆C 交y 轴于,M N 两点,O 为坐标原点,则MNC △的内切圆直径最小值为( ). A. 38B. 36−C. 434−D. 432−7. 已知宽为a 的走廊与另外一条走廊垂直相连,若长为8a 的细杆能水平地通过拐角,则另外一条走廊的宽度至少是( ). A. 2aB. ()421a −C. 23aD. 33a8. 函数()2023f x xx =,若方程()()2sin 0x x f x ax +−=只有三个根123,,x x x ,且123x x x <<,则213sin 2023x x x +的取值范围是( ).A. ()0,+∞B. ()2023,+∞C. (),2023−∞−D. (),0−∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 直线:20l mx y m +−=与圆224x y +=交于,A B 两点,P 为圆上任意一点,则( ).A. 线段AB 最短长度为22B. AOB △的面积最大值为2C. 无论m 为何值,l 与圆相交D. 不存在m ,使APB ∠取得最大值10. 正方体ABCD A B C D −''''的边长为2,Q 为棱AA '的中点,点,M N 分别为线段,C D CD ''上两动点(含端点),记直线,QM QN 与面ABB A ''所成角分别为,αβ,且22tan tan 4αβ+=,则( ). A. 存在点,M N 使得//MN AA ' B. DM DN ⋅为定值C. 存在点,M N 使得32MN =D. 存在点,M N 使得MN CQ ⊥11. 椭圆曲线232y ay x bx cx d +=+++是代数几何中一类重要的研究对象.则关于椭圆曲线232:2453W y y x x x +=−+−,下列结论正确的有( ).A. W 关于直线1x =−对称B. W 关于直线1y =−对称C. W 上的点的横坐标的取值范围为[)1,+∞D. W 上的点的横坐标的取值范围为{}[)12,⋃+∞12. 1979年,李政道博土给中国科技大学少年班出过一道智趣题:“5只猴子分一堆桃子.怎么也不能分成5等份,只好先去睡觉.准备第二天再分.夜里1只猴子偷偷爬起来,先吃1个桃子.然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,吃掉1个桃子后.也将桃子分成5等份,藏起自己的一份睡觉去了:以后的3只猴子都先后照此办理.问最初至少有多少个桃子?最后至少剩下多少个桃子?”.下列说法正确的是( ).A. 若第n 只猴子分得n b 个桃子(不含吃的),则1541(2,3,4,5)n n b b n −=−=B. 若第n 只猴子连吃带分共得到n a 个桃子,则{}(1,2,3,4,5)n a n =为等比数列C. 若最初有3121个桃子,则第5只猴子分得256个桃子(不含吃的)D. 若最初有k 个桃子,则4k +必为55的倍数三、填空题:本题共4小题,每小题5分,共20分.13. 随机变量1~2,3X B ⎛⎫ ⎪⎝⎭,则()21X σ+=__________.14. 函数32()(0)f x ax bx cx d a b =++++<在R 上是增函数,则ca b+的最大值为__________. 15. 已知0122C C C C (1)n n nn n n nx x x x ++++=+,则012111C C C C 231n n n n n n ++++=+__________. 16. 将函数()π()2sin 32f x x ϕϕ⎛⎫=+≤ ⎪⎭的图象向右平移2π9个单位长度,得到的函数()g x 的图象关于点11π,018⎛⎫− ⎪⎝⎭对称,且()g x 在区间,m m ϕϕ⎛⎫− ⎪⎝⎭上单调递增,则ϕ=__________,实数m 的取值范围是__________.(本小题答对一空得2分,答对两空得5分)四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤,只有答案没有过程的不能得分.17. (10分)最新研发的某产品每次试验结果为成功或不成功,且试验成功的概率为(01).p p <<现对该产品进行独立重复试验,若试验成功,试验结束;若试验不成功,则继续试验,且最多试验10次.记X 为试验结束时所进行的试验次数,且每次试验的成本为(0)a a >元. (1)①写出X 的分布列;②证明:1();E X p<(2)某公司意向投资该产品.若0.25p =,且试验成功则获利5a 元,请说明该公司如何决策投资.18. (12分)如图,在三棱柱111ABC A B C −中,14AB AA ==,2BC =,123A C =,AC BC ⊥,160.A AB ︒∠=(1)证明:BC ⊥平面11ACC A ;(2)设点D 为1CC 的中点,求直线1A D 与平面11ABB A 所成角的正弦值.19. (12分)设{}n a 是各项均为正数的等差数列,11a =,且31a +是2a 和8a 的等比中项;记{}n b 的前n 项和为n S ,*22().n n b S n N −=∈(1)求{}n a 和{}n b 的通项公式; (2)设数列{}n c 的通项公式2,,n n n a n c b n +⎧⎪=⎨⎪⎩为奇数为偶数①求数列{}n c 的前21n +项和21n T +;②求(1)21ini i ia c −=∑.20. (12分)已知ABC △,D 为边AC 上一点,1AD =, 2.CD = (1)若34BA BD ⋅=,0BC BD ⋅=,求ABC △的面积; (2)若直线BD 平分ABC ∠,求ABD △与CBD △内切圆半径之比的取值范围.21. (12分)双曲线C :2213y x −=,点00(,)A x y 是C 上位于第一象限的一点,点A 、B 关于原点O 对称,点A 、D 关于y 轴对称.延长AD 至E 使得1||||3DE AD =,且直线BE 和C 的另一个交点F 位于第二象限中. (1)求0x 的取值范围;(2)证明:AE 不可能是BAF ∠的三等分线.22. (12分)已知函数()e xx f x =. (1)求曲线()y f x =在()()e,e f −−处的切线方程;(2)若120nii i xx ==∑,>,证明:()212e nni i f x −=≤∑.南通2023高三三模 考前模拟数学1.若“(0,)x π∃∈,”为假命题,则k 的取值范围为( ) A. (,2]−∞− B. (,2]−∞C. (,2)−∞−D. (,2)−∞【答案】 A【解析】 【分析】本题主要考查命题的真假,函数的恒成立问题,求函数的最值,属于中档题. 由题意可得对任意(0,)x π∈,,即,求得2cos x 的范围,可得k 的取值范围. 【解答】 解:“(0,)x π∃∈,”为假命题, ∴对任意(0,)x π∈,,即对任意(0,)x π∈,,,2k ∴−…, 故选:.A2. 已知i 为虚数单位,则复数22021202212i 3i 2022i 2023i z =+++++的虚部为A. 1012B. 1011−C. 1011D. 2022【答案】 A【解析】 【分析】本题考查复数的四则运算,考查错位相减法求和,属于中档题. 利用错位相减法求和求出复数z 求解即可. 【解答】解:22021202212i 3i 2022i 2023i z =+++++, 所以23202220232320222023z i i i i i i ⋅=+++++,所以220222023(1)12023i z i i i i −=++++−20232023120231i i i−=−−20232024i i i=+= 所以2024(2024)(1)1(1)(1)i i i z i i i +==−−+ 20242024101210122i i−==−+ 所以复数z 的虚部为为1012. 故选A3. 平面向量a ,b 满足,,||3b =,则||a 最大值是( )A. 3B. 4C. 5D. 6【答案】 B【解析】 【分析】本题主要考查了平面向量数量积的定义及性质的简单应用,属于中档题.先设向量a ,b 的夹角为θ,由已知结合向量数量积的定义可得2||443cos ||||||a a a a θ−==−,结合向量夹角的范围可求.【解答】解:设向量a ,b 的夹角为θ,240a a b −⋅−=,||3b =,243||cos a a b a θ∴−=⋅=,2||443cos ||||||a a a a θ−∴==−,且0a ≠,0θπ剟,1cos 1θ∴−剟,则,即,解可得,,即||a 最大值是4.故选:.B4. 某同学在课外阅读时了解到概率统计中的切比雪夫不等式,该不等式可以使人们在随机变量X 的期望()E X 和方差()D X 存在但其分布未知的情况下,对事件“|()|X E X ε−…”的概率作出上限估计,其中ε为任意正实数.切比雪夫不等式的形式为:(|()|)((),)P X E X f D X εε−厔,其中((),)f D X ε是关于()D X 和ε的表达式.由于记忆模糊,该同学只能确定((),)f D X ε的具体形式是下列四个选项中的某一种.请你根据所学相关知识,确定该形式是 A. 2()D X ε⋅ B. 21()D X ε⋅C.2()D X ε D.2()D X ε【答案】 D【解析】 【分析】本题主要考查了切比雪夫不等式,属于中档题. 利用期望和方差的关系可得答案. 【解答】解:因为(|()|)((),)P X E X f D X εε−厔, 所以则所以((),)f D X ε的具体形式是2().D X ε故选:.D5. 已知三棱锥P ABC −,Q 为BC 中点,2PB PC AB BC AC =====,侧面PBC ⊥底面ABC ,则过点Q 的平面截该三棱锥外接球所得截面面积的取值范围为( ) A. 5[,]3ππ B. 2[,]23ππC. 2[,2]3ππ D. [,2]ππ【答案】 A【解析】 【分析】本题考查空间几何体的外接球问题和截面问题,考查空间想象能力,难度较大. 【解答】解:连接PQ ,QA ,由2PB PC AB BC AC =====,可知:ABC 和PBC 是等边三角形,设三棱锥P ABC −外接球的球心为O ,所以球心O 到平面ABC 和平面PBC 的射影是ABC 和PBC 的中心F ,E , PBC 是等边三角形,Q 为BC 中点,所以PQ BC ⊥,又因为侧面PBC ⊥底面ABC ,侧面PBC ⋂底面ABC BC =, 所以PQ ⊥底面ABC ,而AQ ⊂底面ABC ,因此PQ AQ ⊥,所以OFQE 是矩形.ABC 和PBC 是边长为2的等边三角形,所以两个三角形的高2212(2)32h =−⨯=在矩形OFQE 中,1322333OE FQ h AE h =====,连接OA , 所以22141533OA OE EA =+=+=, 设过点Q 的平面为α,当OQ α⊥时, 此时所得截面的面积最小,该截面为圆形,222211226()()333333OQ OF FQ h h h =+=+===, 因此圆Q 22156199OA OQ −=−=,所以此时面积为21;ππ⋅= 当点Q 在以O 为圆心的大圆上时,此时截面的面积最大,面积为:2155;3ππ⋅= 所以截面的面积范围为:5[,]3ππ,故选.A6. B 【分析】根据抛物线、圆以及导数相关知识求解即可.7. D 【分析】根据解三角以及导数相关知识求解即可.8. D 【分析】根据观察法以及函数奇偶性得到2130,x x x ==−带入即可.9. CD 【分析】斜率一定存在,所以AB 错误,D 正确,直线所过定点在圆内故C 正确。

广西柳州市2024届高三第三次模拟考试数学试题含答案

广西柳州市2024届高三第三次模拟考试数学试题含答案

柳州市2024届高三第三次模拟考试数学(考试时间120分钟满分150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某中学的学生积极参加体育锻炼,其中有90%的学生喜欢足球或游泳,60%的学生喜欢足球,80%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .70%B .60%C .50%D .40%2.已知i 是虚数单位,若()()1i i a ++为实数,则实数a 的值为()A .1B .2-C .0D .1-3.已知()()12,3,3,,1AB AC t BC ===,则AB BC ⋅= ()A .3-B .2-C .2D .34.在天文学中,天体的明暗程度可以用星等或亮度来描述。

两颗星的星等与亮度满足12125lg 2E m m E -=,其中星等为k m 的星的亮度为()1,2k E k =,已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为()A .10.110B .10.1C .lg10.1D .10.110-5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有()A .60种B .48种C .30种D .10种6.已知,,,P A B C 是半径为2的球面上四点,ABC △为等边三角形且其面积为4,则三棱锥P ABC -体积的最大值为()A .334B .934C.D .153410.椭圆22221(0)x y a b a b+=>>的离心率为e ,右焦点为(),0F c ,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点()12,P x x ()A .必在圆222x y +=内B .必在圆222x y +=上C .必在圆222x y +=外D .与圆222x y +=的关系与e 有关8.设函数()f x 是定义在R 上的奇函数,且对于任意的,x y R ∈,都有()()f x f y x y -<-,若函数()()g x f x x -=,则不等式()()2220g x x g x -+-<的解集是()A .()1,2-B .()1,2C .()(),12,-∞-+∞ D .()(),12,-∞+∞ 二、选择题:本题共3小题,每小题6分,共18分。

江苏省宿迁地区2023届数学三下期末达标检测模拟试题含解析

江苏省宿迁地区2023届数学三下期末达标检测模拟试题含解析

江苏省宿迁地区2023届数学三下期末达标检测模拟试题一、填空题。

(20 分)1.在括号里填合适的单位名称。

大拇指指甲面最接近1(____)教室窗户长约2(____)数学书封面的面积约4(_____)我国最长的河流长江全长约6300(_____)2.早上,当你背对太阳时,你的前面是(______)面,你的后面是(______)面,你的左面是(______)面,你的右面是(______)面.3.一根丝瓜长3分米,也就是()()米,用小数表示是()米。

4.8000米=(______)千米2吨=(______)千克8平方分米=(______)平方厘米1分米8厘米=(______)分米5.李老师买了12副乒乓球拍,张老师买了9副同样的乒乓球拍,李老师比张老师多付144元,每副乒乓球拍(______)元。

6.1米2厘米=(_____)米600毫米=(____)分米30平方分米=(_____)平方厘米30000米=(____)千米7.下面哪些是轴对称图形,在( )里画“√”。

8.猴妈妈摘了9个桃给小猴吃,第一只小猴吃了总数的,第二只小猴吃了剩下桃的,第一只小猴吃了(______)个桃,第二只小猴吃了(______)个桃。

9.将两张长6厘米、宽3厘米的长方形纸拼一拼,拼成的图形周长可能是(_________),也可能是(__________),它们的面积都是(_________)平方厘米。

10.在括号里填上合适的小数。

(________)元(________)米二、选择题。

(把正确答案序号填在括号里。

每题 2 分,共 10 分)11.妈妈买了同一种书包3个,给售货员6张100元钞票,她买的是( ).A.B.C.12.小梁、小东、小峰和小李参加短跑比赛,成绩如下,获得第一名是()姓名小梁小东小峰小李成绩(秒)15.3 14.8 15.6 14.4A.小李B.小峰C.小东D.小梁13.估算98 64时,把98当做(),最便于计算。

数学--潍坊市2023届高三第三次模拟考试

数学--潍坊市2023届高三第三次模拟考试

2023年普通高等学校招生全国统一考试模拟试题数 学本试卷共6页.满分150分.考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8 小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={x ∈N|x ²-4x -5≤0},A={0,2},B ={1,3,5},则A∩(C U B )=A.{2}B.{0,5}C.{0,2}D.{0,2,4}2.已知a ,b ∈R ,i 为虚数单位,则“复数1a bi z i+=+是纯虚数”是“|a |+|b |≠0”的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知平面向量a 与b 的夹角是60°,且|a |=2,b =(1,2),则a ·(2a -b )=A.8+B.4C.8D.4+4.我国古代名著《张邱建算经》中记载:“今有方锥,下广二丈,高三丈.欲斩末为方亭,令上方六尺.问:斩高几何?”大致意思是:“有一个正四棱锥的下底面边长为二丈,高为三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底面边长为六尺,则截去的正四棱锥的高是多少?”按照上述方法,截得的该正四棱台的体积为(注:1丈=10尺)A.11676立方尺B.3892立方尺 立方尺 5.已知函数()f x 的定义域为R , ()1f x +为偶函数, ()()4f x f x +=-,则A.函数()f x 为偶函数B. ()30f =C. 1522f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭D. ()20230f =6.若P 为函数()12x f x e =-图象上的一个动点,以P 为切点作曲线()y f x =的切线,则切线倾斜角的取值范围是 A. 20,3π⎡⎫⎪⎢⎣⎭ B. 2,23ππ⎛⎫ ⎪⎝⎭ C .2,3ππ⎛⎫ ⎪⎝⎭ D.20,,23πππ⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭7.已知事件()()()131,,,342A B P B P B A P B A ===,,则P(A)= A.14 B. 12 C. 23 D. 128.已知2024202320222022,2023,2024a b c ===,则a ,b ,c 的大小关系为A. b >c> aB. b> a > cC. a >c>bD. a > b> c二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.如图所示的几何体,是将棱长为3 的正四面体沿棱的三等分点,作平行于底面的截面所得,且其所有棱长均为1,则A.直线BD 与直线JL 所成角为3πB.直线CG 与平面EFHILK 所成角为6πC.该几何体的体积为23212D.该几何体中,二面角A-BC-D 的余弦值为13 10.将函数()()sin 066f x x πωω⎛⎫=-<< ⎪⎝⎭的图象向右平移6π个单位长度后得到函数()g x 的图象,若0,πω⎛⎫ ⎪⎝⎭,是()g x 的一个单调递增区间,则 A.()f x 的最小正周期为πB.()f x 在 24,33ππ⎛⎫ ⎪⎝⎭上单调递增 C.函数()()()F x f x g x =+的最大值为3D.方程()12f x =-在[0,2π]上有5个实数根 11.函数()0b y ax ab x =+>的图象是双曲线,且直线x =0和y=ax 是它的渐近线.已知函数313y x x=+,则下列说法正确的是 A. 420,3x y ≠≥ B.对称轴方程是33,3y x y x ==- C.实轴长为 23D.离心率为233 12.已知函数()112sin x x f x e e x ππ--=-+,实数a 满足不等式()()210f a f a +->,则a 的取值可以是A.0B.1C.2 D .3三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.已知()()5234560123456311x x a a x a x a x a x a x a x -+=++++++,则246a a a ++= .(用数字作答)14.已知圆C:x²+y²-4xcosθ -4ysinθ=0 ,则与圆C 总相切的圆D 的方程是 .15.已知函数()()()log log 21x a a f x x a a =-->有两个零点,则实数a 的取值范围是 .16.已知过点A(-1,0)的直线l 1与抛物线C:y²=2x 交于B ,D 两点,过点A 作抛物线的切线l 2,切点是M(在x 轴的上方),直线MB 和MD 的倾斜角分别是α,β,则tan (α+β)的取值范围为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{}n a 和{}n b 满足11113,2,2,2n n n n n n a b a a b b a b ++===+=+(1)证明:{}n n a b +和{}n n a b -都是等比数列;(2)求{}n n a b 的前n 项和S n .18.(12分)定义平面凸四边形为平面上每个内角度数都小于180°的四边形.已知在平面凸四边形ABCD 中,∠ABC=105°,∠ADB=60°,AB= 3,∠ADB 的平分线为DE ,且2AE EB =.(1)求△ABD 的面积;(2)求CD 的取值范围.19.(12分)某品牌中性笔研发部门从流水线上随机抽取100 件产品,统计其性能指数并绘制频率分布直方图(如图1).产品的性能指数在[50,70)的适合儿童使用(简称A 类产品),在[70,90)的适合少年使用(简称B 类产品),在[90,110]的适合青年使用(简称C 类产品),A ,B ,C 三类产品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的性能指数位于各区间的频率代替产品的性能指数位于该区间的概率.(1)该公司为了解年营销费用x(单位:万元)对年销售量y(单位:万件)的影响,对近5年的年营销费用x ᵢ和年销售量y ᵢ(i=1,2,3,4,5)的数据做了初步处理,得到散点图(如图2)及一些统计量的值(如下表).根据散点图判断,b y a x =可以作为年销售量y(万件)关于年营销费用x(万元)的回归方程,求y 关于x 的回归方程;(取 4.15964e =)(2)求每件产品的平均销售利润;并用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大?(收益=销售利润-营销费用)参考公式:对于一组数据(u ₁,v ₁),(u ₂,v ₂),…,(u n , v n ),其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为20.(12分)如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,△ABD 为底面圆O 的内接正三角形,且边长为3 ,点E 在母线PC 上,且AE =3,CE =1.(1)求证:直线PO ∥平面BDE ;(2)求证:平面BED ⊥平面ABD ;(3)若点M 为线段PO 上的动点,当直线DM 与平面ABE 所成角的正弦值最大时,求此时点M 到平面ABE 的距离.21.(12分)已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且过点D ⎭. (1)求椭圆C 的标准方程;(2)若动直线()1:122l y x m m =-+≤≤与椭圆C 交于A ,B 两点,且在坐标平面内存在两个定点P ,Q ,使得PA PB QA QB k k k k λ== (定值),其中PA PB k k ,分别是直线PA ,PB 的斜率,QA QB k k ,分别是直线QA ,QB 的斜率.①求λ的值;②求四边形PAQB 面积的最大值.22.(12分)已知函数()()2x f x x ax e a R =+-∈有两个极值点12,x x .(1)求实数a 的取值范围;(2)证明: x ₁ +x ₂< 1n4。

四川省内江市2023届高三第三次模拟考试数学(理科)试题

四川省内江市2023届高三第三次模拟考试数学(理科)试题

r
3,且 a
rr a 2b
,则向量
r a
在向量
r b
上的投影为__________.
14.若 (x a)5 2 x3 的展开式的各项系数和为 32,则该展开式中 x4 的系数是______.
15.甲、乙两人下围棋,若甲执黑子先下,则甲胜的概率为 2 ;若乙执黑子先下,则乙
3
胜的概率为 1 .假定每局之间相互独立且无平局,第二局由上一局负者先下,若甲、乙
23.已知函数 f x 2x 4 x2 a ( x R ).
(1)若 a 1,求证: f x 4 ;
(2)若对于任意 x 1, 2 ,都有 f x 4 ,求实数 a 的取值范围.
试卷第 5 页,共 5 页
存在,请说明理由.
21.如图,曲线 C1 是以原点 O 为中心, F1 、 F2 为焦点的椭圆的一部分,曲线 C2 是以O
为顶点、F2 为焦点的抛物线的一部分,A 是曲线 C1 和 C2 的一个交点,且 AF2F1 为钝角,
AF1
7, 2
AF2
5. 2
(1)求曲线 C1 和 C2 所在椭
2.已知全集U R ,M x∣x2 4x 3 0 ,N x∣log2 x 1 ,则 ðU(M N ) ( )
A. (,0]U(3, )
B. (,3)
C. (,1) U(3, )
D. (3 )
3.空气质量指数是评估空气质量状况的一组数字,空气质量指数划分为 [0,50)、[50,100)、[100,150)、[150,200)、[200,300) 和[300,500) 六档,分别对应“优”、“良”、“轻
日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一

广东省韶关市四县、区2023年数学三下期末考试模拟试题含解析

广东省韶关市四县、区2023年数学三下期末考试模拟试题含解析

广东省韶关市四县、区2023年数学三下期末考试模拟试题一、神奇小帮手。

1.一年中大月有(______)个月,小月有(________)个月;A、6B、4C、72.在括号里填合适的数。

的个数占总个数的(______)(______)(______)3.一箱牛奶的价格是25元,16箱牛奶的价格是多少元?根据下面的竖式,在()里填合适的数. 的商的最高位在(______)位上,商是(______)位数。

4.22047755.下面是三(1)班的学生两学期立定跳远成绩情况统计表。

(两学期班级人数相同)。

根据上表,回答问题。

(1)三(1)班有(____)人。

(2)第二学期立定跳远优秀的学生有(____)人。

(3)第一学期和第二学期立定跳远成绩在(_____)的人数最多,在(_______)的人数最少。

6.在()里填上“>”“<”或“=”。

4.24(______)4.425吨(______)600千克44角(______)5元2平方米(______)10平方分米14×12(______)12×14 24×21(______)35×127.填上合适的单位。

小明家的住房面积是90(________)。

一个苹果约重300(________)。

王叔叔的体重是65(________)。

数学书封面的面积约是5(________)。

8.汽车方向盘的运动是(______)现象,开关推拉窗是(______)现象。

二、我是小法官。

(对的打√,错的打×)9. ( )×29<1200,( )里最大能填1. (____) 10.一个苹果约重200g ,5个这样的苹果约重1kg 。

(______)11.每个轴对称图形至少有一条对称轴.(_____)12.旋转改变了图形的大小和形状. (______)13.与东北方向相反的是东南方向。

(________)14.705÷6,商中间一定是0。

南通市2023届第三次模拟考试数学试题及答案

南通市2023届第三次模拟考试数学试题及答案

南通市2023届高三第三次调研测试数学参考答案与评分建议 一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知U R ,2{|430}A x x x ≤,{||3|1}B x x ,则U A B A .{|14}x x ≤≤ B .{|23}x x ≤≤C .{|12}x x ≤D .{|23}x x ≤【答案】A2. 已知,a b 是两个单位向量,则“⊥a b ”是“|2||2| a b a b ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】C3. 某人将斐波那契数列的前6项 “112358,,,,,”进行排列设置数字密码,其中两个“1”必须相邻,则可以设置的不同数字密码有 A .120种 B .240种 C .360种 D .480种【答案】A4.星载激光束与潜艇通信传输中会发生信号能量衰减.已知一星载激光通信系统在近海水下某深度的能量估算公式为7310r P E E S ,其中P E 是激光器输出的单脉冲能量,r E 是水下潜艇接收到的光脉冲能量,S 为光脉冲在潜艇接收平面的光斑面积(单位:2km ,光斑面积与卫星高度有关).若水下潜艇光学天线接收到信号能量衰减Γ满足10lgrPE E Γ (单位:dB ).当卫星达到一定高度时,该激光器光脉冲在潜艇接收平面的光斑面积为275km ,则此时Γ大小约为(参考数据:lg20.301 )A .76.02B .83.98C .93.01D .96.02【答案】B5. 已知底面半径为r 的圆锥SO ,其轴截面是正三角形,它的一个内接圆柱的底面半径为3r ,则此圆柱与圆锥的侧面积的比值为A .29BC .23D【答案】D6. 已知F 为椭圆2214x C y :的右焦点,P 为C 上一点,Q 为圆22(3)1M x y :上一点,则PQ PF 的最大值为 A .5 B .6C .4D .5【答案】D7. 已知cos(40)cos(40)cos(80)0θθθ ,则tan θA .B .C D【答案】A8. 已知23log log a b ,23log log (1)b c b ,则 A .1222a b cB .1222b a cC .5542log log log b a cD .5452log log log b a c【答案】C二、选择题:本题共4小题,每小题5分,共20分。

考研数学三模拟试题

考研数学三模拟试题

考研数学三模拟试题一、选择题(每题5分,共40分)1. 设函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(-1) \)的值。

A. 7B. 9C. 11D. 132. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 2x}{x} \)。

A. 1B. 2C. 4D. 83. 以下哪个选项不是正态分布的数学期望?A. \( \mu \)B. \( \sigma^2 \)C. \( \mu + 2\sigma \)D. \( 2\mu - 3\sigma \)4. 已知\( \int_{0}^{1} x^2 dx \)的值,求\( \int_{0}^{1} x^3dx \)的值。

A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( \frac{1}{5} \)5. 设随机变量\( X \)服从二项分布\( B(n, p) \),求\( E(X) \)。

A. \( np \)B. \( nq \)C. \( 2np \)D. \( 2nq \)6. 以下哪个函数是周期函数?A. \( y = e^x \)B. \( y = \ln x \)C. \( y = \sin x \)D. \( y = x^2 \)7. 已知\( \frac{dy}{dx} = 3x^2 + 2x - 1 \),求\( y \)的原函数。

A. \( y = x^3 + x^2 - x + C \)B. \( y = x^3 + 2x^2 - x + C \)C. \( y = x^3 + x^2 + 2x + C \)D. \( y = x^3 + 2x^2 - x + C \)8. 设矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),求矩阵\( A \)的特征值。

高考数学模拟试题与解析-唐山高三三模数学答案

高考数学模拟试题与解析-唐山高三三模数学答案

唐山市2022~2023学年度高三年级第三次模拟演练数学参考答案一.选择题(单选):1~4.DBCC5~8.ADDB二.选择题(不定项选):9.BC10.AC11.AC12.ABD三.填空题:13.7814.43315.[12e,+∞)16.5,42四.解答题:17.解:(1)已知a2n+2a n+1=4S n①,当n=1时,a1=1.…1分当n≥2时,a2n-1+2a n-1+1=4S n-1②,①-②得:a2n+2a n-a2n-1-2a n-1=4a n,…2分即(a n+a n-1)(a n-a n-1-2)=0.…3分又a n>0,所以a n-a n-1=2.…4分所以数列{a n}是以1为首项,2为公差的等差数列.所以a n=2n-1.…5分(2)设b n=(-1)n(4n a n a n+1)=(-1)n[4n(2n-1)(2n+1)]…6分=(-1)n(12n-1+12n+1). …8分T n=-(1+13)+(13+15)-(15+17)+···+(-1)n(12n-1+12n+1)=-1+(-1)n12n+1. …10分18.(1)证明:过点A作AE⊥PB于点E,…1分因为平面P AB⊥平面PBC,且平面P AB∩平面PBC=PB,AE⊂平面P AB,所以AE⊥平面PBC,…2分又BC⊂平面PBC,所以AE⊥BC,…3分又P A⊥平面ABC,BC⊂平面ABC,则P A⊥BC,…4分又因为AE∩P A=A,AE,P A⊂平面P AB,所以BC⊥平面P AB.…5分(2)解:由(1)知BC⊥平面P AB,AB⊂平面P AB,得BC⊥AB,又V P-ABC=18,AB=6,BC=3,所以 1 3× 12×AB ×BC ×P A =18,P A =6,…6分以B 为原点,分别以BC →、BA →为x 轴、y 轴正方向,建立如图所示空间直角坐标系B -xyz ,则B (0,0,0),A (0,6,0),C (3,0,0),P (0,6,6). …7分又因为PD =2DC ,所以D (2,2,2).…8分AD →=(2,-4,2),AB →=(0,-6,0), AC →=(3,-6,0).设m =(x 1,y 1,z 1)是平面ABD 的一个法向量,则⎩⎪⎨⎪⎧AD →·m =0,AB →·m =0,即⎩⎨⎧2x 1-4y 1+2z 1=0,-6y 1=0,所以可取m =(-1,0,1).…9分设n =(x 2,y 2,z 2)是平面ACD 的一个法向量,则⎩⎪⎨⎪⎧AD →·n =0,AC →·n =0,即⎩⎨⎧2x 2-4y 2+2z 2=0,3x 2-6y 2=0,所以可取n =(2,1,0).…10分则|cos 〈m ,n 〉|=|m ·n ||m ||n |=105.…11分 所以平面ABD 与平面ACD 的夹角的余弦值为105. …12分 19.解:根据正弦定理得:sin A sin B =sin B cos B ,…1分 由于sin B ≠0,可知sin A =cos B ,即sin A =sin(π2+B ),…2分因为A 为钝角,则B 为锐角,即B ∈(0,π2),则π2+B ∈(π2,π),则A =π2+B ,C =π2-2B . …4分 (1)由A =π2+B ,C = π6,A +B +C =π,得A =2π3.…5分(2)cos A +cos B +cos C=cos (π2+B )+cos B +cos (π2-2B )=-sin B +cos B +sin 2B…7分 =cos B -sin B +2sin B cos B .因为C =π2-2B 为锐角,所以0<π2-2B <π2,即0<B <π4.…8分ABC DPEx yz设t =cos B -sin B =2cos (B +π4)∈(0,1),则2sin B cos B =1-t 2,…9分cos A +cos B +cos C =t +1-t 2=-(t -12)2+54.…10分因为t ∈(0,1),则(t -12)2∈[0,14),从而-(t -12)2+54∈(1,54].由此可知,cos A +cos B +cos C 的取值范围是(1,54].…12分 20.解:(1)根据样本相关系数r ≈0.95,可以推断线性相关程度很强.…2分(2)r =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2∑ni =1(y i -y -)2≈0.95及bˆ=ni =1∑(x i -x -)(y i -y -)ni =1∑(x i -x -)2,可得bˆr=∑ni =1(x i -x -)2∑ni =1(y i -y -)2∑ni =1(x i -x -)2=∑ni =1(y i -y -)2∑ni =1(x i -x -)2 …4分≈ 2.297.…5分 所以bˆ=r 2.297≈0.95×1.516≈1.440, …7分 又因为x -=37.96,y -=39.1, …8分 所以a ˆ=y --b ˆx -≈-15.56,…9分 所以y 与x 的线性回归方程yˆ=1.44x -15.56.…10分(3)第一个样本点(32.2,25.0)的残差为:25.0-(1.44×32.2-15.56)=-5.808≈-5.81,…11分 由于该点在回归直线的左下方,故将其剔除后,b ˆ的值将变小.…12分21.解:(1)把x =c 代入到E 的方程,得c 2a 2-y 2=1,即y =±1a,…2分 因为|AB |=1,所以2a =1,即a =2,则双曲线E 的方程为x 24-y 2=1.…4分(2)设P 1(x 1,y 1),P 2(x 2,y 2),其中x 1<0,x 2>0. 因为直线l 与圆相切,所以|m |1+k2=2,即m 2=4(1+k 2), …5分 联立⎩⎪⎨⎪⎧y =kx +m ,x 24-y 2=1,整理得(1-4k 2)x 2-8mkx -(4m 2+4)=0,…6分所以⎩⎪⎨⎪⎧1-4k 2≠0,Δ=64m 2k 2+4(1-4k 2)(4m 2+4)>0,x 1+x 2=-8mk4k 2-1,x 1x 2=4m 2+44k 2-1<0,…8分x 2-x 1=(x 1+x 2)2-4x 1x 2=(-8mk 4k 2-1)2-4×4m 2+44k 2-1=451-4k 2.…9分由已知A 1(-2,0),A 2(2,0).k 1·k 2=y 1x 1+2×y 2x 2-2=(k x 1+m )(k x 2+m )(x 1+2)(x 2-2)=k 2x 1x 2+mk (x 1+x 2)+m 2x 1x 2+2(x 2-x 1)-4…10分=k 2(4m 2+4)4k 2-1-8m 2k 24k 2-1+m 24m 2+44k 2-1+851-4k 2-4=4m 2k 2+4k 2-8m 2k 2+4m 2k 2-m 24m 2+4-85-16k 2+4=4k 2-m 24m 2-85-16k 2+8=-424-85=-3+58.…12分22.解:(1)由f (x )=e 2x +(2-a )e x -ax +a e2,(x ∈R ) 得f '(x )=2e 2x +(2-a )e x -a…1分 =(e x +1)(2e x -a ),…2分①当a ≤0时,f '(x )=(e x +1)(2e x -a )>0, 所以f (x )在(-∞,+∞)上单调递增;…3分 ②当a >0时,令f '(x )=0,得x =ln a2,…4分当x ∈(-∞,ln a2)时,f '(x )<0,f (x )单调递减;当x ∈(ln a2,+∞)时,f '(x )>0,f (x )单调递增.综上当a ≤0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在(-∞,ln a 2)上单调递减,f (x )在(ln a2,+∞)上单调递增.…5分(2)由(1)知:①当a <0时,f (x )在(-∞,+∞)上单调递增,f (3a )=e 6a +(2-a )e 3a -a ×3a + a e 2<1+(2-a )-3+ a e 2=( e2-1)a <0, 所以当a <0时不合题意.…6分 ②当a =0时,f (x )=e 2x +2e x >0,符合题意.…7分 ③当a >0时,f (x )min =f (lna 2)=a - a 24-a ln a 2+ a e2,…8分要使f (x )≥0恒成立,则只需f (x )min ≥0恒成立,即:a - a 2 4-a ln a 2+ a e 2≥0,亦即:1- a 4-ln a 2+ e2≥0.记g (a )=1- a 4-ln a 2+ e2(a >0),…9分 则g (a )=- 1 4-1a<0 ,…10分于是g (a )在(0,+∞)上单调递减;又因为g (2e)=1- e 2-ln 2e 2+ e2=0,…11分所以当0<a ≤2e 时,g (a )≥0,即f (x )min ≥0;当a >2e 时,g (a )<0,不合题意. 综上可知a 的取值范围为0≤a ≤2e .…12分。

2025年新高考数学模拟试题三附解析

2025年新高考数学模拟试题三附解析

2025年新高考数学模拟试题(卷三)
第I卷(选择题)
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.(13分)
2025年新高考数学模拟试题(卷三)(解析版)
第I卷(选择题)
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.(13分)。

江苏省盐城市大丰区2023年数学三下期末统考模拟试题含解析

江苏省盐城市大丰区2023年数学三下期末统考模拟试题含解析

江苏省盐城市大丰区2023年数学三下期末统考模拟试题一、谨慎判一判。

1.电梯的升降是平移.(___)2.250×8,积的末尾有2个0。

(______)3.一个分数分母越大,这个分数越大。

(______)4.10.35读作十点三十五.(_______)5.如果两个乘数末尾均有1个1,那么它们的积至少应有两个1.(_______)二、仔细选一选。

6.一批小树苗有11行,每行14棵。

下面的竖式中,方框里面的数表示()。

A.10行的棵树B.1行的棵树C.11行的棵树7.下列年份中,()是闰年.A.1900年B.1999年C.1998年D.2008年8.要使3□5÷3的商的中间有0,□里应填()A.0﹣2各数B.3﹣9各数C.0﹣9各数9.2019年的7月3日是星期三,那么2019年9月1日是()。

A.星期五B.星期六C.星期日10.两个两位数相乘,积最小是( ).A.100 B.110 C.1000三、认真填一填。

11.在括号里填上适当的单位。

教室面积为55(______)小丽的身高是135(______)黑板的周长是9(______)一块橡皮的面积是6(______)12.学校买来48把扫帚,三年级领了这些扫帚的56,领了(______)把。

13.前进中的火车的运动是(________)现象,行驶中的车轮的运动是(________)现象。

14.42个18的和是(________);24的17倍是(________)。

15.一个正方形的周长是24dm,它的边长是________ dm,面积是________ dm2.16.在()里填上合适的单位。

(1)一个学校的占地面积大约是3600(______)。

(2)一条毛中的面积约是8(______)。

(3)一袋土豆重50(______)。

(4)一个篮球重650(______)。

17.573÷3的商是(____)位数。

18.要使6□8÷6的商的中间有0,且结果没有余数,□里最大填(________)。

江苏省盐城市重点高中2023届高三下学期第三次模拟数学试题(1)

江苏省盐城市重点高中2023届高三下学期第三次模拟数学试题(1)

盐城市重点高中2023届高三下学期第三次模拟数学试卷(2023.5)试卷说明:本场考试时间120分钟,总分150分.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数(1i z -=,其中i 为虚数单位,则z =()A.14B.12C.1D.22.如图所示的Venn 图中,A ,B 是非空集合,定义集合A B ⊗为阴影部分表示的集合,若{}21,,4A x x n n N n ==+∈≤,{}2,3,4,5,6,7B =,则A B ⊗=()A.{}1,2,4,6B.{}2,4,6,9C.{}2,3,4,5,6,7D.{}1,2,4,6,93.已知公差不为零的等差数列{}n a 满足:2781a a a +=+,且2a ,4a ,8a 成等比数列,则2023a =()A.2023B.2023- C.0D.120234.在ABC △中4AB AC ⋅= ,2BC = ,且点D 满足BD DC = ,则AD =()D.325.已知函数()f x 的导函数()3f x x '=,21log 3a f ⎛⎫= ⎪⎝⎭,342b f -⎛⎫= ⎪⎝⎭,432c f ⎛⎫=- ⎪⎝⎭,则()A.a b c <<B.b c a <<C.b a c <<D.a c b<<6.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为()A.24181B.26681C.27481D.6702437.设函数()f x 的定义域为R ,其导函数为()f x ',若()()f x f x ''-=,()()2223f x f x +-=,则下列结论不一定正确的是()A.()()113f x f x -++=B.()()22f x f x ''-=+C.()()()()11f f x f f x ''-=+ D.()()()()2ff x f f x ''+=8.已知A ,B 是椭圆()222210x y a b a b +=>>与双曲线()222210,0x y a b a b-=>>的公共顶点,P 是双曲线上一点,PA ,PB 交椭圆于M ,N .若MN 过椭圆的焦点F ,且tan 3AMB ∠=-,则双曲线的离心率为()A.2B.233二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a ,b ,()0,1c ∈,随机变量ξ的分布列为:ξ123Pabc则()A.()()2E E ξξ-=B.()()2D D ξξ-= C.()()22E E ξξ≥⎡⎤⎣⎦D.()()222D D ξξ⎡⎤-=⎣⎦10.已知曲线2:14x xC y +=,则()A.曲线C 关于原点对称B.曲线C 上任意点P 满足1OP ≥(O 为坐标原点)C.曲线C 与2240x y -=有且仅有两个公共点D.曲线C 上有无数个整点(整点指横纵坐标均为整数的点)11.已知正方体1111ABCD A B C D -的棱长为1,H 为棱1AA (包含端点)上的动点,下列命题正确的是()A.CH BD⊥B.二面角11D AB C --的大小为3πC.点H 到平面11B CD 距离的取值范围是323,33⎣⎦D.若CH ⊥平面β,则直线CD 与平面β所成角的正弦值的取值范围为,32⎣⎦12.已知函数()()1xf x x e =+,()()1lng x x x =+,则()A.函数()g x 在()0,+∞上存在唯一极值点B.()f x '为函数()f x 的导函数,若函数()()h x f x a '=-有两个零点,则实数a 的取值范围是211,1e ⎛⎫-⎪⎝⎭C.若对任意0x >,不等式()()2ln f ax f x ≥恒成立,则实数a 的最小值为2eD.若()()()120f x g x t t ==>,则()12ln 1tx x +的最大值为1e 三.填空题:本大题共4小题,每小题5分,共20分.13.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有______种.14.已知点(),P x y 为圆()()22:215C x y -+-=上任意一点,且点P 到直线1:240l x y -+=和2:20l x y m -+=的距离之和与点P 的位置无关,则实数m 的取值范围是______.15.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是______.16.已知正四面体ABCD 的棱长为3,点E 满足()01AE AB λλ=<<,过点E 作平面α平行于AC 和BD ,设α分别与该正四面体的棱BC ,CD ,DA 相交于点F ,G ,H ,则四边形EFGH 的周长为______,四棱锥A EFGH -的体积的最大值为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 中,11a =,n S 是其前n项和,且满足)211n S S +=.(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足()1111n n n n n a b a a +++=-,设数列{}n b 的前n 项和为n T ,求n T 的最小值.18.如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.19.如图,在平面四边形ABCD 中,2AB BC CD ===,AD =(1)若DB 平分ADC ∠,证明:A C π+=;(2)记ABD △与BCD △的面积分别为1S 和2S ,求2212S S +的最大值.20.2021年奥运会我国射击项目收获丰盛,在我国射击也是一项历史悠久的运动.某射击运动爱好者甲来到靶场练习.(1)已知用于射击打靶的某型号枪支弹夹中一共有()*k k N ∈发子弹,甲每次打靶的命中率均为12,一旦出现子弹脱靶或者子弹打光便立即停止射击.记标靶上的子弹数量为随机变量X ,求X 的分布列和数学期望;(2)若某种型号的枪支弹巢中一共可装填6发子弹,现有一枪支其中有m 发为实弹,其余均为空包弹,现规定:每次射击后,都需要在下一次射击之前填充一发空包弹,假设每次射击相互独立且均随机,在进行()n n N ∈次射击后,记弹巢中空包弹的发数为n X ,①当*n N ∈时,请直接写出数学期望()n E X 与()1n E X -的关系;②求出()n E X 关于n 的表达式.21.已知抛物线()2:20C y px p =>的焦点在圆22:1E x y +=上.(1)设点P 是双曲线2214y x -=左支上一动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,证明:直线AB 与圆E 相切;(2)设点T 是圆E 上在第一象限内且位于抛物线开口区域以内的一点,直线l 是圆E 在点T 处的切线,若直线l 与抛物线C 交于M ,N 两点,求TM TN ⋅的最大值.22.已知函数()e cos xf x x =,()()cos 0g x a x x a =+<,曲线()y g x =在6x π=处的切线的斜率为32.(1)求实数a 的值;(2)对任意的,02x π⎡⎤∈-⎢⎥⎣⎦,()()0tf x g x '-≥恒成立,求实数t 的取值范围;(3)设方程()()f x g x '=在区间()2,232n n n ππππ+⎛⎫++∈ ⎪⎝⎭N 内的根从小到大依次为1x 、2x 、…、n x 、…,求证:12n n x x π+->.盐城市重点高中2023届高三下学期第三次模拟数学答案(2023.5)一、单选题:CDAACBCB8.【解析】如图,设()00,P x y ,点P ,M ,A 共线,点P ,B ,N 共线,所在直线的斜率分别为PA k ,PB k,点P 在双曲线上,即2200221x y a b -=,有200200y y b x a x a a⋅=-+,因此22PA PB b k k a ⋅=,点()11,M x y 在椭圆上,即2211221x y a b +=,有211211y y b x a x a a ⋅=--+,直线MA ,MB 的斜率MA k ,MB k ,有22MA MBb k k a ⋅=-,即22PA MB b k k a⋅=-,于是MB PB BN k k k =-=-,即直线MB 与NB 关于x 轴对称,又椭圆也关于x 轴对称,且M ,N 过焦点F ,则MN x ⊥轴,令(),0F c ,由22221x c x y ab =⎧⎪⎨+=⎪⎩得2b y a =,显然222tan a c a ac AMF b b a ++∠==,222tan a c a acBMF b b a--∠==,22222222222tan tan 2tan 31tan tan 1a ac a acAMF BMF a b b AMB a ac a ac AMF BMFb a b b +-+∠+∠∠====-+--∠⋅∠--⋅,解得2213b a =,所以双曲线的离心率3e a ==.故选:B 二、多选题:BCBCACDBCD 12.【解析】对于A :()11ln g x x x '=++,()21x g x x-''=,令()0g x ''>,解得:1x >,令()0g x ''<,解得:01x <<,故()g x '在()0,1递减,在()1,+∞递增,故()()min 120g x g ''==>,故()g x 在()0,+∞递增,函数()g x 在()0,+∞上无极值点,故A 错误;对于B :函数()()h x f x a '=-得到()f x a '=作出()y f x '=的图象注意渐近线1y =B 正确对于C :由A 得:()f x 在()0,+∞递增,不等式()()2ln f ax f x ≥恒成立,则2ln ax x ≥恒成立,故2ln x a x ≥,设()2ln x h x x=,则()()221ln x h x x -'=,令()0h x '>,解得:0x e <<,令()0h x '<,解得:x e >,故()h x 在()0,e 递增,在(),e +∞递减,故()()max 2h x h e e ==,故2a e≥,故C 正确;对于D :若()()()120f x g x t t ==>,则()()112211ln xx e x x t +=+=,∵0t >,∴10x >,21x >,且12x x e =,12x x e =时,()()()111121ln 1ln 11x xx e t x x x e ⎡⎤+⎣⎦=++,设()111xk x e =+,设()ln k g k k =,则()21ln kg k k -'=,令()0g k '>,解得:0k e <<,令()0g k '<,解得:k e >,故()g k 在()0,e 递增,在(),e +∞递减,故()()max 1g k g e e==,此时()()112211ln xe x e x x =+=+,故()12ln 1tx x +的最大值是1e ,故D 正确;故选:BCD三、填空题:2168m ≤-2⎛ ⎝6,315.【解析】由于34A π=,所以04B π<<,由正弦定理得223sin sin sin sin 4b c a B C A π====,所以2sin b B =,2sin c C =,所以2sin 2sin 2sin 2sin 4b c B C B B πλλλ⎛⎫+=+=+-⎪⎝⎭(2sin 22sin 22B B B B B λλ⎛⎫=+-=-+ ⎪ ⎪⎝⎭.当20λ=,即22λ=时,b c B λ+=,没有最大值,所以22λ≠,则()sin b c B λϕ+=+,其中tan ϕ=,要使b c λ+有最大值,则B ϕ+要能取2π,由于04B π<<,所以42ππϕ<<,所以tan 1ϕ>1>,解得2λ<<.所以λ的取值范围是2⎛ ⎝.16.【解析】AC ∥平面α,平面α 平面ABC EF =,平面α 平面ADC GH =则AC EF ∥,AC GH ∥,则EF GH∥又BD ∥平面α,平面α 平面ABD EH =,平面α 平面BDC GF =则BD EH ∥,BD GF ∥,则EH GF ∥则四边形EFGH 为平行四边形.由AE AB λ=,可得:AE AB λ=,则:HE DB λ=,:1EF AC λ=-又正四面体ABCD 的棱长为3,则3HE GF λ==,()31EF GH λ==-四边形EFGH 的周长为()23316HE GF EF GH λλ+++=+-=⎡⎤⎣⎦.由AE AB λ=,MQ =可得点A 到平面EFGH 的距离为322λ,又平行四边形EFGH 为矩形,则四棱锥A EFGH -的体积()()2139331221322V λλλλλ=⨯⨯-⨯=-令()()()2921012f x x x x =-<<,则()()92232f x x x '=-由()0f x '>得203x <<,由()0f x '<,得213x <<则()f x 在20,3⎛⎫ ⎪⎝⎭单调递增,在2,13⎛⎫⎪⎝⎭单调递减,在23x =时取最大值22922222132333f ⎛⎫⎛⎫⎛⎫=⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()29212λλ-的最大值为223四、解答题:17.【解析】(1)由题意可知11n n S S +=,则数列{}nS 为等差数列,可得n S n =,2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时也成立,所以21n a n =-;(2)()()()()()()11111112111212122121n nn n nn n n a n b a a n n n n -+++⎡⎤--+=-=-=⎢-+-+⎢⎥⎣⎦,()11111221n n T n +⎡⎤=+-⎢+⎣⎦,当n 为奇数时11112212n T n ⎛⎫=+> ⎪+⎝⎭,当n 为偶数时111221n T n ⎛⎫=- ⎪+⎝⎭,单调递增,则225n T T ≥=,则n T 的最小值为25.18.【解析】(1)过G 作GH CB ∥,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB CG ∥,又G 为弧CD 的中点,则H 是弧AB 的中点,所以45HBA ∠=︒,而由题设知:45ABF ∠=︒,则90HBF HBA ABF ∠=∠+∠=︒,所以FB HB ⊥,即FB CG ⊥,由CB ⊥底面ABF ,FB ⊂面ABF ,则CB FB ⊥,又CB CG C = ,所以FB ⊥面BCG ,又FB ⊂面BDF ,所以面BDF ⊥面BCG .(2)由题意,构建如下图示空间直角坐标系A xyz -,令半圆柱半径为r ,高为h ,则()0,2,0B r ,()2,0,0F r ,()0,0,D h ,(),,G r r h -,所以()2,0,FD r h =- ,()0,2,BD r h =- ,()0,2,0AB r = ,(),,AG r r h =-,若(),,m x y z = 是面BDF 的一个法向量,则2020m FD rx hz m BD ry hz ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z r =,则(),,2m h h r = ,若(),,n a b c = 是面ABG 的一个法向量,则200n AB rb n AG ra rb hc ⎧⋅==⎪⎨⋅=-++=⎪⎩,令c r =,则(),0,n h r = ,所以2215cos ,5m nm n m n⋅==,整理可得()()2222420hr h r -+=,则2h r =,由题设可知,此时点()1,1,2G -,()0,0,2D ,()2,0,0F,可求得2d =.19.【解析】(1)∵DB 平分ADC ∠,∴ADB CDB ∠=∠,则cos cos ADB CDB ∠=∠,由余弦定理得:22222222AD BD AB CD BD BC AD BD CD BD +-+-=⋅⋅,22444BD BD +-=,解得:)241BD =;∵2221244131cos 22AD AB BD A AD AB +-+-==⋅,)222444113cos282CD BC BDCCD BC+-+--===⋅,∴cos cosA C=-,又()0,Aπ∈,()0,Cπ∈,∴A Cπ+=方法二:由正弦定理可得sin sinAB BDADB A=∠,sin sinBC BDCDB C=∠,代入数据可得sin sinA C=,又两角不相等,故∴A Cπ+=(2)∵222222cos2cosBD AB AD AB AD A BC CD BC CD C=+-⋅=+-⋅,∴1688cosA C-=-,整理可得:cos1C A=-;2222221211sin sin12sin4sin22S S AD AB A BC CD C A C⎛⎫⎛⎫+=⋅+⋅=+⎪ ⎪⎝⎭⎝⎭)22221212cos44cos1612cos41A C A A=-+-=---2224cos1224cos146A A A⎛=-++=--+⎝⎭,∵()0,Aπ∈,∴当3cos6A=时,2212S S+取得最大值,最大值为14.20.【解析】(1)由题意,X的所有可能取值为0,1,2,,1,k k-,()()1110,1,2,,122mP X m m k⎛⎫⎛⎫==-=-⎪ ⎪⎝⎭⎝⎭,()12kP X k⎛⎫== ⎪⎝⎭,所以X的分布列为X012 (1)k-k P12212⎛⎫⎪⎝⎭312⎛⎫⎪⎝⎭…12k⎛⎫⎪⎝⎭12k⎛⎫⎪⎝⎭所以X的数学期望为()()231111212222k kE X k k⎛⎫⎛⎫⎛⎫⎛⎫=+++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭化简可得()112kE X⎛⎫=- ⎪⎝⎭.(2)①第n次射击后,可能包含两种情况:第n次射出空包弹或第n次射出实弹,第n次射击前,剩余空包弹的期望是()1nE X-,若第n次射出空包弹,则此时对应的概率为()16nE X-,因为射击后要填充一发空包弹,所以此时空包弹的数量为()()1111n nE X E X---+=,若第n 次射出实弹,则此时对应的概率为()116n E X --,所以此时空包弹的数量为()11n E X -+,综上,()()()()()()111115111666n n n n n n E X E X E X E X E X E X -----⎡⎤=⋅+-+=+⎡⎤⎢⎥⎣⎦⎣⎦.②当0n =时,弹巢中有6m -发空包弹,则()06E X m =-,由()()1516n n E X E X -=+可得()()15666n n E X E X --=-⎡⎤⎣⎦,则()()566n n E X m ⎛⎫-=- ⎪⎝⎭,()()566n n E X m n N ⎛⎫=-∈ ⎪⎝⎭.21.【解析】(1)抛物线()2:20C y px p =>的焦点为,02p ⎛⎫ ⎪⎝⎭,故可知122p p =⇒=,设()00,P x y ,PA 的直线方程为()00x m y y x =-+,PB 的直线方程为()00x n y y x =-+,m n ≠,则()22000044440y x y my my x x m y y x ⎧=⎪⇒-+-=⎨=-+⎪⎩,由于PA 与抛物线相切,所以()2200001644400m my x m my x ∆=--=⇒-+=,故方程的根为2y m =,将其代入抛物线方程得2x m =,故()2,2A m m ,同理2000n ny x -+=,()2,2B n n ,因此m ,n 是方程2000x y x x -+=的两个根,故0m n y +=,0mn x =,直线AB 的方程为()222222m n y x m m m n -=-+-,化简得()2022y x m m y =-+,圆心()0,0到直线AB的距离为d ==,由于220014y x -=,200m my x =-,将其代入得00212x d r x ====,故直线AB 与圆E 相切(2)联立2222441021y x x x x x y ⎧=⇒+-=⇒=-+⎨+=⎩,设(),T a b ,且满足221a b +=,21a -+<<,则OT b k a =,则MN a k b=-,此时MN 的直线方程为()a y x a b b =--+,联立直线MN 与抛物线方程()224440y x b y y a a a y x a b b ⎧=⎪⇒+-=⎨=--+⎪⎩,设()11,M x y ,()22,N x y ,所以124b y y a +=-,124y y a=-,进而22212122244y y a b x x a +++==,2212122116y y x x a==,()11,MT a x b y =-- ,()22,TN x a y b =-- ,因此()()()()22212121212121MT TN x a a x y b b y ax x x a ax by y y b by ⋅=--+--=--++--+ ()()2222112211222241441a b b MT TN a x x x x b y y y y b a a b a a a a+⎛⎫⋅=+-++---=⨯-+-+- ⎪⎝⎭ 22141125a a a ⎛⎫=-+=--+ ⎪⎝⎭由于21a -+<≤,当12a =时,12a =时MT TN ⋅ 取最大值5,由于T 是圆E 上在第一象限内且位于抛物线开口区域以内的一点,所以M ,N 在T 的两侧,故TM TN MT TN ⋅=⋅ ,故此时TM TN ⋅的最大值为5,22.【解析】(1)因为()()cos 0g x a x x a =+<,则()1sin g x a x '=-,由已知可得131622g a π⎛⎫'=-= ⎪⎝⎭,解得1a =-.(2)由(1)可知()1sin g x x '=+,对任意的,02x π⎡⎤∈-⎢⎥⎣⎦,()()0tf x g x '-≥恒成立,即e cos 1sin x t x x ≥+对任意的,02x π⎡⎤∈-⎢⎥⎣⎦恒成立,当2x π=-时,则有00≥对任意的R t ∈恒成立;当02x π-<≤时,cos 0x >,则1sin e cos x x t x +≥,令()1sin e cos x x h x x +=,其中02x π-<≤,()()()()()()222e cos e cos sin 1sin 1cos 1sin 0e cos e cos x x x x x x x x x x h x x x --+-+'==≥且()h x '不恒为零,故函数()h x 在,02π⎛⎤- ⎥⎝⎦上单调递增,则()()max 01h x h ==,故1t ≥.综上所述,1t ≥.(3)证明:由()()f x g x '=可得e cos 1sin x x x =+,令()e cos sin 1x x x x ϕ=--,则()()e cos sin cos x x x x x ϕ'=--,因为()2,232x n n n ππππ+⎛⎫∈++∈ ⎪⎝⎭N ,则sin cos 0x x >>,所以,()0x ϕ'<,所以,函数()x ϕ在()2,232n n n ππππ+⎛⎫++∈ ⎪⎝⎭N 上单调递减,因为223312e cos 2sin 21e 133322n n n n n πππππππϕπππ++⎛⎫⎛⎫⎛⎫+=+-+-=-- ⎪ ⎪⎝⎭⎝⎭⎝⎭23e 31022ππ+≥-->,2202n πϕ⎛⎫+=-< ⎪⎝⎭,所以,存在唯一的()02,232x n n n ππππ+⎛⎫∈++∈ ⎪⎝⎭N ,使得()00x ϕ=,所以,()2,232n x n n n ππππ+⎛⎫∈++∈ ⎪⎝⎭N ,则()122,232n x n n n πππππ++⎛⎫-∈++∈ ⎪⎝⎭N ,所以,()()()121112e cos 2sin 21n x n n n x x x πϕπππ+-+++-=----()()1111122211111e cos sin 1e cos e cos e e cos 0n n n n n x x x x x n n n n n n x x x x x x πππϕ+++++---+++++=--=-=-<=因为函数()x ϕ在()2,232n n n ππππ+⎛⎫++∈ ⎪⎝⎭N 上单调递减,故12n n x x π+->,即12n n x x π+->.。

饶阳县2023届数学三下期末综合测试模拟试题含解析

饶阳县2023届数学三下期末综合测试模拟试题含解析

饶阳县2023届数学三下期末综合测试模拟试题一、我会选。

1.图中转盘的指针停在()区域的可能性最大。

A.绿色B.黄色C.红色2.两个数相除的商是20,被除数扩大2倍,除数扩大4倍,商是().A.40 B.120 C.10 D.1603.妈妈带了一些钱,买水果用去,剩下的钱比用去的钱多总钱数的( ).A.B.C.4.练习本的单价是3.65元,横线上的数读作()。

A.三点六十五B.三点六五C.三六五5.李明去看电影,9:25开始,放映1小时45分钟,( )结束.A.10:05 B.11:10 C.8:20 D.10:20二、我会判断。

6.下午4时就是16时,21:30就是晚上9:30。

(____)7.用8个相同的正方形拼成长和宽不相等的长方形,有2种不同的拼法。

(________)8.一块轻质砖大约重20 千克,50 块这样的轻质砖大约重 1 吨。

(____)9.面积就是物体的大小.(____)10.一位数除三位数,商不一定是三位数。

(______)三、我能填。

11.在()里填上“>”“<”或“=”。

1平方米(________)9000平方厘米3t(________)85 kg 8kg(________)8000g380÷3(________)482÷4 27×35(________)35×27 611(________)81112.四个同学进行乒乓球比赛,每两个同学进行一场比赛,一共要进行(____)场比赛。

比赛完进行排名,有(____)种不同的情况。

13.把16个△平均分成8份,每份是。

14.小明练习打靶,共打了50发子弹,命中率是80%,命中的子弹有发,脱靶的子弹有发.15.6口3÷3,要使商的中间有0,口中可以填(_______).16.324÷3的商是________位数,商的最高位是________位.17.405÷5的商是(________)位数;50×80的积末尾有(________)个0。

考研数学三模拟试题(附答案)

考研数学三模拟试题(附答案)

全国硕士研究生入学统一考试数学(三)试卷(模拟考试)身份证号 姓名 电话 成绩数学三答题号及分值:(4+2+2,4+1+1,5+2+2)1-8题共32分9-14共24分 15 10分1610分1710分1810分1910分20 11分2111分2211分2311分成绩一、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) 1.函数∫++=xdt t t x f 02)1ln()(为()。

(A)偶函数,且在上为单调减。

(B)偶函数,且在),0(+∞),0(+∞上为单调增。

(C)奇函数,且在上为单调减。

(D)奇函数,且在),0(+∞),0(+∞上为单调增。

【解】 答案:(B)。

(函数奇偶性,定积分的换元积分公式) 因为对任意的),(+∞−∞∈x ,∫++=xdt t t x f 02)1ln()(都存在,且∫∫−−++−=++=−−xxdu u u dt t t x f 0202))()(1ln()1ln()()()1ln(11ln202x f du u u du u u xx=++=++−=∫∫。

所以∫++=xdt t t x f 02)1ln()(是偶函数,且在),0(+∞上0)1ln()(2>++=′x x x f 。

2.设在的某邻域内有二阶连续导数,且满足)(x f 0=x 1)1ln()(lim 30=+→x x f x , 则( )。

(A),,在0)0(=′f 0)0(≠′′f )(x f 0=x 处有极值(B),在处有极值0)0()0(=′′=′f f )(x f 0=x (C), 在处取得拐点0)0()0(=′′=′f f 0=x (D), 在处取得拐点0)0(,0)0(=′′≠′f f 0=x 【解】13)(lim )(lim )1ln()(lim203030=′==+→→→x x f x x f x x f x x x ,0)0(=′f ,)(x f ′在0=x 的两侧不变号,因此不为极值点。

富阳市2023届数学三下期末统考模拟试题含解析

富阳市2023届数学三下期末统考模拟试题含解析

富阳市2023届数学三下期末统考模拟试题一、谨慎判一判。

1.69×38的结果一定小于2800。

(________)2.大于0.4而小于0.6的小数只有一个。

()3.计算小数加减法时,小数点要对齐。

(______)4.如果两个正方形的面积相等,那么它们的边长也相等。

(______)5.每年的下半年都有184天.______.(判断对错)二、仔细选一选。

6.下列各图中的阴影部分可以用0.4表示的是()。

A.B.C.7.下面的公历年份中,是闰年的是().A.2100年B.2012年C.2011年8.打同一份稿件,悠悠用1.5小时,莹莹比悠悠多用0.1小时,小熊比莹莹少用0.2小时,()打得速度快.A.悠悠B.莹莹C.小熊9.一张办公桌桌面的面积大约是2()。

A.平方米B.平方分米C.平方厘米10.一节课从9:25开始10:05下课,这节课共上了().A.40分钟B.35分钟C.45分钟三、认真填一填。

11.把下面动物的序号填在合适的圈里。

①熊猫②鱼③松鼠④鸭子⑤虾⑥青蛙⑦鲸鱼⑧猴子12.填合适的单位名称。

一根跳绳长约2(__________);教室地面的面积约为60(__________);一个鸡蛋约重50(__________);数学书封面的面积约是5(__________)。

13.35×60积的末尾有(_______)个0,120×80的积是(_______)。

14.把160-72=88,88÷4=22合并成综合算式是(_______________________).15.长影世纪城的夏季运营时间是上午9:00到下午5:30。

游客一天最多可以在世纪城中游玩(______)小时(______)分。

16.在○里填上>、<或=0.3○0.03 26小时○2天5厘米○0.5分米 4.7+ 2.6○9.1-1.817.王老师要买28个排球,超市里有两种价格的排球可供选择,一种是每个45元,另一种是每个54元,王老师买排球最少要花(______)元,最多要花(______)元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级第三次模拟数学试卷(满分150 答题时间120分钟)2019.6一.选择题(每题3分,共30)1. -8的倒数是 ( )A .8B .-8C .D .2.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯的理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A. B. C. D.3.如图是由若干个大小相同的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置的立方体的个数,则这个几何体的左视图是( )A .B .C .D .5. 在同一平面直角坐标系中,函数1y x =-与函数y x=的图象可能是( )6. 为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm )为:16, 9, 14, 11, 12, 10, 16, 8, 17, 19则这组数据的中位数和极差分别是( )A .13,16B .14,11C .12,11D .13,117.如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为 ( )A. 3:4B. 1:2C. 2:3D.1:3(7题) (9题)8181-91034.0-⨯9104.3-⨯10104.3-⨯11104.3-⨯F ED C B A8. 从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所9..如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y=kx (x >0)的图象经过顶点B ,求k 的值 ( )A.12B.20C.24D.3210.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (),则y 关于x 的函数图象是( ) A . B . C .D .二、填空题(每题3分,共18分)11.分解因式:﹣2x 2y ﹣4xy ﹣2y =12. 不等式组 ⎪⎩⎪⎨⎧>+->x x x x 23123的解集是_________. 13.把二次函数y =x 2+2x +3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数 的图象14.如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为 .15.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为 度(14题) (15题) (17题)2cm16. 用半径为10cm ,圆心角为216°的扇形作一个圆锥的侧面,则这个圆锥的高是 cm.17.如图,在平面直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在点处,已知,AB=1,则的值是 .18.如图,正方形,,…按如图所示方式放置,使点…、在射线OA 上,点…、在射线OB 上.若∠AOB =45°,,图中阴影部分三角形的面积由小到大依次记作,…,则=________.(18题)三.解答题(19题8分、20题每题14分、21题10分、22题10分、23题12分、24题14, 25,26每题14分)19. (8分)先化简,再求值: , 其中20. (14分)盘锦市双台子区为了了解2016年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向:A .读普通高中;B .读职业高中C .直接进入社会就业;D .其它;进行数据统计,并绘制了两幅不完整的统计图(a )、(b ).请问:(1)该县共调查了______名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若双台子区2016年初三毕业生共有4500人,请估计双台子区今年的初三毕业生中读普通高中的学生人数.(4)老师想从甲、乙、丙、丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用树状图或列表法求选中甲同学的概率。

1A 3=OA OA A 1tan ∠1211C B B A ,,34332322C B B A C B B A n n n n C B B A 1+4321A A A A 、、、n A 4321B B B B 、、、n B 11=OB 4321S S S S 、、、n S n S 224222a a a a a a +⎛⎫-÷ ⎪--⎝⎭21.(10分)如图1所示,在A ,B 两地之间有汽车站C 站,客车由A 地驶往C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站的路程(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A ,B 两地相距 千米;(2)求两小时后,货车离C 站的路程与行驶时间x 之间的函数关系式;(3)求客、货两车何时相遇?22. (10分)如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离(B 、F 、C 在一条直线上)(1)求教学楼AB 的高度;(2)学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21,y y 2y23、(12分)如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D .(1)求证:PC 是⊙O 的切线;(2)若PD=316cm ,AC=8cm ,求图中阴影部分的面积; (3)在(2)的条件下,若点E 是弧AB 的中点,连接CE ,求CE 的长.24. (14分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由25.(14分)如图,在△ABC 中,D 是BC 边上的中点,DE ⊥DF ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .(1)求证:BE +CF >EF ;(2)若∠A =90°,探索线段BE 、CF 、EF 之间的等量关系,并加以证明.(3)如图2,在四边形ABDC 中,∠B +∠C =180°,DB =DC ,∠BDC =120°,以D 为顶点作一个60°的角,角的两边分别交AB 、AC 于E 、F 两点,连接EF ,探索线段BE 、CF 、EF 之间的数量关系,并加以证明.26.(14分)如图,关于x的二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.数学第三次模拟答案一、选择题1---5 DCACC 6----10 DDDDC 二、填空题11、—2y(x+1)212、—1<x < 13、y=(x+2)2 +1 14、 15、 60 16、8三、解答题19.a 3.520、(1)40÷40%=100所以,该县共调查了100名初中毕业生;(2)B 的人数:100×30%=30名,C 所占的百分比为:25%,(3)4500×40%=1800名,答:估计该县今年的初三毕业生中读普通高中的学生人数是1800. (4)p=21.(1)A ,B 两地相距420千米;(2)由图可知货车的速度为60÷2=30千米/小时,货车到达A 地一共需要2+360÷30=14小时,设y2=kx+b ,代入点(2,0)、(14,360)得,解得, 所以y2=30x ﹣60;(3)设y1=mx+n ,代入点(6,0)、(0,360)得解得,所以y1=﹣60x+360由y1=y2得30x ﹣60=﹣60x+360 解得x=答:客、货两车经过小时相遇.3617322 n 2122、解:解:(1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=12.即教学楼的高12m.(2)由(1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为27m.23.解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.24、(1)w=(x-20)(250-10x+250)=-10x2+700x-10000。

(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大。

相关文档
最新文档