求实际距离和图上距离
6.1 图上距离与实际距离
5.线段2cm、8cm的比例中项为cm。
6.已知 = ,求 的值。
三、小结与思考
1.成比例线段、比例中项定义.
2.怎么看待地图中的比例尺?
四、检测反馈(附后)
附:板书设计
6.1图上距离与实际距离
1、比例线段:a:b=c:d(或 = )
例2.已知 ,且x+y=24.求x、y的值。
变式:已知x:y=3:5,y:z=2:3,求 的值。
例3.如图: ,AD=15,AB=40,AC=28.求AE的长.
【针对性练习】
1.下列各组长度的线段是否成比例()
A.4cm,6cm,8cm,10cm.B.4cm,6cm,8cm,12cm.
C.11cm,22cm,33cm,66cm.D.2cm,4cm,4cm,8cm.
6.已知有三条长度分别为1 cm、4 cm、8 cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.
当堂检测
2.在相同时刻的物高与影长成比例,如果高为1.5m的
测杆的影长为2.5m,那么影长为30m的旗杆的高是()
A.20mB.16mC.18mD.15m
3.已知线段m、n、p、q的长度满足等式mn=pq,将它改写成比例式的形式,错误的是( )
A. B. C. D.
4.在比例尺为1:40000的工程示意图上,2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm,它的实际长度约为()
(2)如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=cm.
2.下列各组长度的线段是否成比例?
(1)4 cm,6 cm,8 cm,10 cm;
图上距离与实际距离(史志枫汇报课)
研究地图投影与导航定位技术的结合,提高导航定位的准确性和 可靠性。
地图投影与城市规划
探讨地图投影在城市规划中的应用,为城市建设和规划提供科学 依据。
地图投影与环境监测
研究地图投影在环境监测中的应用,为环境保护和治理提供技术 支持。
THANKS FOR WATCHING
感谢您的观看
实际距离
比例尺
表示图上距离与实际距离之间比例关 系的尺子,通常以1:x的形式表示,其 中x是实际距离与图上距离的比例。
地面或地球表面上的实际长度或距离, 通常以公里、英里或海里为单位。
比例尺的应用
地图制作
在地图制作过程中,比例尺用于 将实际距离转换为图上距离,以
便在地图上表示。
பைடு நூலகம்
导航
在导航中,比例尺用于计算地图上 的路线长度和实际路程长度之间的 比例关系,帮助确定行驶方向和距 离。
缺点
在投影过程中,会产生长度和面 积的变形,离中心越远,变形越 大,导致地图精度下降。
圆柱投影的优缺点
优点
圆柱投影可以保持等距离线为直线,变形小,地图精度高。
缺点
在极地区域,地图呈现会出现较大的失真,无法准确反映实 际地形。
方位投影的优缺点
优点
方位投影可以保持地图的方向不变, 适用于表示地球上某一地区的详细地 形。
缺点
在投影过程中,会产生面积和角度的 变形,导致地图精度下降。同时,在 极地区域,地图呈现同样会出现较大 的失真。
04 地图投影的应用场景
航海与航空导航
航海和航空导航中,地图投影是必不可少的工具。通过地图 投影,可以将地球表面的经纬度坐标转换为平面坐标,从而 确定船只或飞机的位置和航向。
课题:求图上距离或实际距离
(4)汇报,交流。
(5)为什么不用1:10这个比例尺呢?(这张纸画不下。)
所以比例尺要根据自己纸的长和宽来决定,看自己的纸有多长多宽的距离来表示这个物体的长和宽(注意要留足一定的空白的地方,不至于教室的长和宽刚好画在纸的长边和宽边上。
(5)提醒学生:要注明比例尺和标出图上的距离。
(1)学生独立完成,请一生板演。
(2)校对,反馈。
(二)求图上距离
1、看来同学们能利用图上距离和比例尺,求出实际距离;你能根据实际距离和比例尺,求出图上距离吗?
2、出示:篮球场的宽是15米,在1:500的比例尺平面图上,它的宽是多少?
(1)学生独立完成,请一生板演,讲解思路,其间可以提出疑难问题。
(2)校对,反馈。
(4)师适时总结:这位同学利用实际距离=图上距离÷比例尺的关系式来解答,而这位同学利用图上距离和实际距离成正比例关系,用解正比例来解。思路都非常好。你喜欢哪一种?学生谈完后,老师也说说自己的喜欢方法。
3、试一试:出示:在一幅比例尺是1:5000000的地图上,量得上海到杭州的距离是3.4厘米。上海到杭州的实际距离是多少?
2、使学生能综合运用比例尺知识,解决有关问题。
技能目标
进一步了解所学知识与现实生活的联系,发展学生的应用意识,培养学生解决问题的能力。
情感目标
让学生在探索知识的过程中获得成功体验和价值体验,进一步激发学生学习数学的兴趣,坚定学生学会数学的信心。
教学重点
求图上距离和实际距离
教学难点
掌握用解正比例的方法来解答这类问题。
教学关键
用解正比例的方法求图上距离或实际距离。
教学方法
合作探究法、引导发现法
比例尺的三个公式题
比例尺的三个公式题
当涉及到比例尺的计算时,有三个常用的公式可以帮助我们求解。
下面我将分别介绍这三个公式,并给出具体的计算示例。
1. 比例尺的定义公式:
比例尺是地图上距离与实际距离之间的比例关系。
它可以用以下公式表示:
比例尺 = 地图上的距离 / 实际距离。
例如,如果一张地图上的距离是5厘米,而实际距离是10公里,那么比例尺可以计算为:
比例尺 = 5厘米 / 10公里 = 1:200,000。
2. 求实际距离的公式:
当我们知道比例尺和地图上的距离时,可以使用以下公式求解实际距离:
实际距离 = 比例尺× 地图上的距离。
例如,如果一张地图的比例尺是1:100,000,而地图上的距离是3厘米,那么实际距离可以计算为:
实际距离= 1:100,000 × 3厘米 = 3公里。
3. 求地图上的距离的公式:
当我们知道比例尺和实际距离时,可以使用以下公式求解地图上的距离:
地图上的距离 = 实际距离 / 比例尺。
例如,如果一张地图的比例尺是1:50,000,而实际距离是6公里,那么地图上的距离可以计算为:
地图上的距离 = 6公里 / 1:50,000 = 0.12厘米。
这些公式可以帮助我们在地图测量和规划中进行距离的计算和转换。
但需要注意的是,比例尺只是地图上距离与实际距离的比例
关系,不考虑地形的复杂性和变化。
因此,在实际使用中,需要结合其他因素进行综合考虑。
希望以上解答能够满足你的要求,如果还有其他问题,请随时提问。
图上距离与实际距离课件
问题聚焦
你能说说线段的比与成比例线段的相同点和不同点吗?
1)他们都具有有序性; 2)比是两个数之间的一种运算,运算的结果称 为比值;而成比例线段是指两组比值相等的4条 线段之间所成立的一种关系; 3)比的结果(比值)是一个数或式;比例是一个 用“=”连接的等式,它满足等式的一切性质。
典例分析
例1.如果a=1㎝,b=0.4dm,c=2㎝,d=8㎝, 那么a、b、c、d是成比例线段吗?
如果ad=bc,则 a:b=c:d 或 a= c (b,d都不为0)。
bd
重要结论
在a:b=c:d中,当内项b=c时,上面的比例式可 以写成:a:b=b:d(即b2=ad),这时我们把b叫做a 和d的比例中项.
及时巩固
1.已知线段b是线段a、c的比例中项,其中a=2,c=8,则b= . 2.已知b是a、c的比例中项,其中a=2,c=8,则b= .
变式1:如果a=1㎝,b=8㎝,c=2㎝,d=4㎝, 那么a、b、c、d是成比例线段吗?
变式2:如果a=1㎝,b=8㎝,c=2㎝,d=4㎝, 那这四条线段成比例吗? 思考:那么你觉得该如何判断四条线段是不是成 比例线段呢?
重要结论
比例的基本性质:
如果a:b=c:d或
a=
c
,那么ad=bc;反之,
bd
苏科版数学九年级下册
6.1 图上距离与实际问题
图片欣赏
两幅图有什么特点? 形状相同、大小相等
全等图形
图片欣赏
两幅图有什么特点? 形状相同、大小不等 你能举诞生活中的实例吗?
是什么决定了大小不等?
对应线段不等,因此要研究形状相同的图形,第一要研 究线段的比。
ห้องสมุดไป่ตู้
苏科版数学九年级下册
图上距离与实际距离课件
人工智能和机器学习技术在数据处理和分 析中的应用,将有助于提高图上距离与实 际距离计算的效率和准确性。
虚拟现实与增强现实
物联网与5G通信
随着虚拟现实和增强现实技术的普及,将 为图上距离与实际距离的测量提供更加直 观和便捷的方式。
物联网和5G通信技术的快速发展,将促进 图上距离与实际距离测量在智能交通、智 能城市等领域的应用。
军事应用
在军事领域,地图是必不可少的工具,而图上距离与实际距离的转换则 是军事地图使用的基础。
军事行动需要精确的定位和导航,图上距离与实际距离的转换精度直接 影响到军事行动的成败。
现代战争中,无人机、导弹等武器系统都需要依靠图上距离与实际距离 的转换来进行精确打击。因此,军事应用对图上距离与实际距离的转换 精度要求极高。
科学研究
在地理学、生态学、环境科学等学科中,图上距离与实际距离的测量 对于研究空间分布、生态系统和环境变化等方面具有重要价值。
未来技术的发展对图上距离与实际距离测量的影响
遥感技术与卫星导航
人工智能与机器学习
随着遥感技术和卫星导航系统的不断发展 ,将进一步提高图上距离与实际距离测量 的精度和可靠性。
驶的距离。
案例二:GPS定位误差分析
GPS定位误差是影响图上距离与 实际距离之间差异的重要因素之
一。
GPS定位误差包括系统误差和随 机误差两种类型,系统误差可以 通过校准和修正来减小,随机误
差则难以消除。
GPS定位误差会导致地图上两点 之间的距离与实际距离存在差异, 尤其是在地形复杂或建筑物密集
的地区,差异可能更加明显。
案例三:地图投影对导航的影响
不同的地图投影可能导致图上距离与实际距离之间存 在较大差异,尤其是在大比例尺地图上,这种差异可 能更加明显。
图上距离与实际距离
比例尺的种类
数字比例尺
面积比例尺
用数字表示图上距离与实际距离的比 例关系,如1:10000,表示图上1cm 代表实际10000cm。
用图上的一个面积单位表示实际地面 的面积,常用于地图的面积量算。
线性比例尺
用一条线段表示图上距离与实际距离 的比例关系,线段上标注有相应的实 际长度或比例。
比例尺的选择
比例尺
地图上某一长度与实际相 应长度之比,用于表示地 图的缩放程度。
2023
PART 02
图上距离与实际距离的关 系
REPORTING
比例尺的定义
比例尺是表示图上距离与实际 距离之间的比例关系的一种工 具。
比例尺通常表示为图上距离与 实际距离的比值,即图上1单位 长度代表实际多少单位长度。
比例尺可以用来将图上的长度 或面积等比例地转换为实际的 长度或面积。
通过卫星、飞机等遥感平台获取 地球表面的影像数据。
遥感影像处理
对获取的影像数据进行预处理、增 强和分类等操作,提取有用的信息。
遥感技术应用
利用遥感技术可以监测自然资源、 环境变化和人类活动等,为决策提 供支持。
导航系统与应用
导航定位技术
利用卫星导航定位系统(如GPS、 北斗等)确定用户的位置和速度
目的和背景
01
探究图上距离与实际距离的关系 ,为地图制作、地理信息系统等 领域提供理论支持。
02
分析图上距离与实际距离产生差 异的原因,提出减小差异的方法 和措施。
定义和概念
01
02
03
图上距离
地图上两点之间的直线距 离,通常以厘米或毫米为 单位表示。
实际距离
地面上两点之间的实际直 线距离,通常以公里或米 为单位表示。
(课件)6.1图上距离与实际距离
小结:比例中项,若是线段,则为正; 若是数,则可正可负.
阶段检测(2) 填空:(其中a、b、x都表示线段的长度): ①若b:4=a:3,则a:b= 3:4 ; ②若3:x=2:6,则x= 9 ; ③若x为4和9的比例中项,则x= 6 ; ④若2:x=3:(2-x),则x= 0.8 .
x y 例3、已知 , 且x y 24,求x、y的值. 3 5
a
c
1.分别量出两幅地图中,南京市与 徐州市、南京市与连云港市之间的 图上距离. 2.南京市与徐州市的图上距离的比 是多少? 南京市与连云港市的图上 距离之比是多少? 这两个比值之间有怎样的数量关系?
连云港 徐州
b 南京 比例尺:1∶8000000
南京
d
比例尺:1∶16000000
在上面的两幅江苏省地图中,设连接南京与徐州的线段 分别为a,b,它们的比(即a与b的长度的比) 为 a:b或 a ,连接南京与连云港的线段分别为c、d, c b 它们的比为 ______ 或 ______ ,我们可以获得什么结论? c:d
阶段检测(1)
1.已知A、B两地的实际距离AB=5 km,画在图上的 距离A′B′=2 cm,则图上的距离与实际距离的比是 ( D). A.2:5 B.1:2 500 C.250 000:1 D.1:250 000 2.下列各组数中,成比例的是( A ). A.-6,-8,3,4 B.-7,-5,14,5 C.3,5,9,12 D.2,3,6,12 3.在比例尺为1:40 000的工程示意图上,南京地铁 一号线(奥体中心至迈皋桥段)的长度约为54.3 cm, 则它的实际长度约为( C )km. A.0.217 2 B.2.172 C.21.72 D.217.2.
b d
图上距离和实际距离的比
地图制作者需要根据实际需求选 择合适的比例尺,以满足不同用 户对地图精度和详细程度的需求。
导航系统
导航系统是现代生活中不可或缺的一 部分,它可以帮助我们找到目的地并 规划最佳路线。
通过使用图上距离和实际距离的比,导航系 统可以提供准确的路线规划和行驶距离估算 ,帮助用户快速、准确地到达目的地。
01
02
03
04
军事
比例尺在军事上有着广泛的应 用,如作战计划、地形分析等
。
地理研究
地理学家使用比例尺来研究地 形、地貌和地球表面的其他特
征。
城市规划
城市规划师使用比例尺来规划 城市和地区的发展。
地图制作
地图制作者使用比例尺来制作 各种类型的地图,如交通图、
旅游图等。
计算图上距离和实际距离的比的步骤
在地理学、地图学、测量和军事等领域中,比例尺都是不可或缺的概念,对于空间 数据的表示、分析和应用具有重要意义。
02 图上距离和实际距离的定 义
图上距离的定义
图上距离
在地图或图纸上,两点之间的直线距 离。
测量方法
使用测量工具,如直尺、量角器等, 直接测量两点间的直线长度。
实际距离的定义
实际距离
在实际环境中,两点之间经过地形、地貌、建筑物等障碍物的实际行走或行驶 距离。
使用激光测距仪
激光测距仪具有高精度和高速度的优点,能够快速准确地测量实际距离。
选用高分辨率的GPS设备
高分辨率的GPS设备能够提供更精确的位置信息,从而减小测量误差。
优化地图制作流程
采集更多数据点
在地图制作过程中,增加更多的数据 点可以提高地图的精度,进而提高图 上距离和实际距离的比的精度。
图上距离应该等于什么
图上距离应该等于什么
实际距离=图上距离÷比例尺,图上距离=实际距离×比例尺。
在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。
扩展资料
比例尺公式
图上距离=实际距离×比例尺。
实际距离=图上距离÷比例尺。
比例尺=图上距离÷实际距离.(在比例尺计算中要注意单位间的`换算)。
(1公里=1千米=1×1000米=1×100000厘米)。
单位换算:图上用厘米,实地用千米,厘米换千米,去五个零;千米换厘米,在千的基础上再加两个零。
比例地图
国家测绘部门将1∶5000、1∶1万、1∶2.5万、1∶5万、1∶10万、1∶25万、1∶50万和1∶100万八种比例尺地形图规定为国家基本比例尺地形图,简称基本地形图,亦称国家基本图,以保证满足各部门的基本需要。
其中:
大比例尺地形图:1∶5000至1∶10万的地形图;
中比例尺地形图:1∶25万和1∶50万地形图;
小比例尺地形图:1∶100万地形图。
生活中的比例尺
如:地图,绘图、测量、田地、航空、公路、航海,建筑。
第十章图上距离与实际距离(1)
(1)比如:线段a的长度为3厘米,线段b的长度为6米,所以两线段a,b的比为3∶6=1∶2,对吗?(不对,因为a、b的长度单位不一致)因此在量线段时两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;
(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;
(4)成比例线段注意写法用同一长度单位表示.
教学后记:
(3)两条线段的长度都是正数,所以两条线段的比值总是正数.
2、成比例线段
四条线段a,b,c,d中,如果a与b的比等于c与d的比,即=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段
3、线段的比和比例线段的区别和联系:
(1)线段的比是指两条线段之间的比的关系,比例线段是指四条线段间的关系.
(2)若两条线段的比等于另两条线段的比,则这四条线段叫做成比例线段.
姓名学号班级教者
课题
10、1图上距离与实际距离教案
课型
新授
时间
第十章第1~2课时
教学目标
1、了解线段比和成比例的线段.
2、掌握比例的基本性质。
重点
掌握比例的性质。
难点
理解比例的性质及其应用。
学习过程
旁注与纠错
一、ቤተ መጻሕፍቲ ባይዱ前预习与导学得分
1、在一幅江苏地图上,扬州与南京的距离AB=1.25cm,实际上扬州南京的A′B′约为100km,请根据上述条件回答下列问题:
4、比例的重要性质:(1)若=,则=;
(2)若=,则=
5、在比例=中,我们把b叫做a和c的__________。
二、新课
(一)、情境创设:
生活中常常可见形状相同的图形,如课本P80两幅不同比例尺的长城照片,探索相似图形的特征,更好地认识图形世界。
求实际距离和图上距离的教学设计及反思
求实际距离和图上距离的教学设计及反思林桂英教学内容:六年制小学数学第十二册第14页例5、例6。
教学背景分析:本节内容是根据比例尺求图上距离和实际距离,这是学生已掌握比,比例、比例尺的意义及分类的基础上进行进一步的学习。
教学目的:1、让学生学会求实际距离和图上距离的方法,并能运用这些方法解答有关实际问题。
2、培养学生动手操作、自主探索和合作交流的学习能力,发展学生的创新思维。
教学重难点:实际距离和图上距离的计算方法。
课前准备:课件,中国地图等。
一、导入新课。
同学们,你们喜欢旅游吗?这节课老师想调查一下,我们班同学的旅游情况。
到过泉州旅游的同学请举手;到过厦门的同学请举手;到过北京旅游的请举手;到过祖国各地观光的同学请举手;怎么都没去过呀?这节课老师带你们到祖国各地去观光旅行,大家想不想去呀?师展示出中国地图,问你们最想去什么地方旅游?二、新课探究:1、求实际距离。
要去北京旅游应先了解哪些相关问题呢?生1:要知道北京那个地方的天气怎么样?生2:要了解北京那边的消费情况。
生3:要了解厦门到北京航班起飞的时间。
生4:要知道厦门到北京的路程是多少,乘飞机几小时可以到达。
同学们考虑得真周到。
刚才,他们说要知道厦门到北京是多少,实际上是什么意思呢?厦门到北京的实际距离。
厦门到北京的实际距离是多少呢?你们有办法知道吗?有!可以打电话问厦门的航空公司或交瓷都旅行社。
除此之外还有其他办法吗?还可运用上节课学习的知识求厦门到北京的实际距离。
怎么求?学生纷纷拿出地图,有的量、有的的算。
生1:可以用解比例的方法求得实际距离,我们这幅地图的比例尺是1:8500000,从厦门到北京的图上距离是20厘米。
设厦门到北京的实际距离为X厘米。
根据图上距离:实际距离=比例尺,可以列比例式为20:X=1:8500000,求得X为170000000厘米,即1700千米.生2:我们是用算术解求出实际距离的。
由图上距离:实际距离=比例尺可以知道实际距离=图上距离÷比例尺。
已知图上距离和比例尺,求实际距离
1、1千米=(100000 )厘米
1米=(100 )厘米
Байду номын сангаас
2、比例尺1:2000000可以表示哪些意义?
图上距离与实际距离的比是1:2000000 图上距离是实际距离的 1
2000000
实际距离是图上距离的2000000倍。
图上1厘米表示实际距离20千米。
练习讲解
方法一:公式法: 图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺
14、在比例尺是1:4000000的中国地图上,量得北京到广 州的距离是50厘米,北京到广州的实际距离是多少千米?
15、在比例尺是6:1的图纸上理得一种精密零件长是3厘 米,这个零件的实际长是多少毫米?
方法二:解比例 图上距离:实际距离=图上距离:实际距离
12、在一张图纸上量得一个零件的长度是6厘米,已知这张 图纸的比例尺子是1/100,求这个零件的实际长度是多少米?
13、在一张地图上量得A地到B地的距离是5厘米,这幅地 图的比例尺是1/3000000,A地到B地的实际距离是多少千米 ?
图上距离和实际距离
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 引言 • 图上距离与实际距离的关系 • 地图投影 • 实际距离的测量方法 • 图上距离和实际距离的应用 • 总
引言
BIG DATA EMPOWERS TO CREATE A NEW
新的测量技术和数据处理方法可以进一步改进地 图制作和测量精度,未来研究可以探索这些新技 术的应用和潜力。
人工智能和机器学习技术在地图制作和导航领域 也有着广泛的应用前景,未来研究可以探索如何 利用这些技术提高地图的智能化水平和服务质量 。
THANKS
感谢观看
ERA
主题简介
图上距离
指在地图或图纸上两点之间的直线距 离。
实际距离
指在实际地理空间中两点之间的直线 距离。
主题重要性
01
在地理学、测量学、交通规划等 领域,图上距离和实际距离的转 换是重要的基础工作。
02
正确理解图上距离和实际距离的 关系,有助于提高地图的精度和 使用效果,为相关领域的研究和 实践提供支持。
03
地图投影
BIG DATA EMPOWERS TO CREATE A NEW
ERA
地图投影的种类
等角投影
保持角度不变,常用于航海图和航空 图。
等面积投影
等距离投影
保持两点间的距离不变,常用于制作 地形图。
保持面积不变,常用于制作世界地图。
地图投影的选择
根据用途选择
不同的地图用途需要选择不同的 投影方式,例如,航海图需要选 择等角投影,世界地图需要选择
等面积投影。
根据区域选择
不同地区的地球曲率不同,因此需 要根据区域选择合适的投影方式。
知道图上距离和比例尺实际距离怎么求
比例尺分放大比例尺和缩小比例尺,放大比例尺就是把一些很小的东西数据放大画在图纸上(因为把那么小的东西画在图纸上,很难观察清楚),一般用于一些特别小的零件上,比如一个手表里的一个零件长3毫米,放大10倍画在图纸上的话,那么,写成放大比例尺就是10:1;而缩小比例尺就是把一个很大的东西画在图纸上(比如房子、汽车、飞机,这么大的东西,图纸怎么够画呢,当然要缩小画在图纸上啦),比如一栋房子长10米,宽10米,高50米(我是举例),要缩小100倍画在图纸上,写成比例尺就是10:100。
比例尺公式:图上距离=实际距离*比例尺
实际距离=图上距离/比例尺比例尺=图上距离/实际距离
已知比例1:10000
地图距离a厘米
实际距离a×10000厘米
记住1:10000表示的就是地图上1厘米代表实际10000厘米。
6.1图上距离与实际距离
图靠近我国钓鱼岛,
立刻进行拦截。舰
上雷达在比例尺为1: 800000的地图上,
中国钓鱼岛测ຫໍສະໝຸດ 与日本渔船距离为3.4cm,求两船 比例尺:1∶800000
之间的实际距离是
多少千米?
“中国海监50” 船 长约100米,宽约 15米.
由于钓鱼岛维权巡航需要,我 国准备再建造几艘海监“50”系列的 海监船.在海监船模型上测得船长约 80cm,宽约12cm.
②如果a=1cm,b=2cm,c=2cm, d=4cm,那么a、b、c、d是成比例线段吗?
③如果a=1cm,b=6cm,c=2cm, d=3cm,那么a、b、c、d是成比例线段吗?
小结:成比例的四条线段是有顺序的如
若 a c ,则a、b、c、d是成比例线段
bd
若c d
ba
,则c、b、d、a是成比例线段
9 6
(1)
8 4
(2)
6 4
(3)
2.下图中,线段A1B1、A2B2、 B1C1、 B2C2的端点 都在边长为1的小正方形的顶点上,这四条线段是 成比例线段吗?为什么?
怎样判断4条线段是否为“成比例线段”呢?
3. ①如果a=1cm,b=3cm,c=2cm, d=6cm,那么a、b、c、d是成比例线段吗?
二、成比例线段
在四条线段中,如果两条线段的比
等于另外两条线段的比,那么称这四条
线段成比例. 符号语言:若
ac bd
,则线段a、
b、c、d成比例,反之,若线段a、b、c、
d成比例, 则 a c .
bd
注意:线段a、b、c、d成比例也可说a、
b、c、d是成比例线段.
1.下图中,哪两个矩形的长和宽是成比例线段?
比例尺怎么算
比例尺怎么算一1比例尺计算1.图上距离÷实际距离=比例尺2.图上距离÷比例尺=实际距离3.比例尺×实际距离=图上距离2比例尺三种形式1.数字式:用数字的比例式或分数式表示比例尺的大小。
例如地图上1厘米代表实地距离500千米,可写成1∶50000000或写成:五千万分之一。
2.线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
3.文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如图上1厘米相当于地面距离10千米。
3地图比例尺表示图上距离比实际距离缩小(或放大)的程度,因此也叫缩尺。
如1∶10万,即图上1厘米长度相当于实地1000米。
严格讲,只有在表示小范围的大比例尺地图上,由于不考虑地球的曲率,全图比例尺才是一致的。
通常绘注在地图上的比例尺称为主比例尺。
在地图上,只有某些线或点符合主比例尺。
比例尺与地图内容的详细程度和精度有关。
二比例尺=图上距离/实际距离。
比例尺的概念:比例尺是表示图上一条线段的长度与地面相应线段的实际长度之比。
按照比例尺概念,比例尺的算式为:比例尺=图上距离/实际距离。
比例尺的特点:比例尺实际上是一个“比”;比例尺是图上距离与实际距离的“比”;图上距离和实际距离的单位是统一的(即换算成相同单位再比),所以比例尺没有单位(单位统一被约分了);比例尺的前项一般为1。
比例尺的换算方法:(1)长度单位换算公式:1公里=1千米。
1000米=1千米。
1米=10分米=100厘米=1000毫米。
1分米=10厘米=100毫米。
1厘米=10毫米。
(2)比例尺的换算:举例说明:“图上一厘米代表实际1公里,比例尺是多少?”解析:长度单位换算公式是孩子原来就掌握的知识,因为比例尺必须统一单位,只需要按长度单位换算公式,将图上距离和实际距离的单位换算成相同单位,然后统一代入比例尺算式,比例尺=1厘米/1公里=1厘米/100000厘米=1/100000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、做练习十一第4题
引导学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。
学生练习后交流
四、全课总结
五、知识拓展
P51“你知道吗?”
1、收集地图资料,展示给学生观看。
2、介绍国家基本比例尺地图。
六、布置作业补充习题的35、36页。
4、归纳、选择、
教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。
5、练习
学生分析题意,明确已知比例尺,已知图上距离,求实际距离。
学生分析1:8000表示的意义。
学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。
学生可能出现的方法:
1、5×8000=40000……
2、5×80=400……
3、5/X=1/8000……
图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。
学生列式5/X=1/8000并计算。
三、巩固提高
1、做“试一试”。
先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。
二、理解明确
实践运用
1、出示例7,明确题意
找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。
2、分析比例尺1:8000所表示的意义。
引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。
3、尝试列式
根据对1:8000的理解你能尝试列出算式吗?
比例
第六课时
课题:求图上距离和实际距离
教学内容:课本第49、50页“练一练”和练习十一的第3、4、5题
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。
教学重点:能按给定的比例尺求相应的实际距离或图上距离。
教学难点:能按给定的比例尺求相应的实际距离或图上距离。
教学过程:
一、引入新课
1、在出这幅地图的比例尺吗?
2、什么叫比例尺?求比例尺时要注意哪些问题?
学生练习,找出图上距离与实际距离,再写出比例尺。