线性代数N维向量空间第4节基与维数

合集下载

线性代数 N维向量空间 第4节 基与维数

线性代数 N维向量空间 第4节 基与维数
第四章 n维列向量空间
§ 4.4 向量空间
2. 设V是Rn的非空子集, 且对向量的加法及数 乘封闭(closed), 即 , V, kR, 有+V, kV,
closure conditions
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.

第四章 n维列向量空间
§ 4.4 向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr . {k1, k2, …, kr}T —— 在1, 2, …, r 这组
1, 2, …, s——生成元(generator).

第四章 n维列向量空间
§ 4.4 向量空间
二. 向量空间的基(basis)与维数(dimension) 1, 2, …, r ——V的一组基:
① 1, 2, …, r线性无关, ② V都能由1, 2, …, r线性表示. r称为V的维数. 记为维(V)或dim(V). n维基本单位向量组就是Rn的一组基, dim{Rn} = n; 零空间没有基, 规定dim{0} = 0. 例2. 求例1中的各向量空间的基与维数.
Rn和{0}称为Rn的平凡(trivial)子空间.

第四章 n维列向量空间来自§ 4.4 向量空间例1. 检验下列集合是否构成向量空间. (1) V = {(x, y, 0) | x, y R};

线性代数N维向量空间第4节基与维数

线性代数N维向量空间第4节基与维数
02 基的维数与向量空间的维数相等,即向量空间的 维数等于基中向量的个数。
03 不同的基可以用来表示同一个向量空间,但基的 个数是唯一的。
04
基与维数的应用
在线性变换中的应用
01
线性变换
基与维数在研究线性变换中具有重要作用。线性变换是向量空间中的一
种保持线性关系的变换,其可以通过基底表示。通过确定基底,可以确
维数定理
对于任何向量空间,其维数等于其基中向量的个数。
下节预告
向量空间的子空间
介绍如何定义和识别一个向量空 间的子空间,以及子空间的性质 和特点。
子空间的维数
探讨如何计算子空间的维数,以 及子空间维数与原向量空间维数 的关系。
向量空间的线性变换
介绍线性变换的概念、性质和分 类,以及线性变换在向量空间中 的重要作用。
线性代数n维向量空间第4节基与维数
目录 Contents
• 引言 • 向量空间与基的定义 • 维数的概念 • 基与维数的应用 • 总结与回顾
01
引言
主题概述
本节将介绍向量空间中的基与维数概 念,这是线性代数中重要的基础概念 之一。
通过学习本节,学生将理解向量空间 中基的作用,掌握维数的计算方法, 并能够在实际问题中应用这些概念。
逆矩阵与伴随矩阵
逆矩阵和伴随矩阵也是矩阵理论中的重要概念,它们的计 算也涉及到基与维数。逆矩阵是线性变换的逆过程,而伴 随矩阵则代表了线性变换的另一种形式。
在几何学中的应用
向量空间
基与维数可以用来描述向量空间的结构和性质。向量空间中的每一个元素都可以由基底线性表示,而维数则代表 了向量空间中独立元素的个数。
仿射变换
仿射变换是几何学中的一种重要概念,它可以由线性变换表示。通过确定仿射变换的基底和维数,可以研究其性 质和特征,进而应用于几何学中的各种问题。

线性代数4-7章

线性代数4-7章
零向量与任何向量正交.
第四章 向量空间 §2 Rn中的内积 标准正交基(续5)
定理2 设α1,α2,…,αs为两两正交的非零向量. 则 α1,α2,…,αs线性无关 证明:设k1α1+k2α2+…+ksαs=0. 两边与 αi 作内积,得: ki(αi,αi)=0, ∴ki=0, i=1,2,...,s.
第四章 向量空间 §2 Rn中的内积 标准正交基(续7) Schmidt正交化方法
设向量组A: α1,α2,…,αr线性无关, 求与A等价的标准正交向量组.
1.正交化:

1 1
( 3 , 1 ) ( 3 , 2 ) 3 3 1 2 ( 1 , 1 ) (2 , 2 )
a1 b1 a2 b2 的内积 定义:n维向量 , a b n n
( , ) a1b1 a2b2 anbn T T
2.( , ) ( , ) ( , );
(i ,i ) 0
∴ α1, α2,…,αs线性无关.
第四章 向量空间 §2 Rn中的内积 标准正交基(续6)
定义:设α1,α2,…,αs是向量空间V的一 组基,且两两正交,则称 α1,α2,…,αs为V的一组正交基. 若又有||αi||=1(i=1,2,…,s),则称 α1,α2,…,αs为V的一组标准正交基.
1
第四章 向量空间 §2 Rn中的内积 标准正交基(续4) 定理1 | ( , ) ||| || || || .
当α, β均非零向量时,定义α与 β的夹角:
( , ) , arccos || || || ||
(α, β)=0时,称α与 β正交.

线性空间的基与维数

线性空间的基与维数

线性空间的基与维数线性空间是线性代数中的重要概念,它是由一组元素构成的集合,这些元素之间满足线性运算的性质。

在线性空间中,基与维数是两个重要的概念。

一、线性空间的基线性空间的基是指线性空间中的一组线性无关的元素,通过这组元素可以表示整个线性空间中的任意元素。

换言之,线性空间中的每个元素都可以唯一地由基中的元素线性组合而成。

线性空间的基具有以下特性:1. 基中的元素线性无关,即任意一个基中的元素不能被其他基中的元素线性表示。

2. 基中的元素张成整个线性空间,即线性空间中的任意元素都可以由基中的元素线性组合而成。

3. 基中的元素个数是唯一的,即同一个线性空间中的不同基所包含的元素个数是相同的,这个个数称为线性空间的维数。

二、线性空间的维数线性空间的维数是指线性空间中的基所包含的元素的个数,用整数表示。

维数是衡量线性空间大小的一个重要指标。

线性空间的维数具有以下性质:1. 对于一个线性空间,如果存在一个有限的基,则该线性空间的维数是有限的。

2. 对于一个线性空间,如果不存在有限的基,则该线性空间的维数是无限的。

维数是线性空间一个重要的性质,它决定了线性空间的很多性质。

在线性代数中,我们可以通过求解线性方程组的秩来确定线性空间的维数。

三、基与维数的应用基与维数在线性代数的各个分支中有广泛的应用。

以下是一些典型的应用场景:1. 线性变换的表示:线性变换可以由一个矩阵表示,基的选择与线性变换的矩阵表示密切相关。

2. 向量空间的表示:向量空间中的向量可以由线性组合表示,基的选择可以简化向量空间中向量的表示和计算。

3. 子空间的判断:基与维数可以用来判断一个子集是否构成了线性空间的子空间。

4. 线性方程组的解空间:线性方程组的解空间可以由基与维数表示。

总结:线性空间的基与维数是线性代数中的重要概念。

基是线性空间中一组线性无关的元素,可以表示线性空间中的任意元素;维数是基所包含的元素的个数,它决定了线性空间的很多性质。

线性代数N维向量空间基与维数

线性代数N维向量空间基与维数

§ 4.4 向量空间
12 解: 0 1
1 0
1 1 1
1 1 1
初等 行变换
1 0 0
2 1 0
1 1 0
1 1 0
可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基.
注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1Biblioteka 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.

维数和基的个数的关系

维数和基的个数的关系

维数和基的个数的关系
维数和基的个数是线性代数中的重要概念。

在n维向量空间V 中,如果存在一组线性无关的向量{v1,v2,……,vn},那么就称为V 的一组基,基的个数记作dim(V)。

同时,如果存在一组向量
{v1,v2,……,vm},能够生成V,即V中的任何向量都能够表示成它们的线性组合,那么就称为V的一个生成组,生成组中向量的最大个数记作rank(V)。

显然,rank(V) ≤ dim(V)。

维数和基的个数之间的关系可以由一个简单的定理描述:任何有限维向量空间V中的每个基含有相同数量的向量。

这个定理告诉我们,无论选择哪个基,它们的个数都是相同的。

这个定理也可以用来证明另外一个重要的结论:任何有限维向量空间V的任意两个基中,都存在一种线性变换把一个基变换成另一个基。

这个结论被称为基变换定理。

总之,维数和基的个数是线性代数中不可分割的重要概念,它们之间有着紧密的联系和相互依存的关系,对于研究线性代数的各种理论和应用都具有重要意义。

- 1 -。

线性代数基和维数

线性代数基和维数

定义4.5.1 R n 的非零子空间H的线性无关生成 集称为H的基(basis).
n R 例4.5.2 可逆n阶方阵的n个列向量构成 的基.
证明:设可逆方阵 A 1,2 ,...,n , 其列向量组线性无 关. 对 R n 中的任意向量 ,由性质4.2.5, 1,2 ,...,n , 线性相关. 由例4.2.7知, 可由1 ,2 ,...,n 线性表出, 1 ,2 是 ,...,n 的基 Rn . 因此
证明:证明方法类似于上例中的讨论. 令B是A的行最简形矩阵. B的主元列线性无关, 而A行等价于B,由定理4.5.2可知,A的主元列线性 无关.
B的非主元列可表成B的主元列的线性组合,则A 的非主元列也可表成A的主元列的线性组合,因而 可以从ColA的生成集中删除. 这样,A的主元列构成了ColA的基.
如果 能用两种方式表成1,2 ,..., p 的线性 组合,即
k11 k22 ... k p p ,
l11 l22 ... l p p .
两式相减,有
0 (k1 l1 )1 (k2 l2 )2 ... (k p l p ) p .
例4.5.7 NulA的维数是方程组Ax=0中自由变 量的个数. ColA的维数是A的主元列的数目.
n R 定理4.5.6 若H是 的子空间,dim H p. 则
(1)H中任意p个线性无关的向量构成H的一 组基; (2)如果H中p个向量构成H的生成集,则这 p个向量也构成H的一组基.
子空间H的基相对于生成集的另一个优点是: H中的每个向量仅能用一种方式写成基向量 的线性组合,即表出是唯一的. 定理4.5.8 若 1 , 2 ,..., p 是子空间H的基,则H 中的任一向量能且仅能用一种方式表为 1 ,2 ,..., p 的线性组合. 证明:因为 1 , 2 ,..., p 是H的生成集,H中任 一向量 必可表为 1,2 ,..., p 的线性组合.

基与维数的几种求法

基与维数的几种求法

基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。

(2)v中任一向量α总可以由α1,α2,,αn线性则表示。

那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。

如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。

基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。

解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。

基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。

⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。

⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。

基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。

证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。

方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。

例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。

§3.4线性空间、基、维数和坐标

§3.4线性空间、基、维数和坐标

一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广。

线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。

定义设F 是数的集合,若其满足(1)F∈1,0 (2)F ,均有∈∀b a ,∈≠÷×−+)0(,,,b b a b a b a b a 则称F 是一个数域。

R ,实数域Q ,有理数域常用数域C ,复数域F},,1, |),,{(1n i a a a i n =∈=},,2,1,,2,1, |]{[n j m i a a ij n m ij ==∈=×;F [x ]F F m ×n F },2,1,0,,1,0 , |){2210 ==∈++++=n n i a x a x a x a a i nn ;Fn F }0)( ,)( ],[F )(|)({≡∈=x f n x f x x f x f 或的次数小于}],[)(|)({上的连续函数是闭区间b a x f x f =F [x ]n C [a ,b ]βαγ+=若对于任一数与任一元素,总有唯一的一个元素与之对应,称为与的数量积,记作∈k V ∈αV ∈δk ααδk =定义设是一个非空集合,F 为数域.如果对于任意两个元素,总有唯一的一个元素与之对应,称为元素与的和,记作V ∈βα,V ∈γαβV F对F ,总有,,,,V k l αβγ∈∈;,,)3(αθααθ=+∈都有对任何中存在在V V ;)1(αββα+=+ ()();)2(γβαγβα++=++ 如果上述的两种运算满足以下八条运算规律,那么就称为数域F 上的线性空间:V 零元素(5) 1αα=()()(6) k l kl αα=()(8)k k k αβαβ+=+()(7) k l k l ααα+=+;),,)(θααααα=−+∈−∈( 4使的都存在对任何V V 负元素说明1.凡满足以上八条规律的加法及数乘运算,称为线性运算;2.线性空间中的向量不一定是有序数组;3.若一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。

线性代数基和维数

线性代数基和维数

对于矩阵A,A的列之间的线性关系可以表 成Ax=0,其中x为相应的组合系数构成的列 向量.(如果A的某列在某个关系式中不出现, 则相应的系数为零.)
A经初等行变换化为B后,B的列一般与A的 列完全不同,但Ax=0和Bx=0两个方程组同 解,这意味着,A的列与B的相应列之间有 完全相同的线性关系. 因而有以下结果:
一向量 必可表为 1,2,..., p 的线性组合.
如果 能用两种方式表成1,2,..., p 的线性 组合,即
k11 k22 ... k p p , l11 l22 ... lp p.
两式相减,有
0 (k1 l1)1 (k2 l2 )2 ... (k p lp ) p.
(2) 如果 H 0, 则必有S的某个子集是H的基.
证明:(1)不妨设 p 是1, , p1 的线性组合:
p c11 c p1 p1.
H中的任意向量 可以表为
k11 k p1 p1 k p p ,
代入上式,容易验证 是1, , p1的线性组合.
可以看出,线性相关的生成集包含了冗余信息,
即如果 S 1,2, ,p是子空间H的线性相关生成
集,则至少有一个向量可以写成其余p-1个向量的 线性组合,从而可以从S中去除,得到一个较小的 生成集.
另一方面,如果B 1, 2, , r是H的线性无关生成
集,则B中任一向量都不能由其余r-1个向量线性表 出,因此从B中去除一个向量后得到的B的子集一 定不是H的生成集(去除的向量不能由剩余向量线 性表出).
解: 设 在基 1, 2 , 3下的坐标为 x1, x2, x3 T,则
x1
1
2

基与维数的基本概念与应用

基与维数的基本概念与应用

基与维数的基本概念与应用线性代数是现代数学中非常重要的一部分,而作为线性代数的基本概念之一,基与维数在很多领域中都有着重要的应用和作用。

在本文中,我们将着眼于基与维数的基本概念和应用,希望能够给读者带来全面且深入的了解。

基的概念基是线性空间的一个基本概念。

在线性代数中,所谓线性空间就是一个向量空间的特殊情形,向量空间由向量组成,这些向量可以用数字来表示。

而基就是指这些向量的数量最少的子集,这个子集中的向量可以表示出这个向量空间中的其他所有向量。

具体来说,基的定义是:如果一个向量空间V中的向量集S有以下两个性质:1. 向量集S中的向量是线性无关的;2. 向量集S中的任意向量都可以用向量集S中的有限个向量线性组合表示(即,对于任意一个向量v∈V,都存在一组系数a1,a2,……,an使得v=a1s1+a2s2+……+ansn,其中si∈S,ai∈K,K是所在域)那么,S就是V的一个基。

基的一些性质包括:1. 基是线性无关的。

2. 基中的任意向量都不可由其他向量线性组合得到。

3. 维数相同的向量空间会有同样数量的基。

4. 所有向量空间都有基,包括零向量空间。

维数的概念维数是向量空间的另一个重要概念。

在数学中,向量空间的维数是指基中向量的数量的大小。

具体来说,如果一个向量空间V有一个n个线性无关向量的基,那么V就称为一个n维向量空间。

维数可以理解为空间中向量的独立自由度,向量空间的维数可以用来区分不同的向量空间,也用来确定矩阵的秩等重要性质。

基的应用基作为线性代数中的基本概念,应用十分广泛。

以下列举了一些基的应用:1. 矩阵乘法:矩阵乘法的前提是两个矩阵的行列数满足要求。

具体来说,矩阵A的列数必须等于矩阵B的行数。

而每一个矩阵可以看做是向量空间中向量的组合,因而矩阵的乘法实际上就是向量之间的线性组合,而基恰好是向量的组合表示。

2. 解方程组:在线性代数中,矩阵可以看做是线性方程组的系数,而矩阵的秩和向量空间的维数有密切关系。

线性代数中的向量空间的基与维数计算与应用

线性代数中的向量空间的基与维数计算与应用

添加标题
添加标题
添加标题
添加标题
特征值分解(EVD):用于主成分 分析和图像处理
矩阵分解在推荐系统中的应用:通 过分解用户-物品交互矩阵,推荐 相关物品
数据降维案例
数据降维的背景:高维数据难以处理,需要降低维度以便分析
基与维数的概念:基是向量空间的一组线性无关的向量,维数是向量空 间的秩,即基向量的个数
响,例如小波变换、中值滤波等。
THANKS
汇报人:XX
向量空间在解析几何、线性代数等领域中有着广泛的应用。
向量空间的基的定义
基是向量空间中线性无关的 向量组
向量空间是由同维线性组合 生成的向量集合
基的个数是向量空间的维数
基可以用来描述向量空间中 的任意向量
基的个数与向量空间的维数的关系
基的个数必须 等于向量空间
的维数
基的个数不能 超过向量空间
的维数
06 基 与 维 数 的 计 算 注 意事项
Part One
单击添加章节标题
Part Two
向量空间与基的定 义
向量空间的定义
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、加法的结合律和交换律、数乘的 结合律和分配律。
向量空间中的向量可以进行加法、数乘等运算,且满足一定的性质。
向量空间中的向量可以表示为坐标系中的点或矢量,具有方向和大小。
迭代法:利用迭 代算法求解基
维数的计算方法
定义:基与维数是线性代数中描述向量空间的重要概念,维数等于向量空间的基中向量的个数。 计算方法:通过求解线性方程组,可以得到向量空间的基,从而计算出维数。 应用:维数的计算在解决实际问题中具有广泛的应用,如机器学习、图像处理等领域。 注意事项:在计算维数时,需要注意线性相关性的问题,避免出现计算错误。

线性空间维数与基的求法

线性空间维数与基的求法

线性空间维数与基的求法维数与基是线性空间V 的一个基本属性,它的确立对于我们认识线性空间有着很大的作用.因为确定了维数和基以后n 线性空间V 上任意向量的坐标(即n 元数组)也就相应确定了,在学习了线性空间的同构的知识后会知道,任意n 维线性空间V 都与n P 同构,这样,我们可以通过n P 的性质来研究任意n 线性空间V 的性质。

同时对维数与基概念的把握也是我们后面学习线性空间的同构、线性变换、欧氏空间的基础。

但是,鉴于它是线性空间的一个基本概念,多数教科书对于该部分的处理往往是泛泛而谈,比如文献1250P 例3更是一笔带过,这对学生深入理解相关概念造成了一定的障碍.虽然它的求法没有统一的方法,但却有着一致的要求,即要符合定义。

本文计划从以下两方面对维数与基的求法做进一步的归纳和总结,同时也是对《高等代数》250P 例3的补充说明,希望对初学者认识线性空间以及后续的学习有一定的帮助。

一、数域P 上的线性空间V ——数域P 的作用和角色凡是涉及数与空间中向量(取自集合V 中的元素)的乘积,即通常所说的数量乘法,其中的数都是取自数域P 。

例如:线性变换、同构定义中的第二条保持数量乘法,判别向量的线性相关性等这些问题都是依赖数域P 的。

同一线性空间V 指定数域的不同,通常对于我们的结果也会造成很大差别。

1.数域P 对线性空间V 的线性变换判别的影响例1:把复数域看作复数域上的线性空间,ξξ=A解:举反例如下,系数k 取自复数域i k =,)())(()(ai b bi a i k +-A =+A =A αai b --=,而ai b bi a i bi a i k +=-=+A =A )())(()(α,显然)()(ααA ≠A k k ,故变换A 不是线性的。

例2:把复数域看作实数域上的线性空间,ξξ=A解:系数k 取自实数域R k ∈,kbi ka kbi ka bi a k k -=+A =+A =A )())(()(α,kbi ka bi a k bi a k k -=-=+A =A )())(()(α,容易验证A 也保持向量的加法,故A 是线性的. 可见,同一线性空间的同一变换在不同数域上有些是线性的,有些不是线性的。

n维线性空间的基与向量的坐标

n维线性空间的基与向量的坐标

621
线性代数讲稿
α = x1α 1 + x 2 α 2 + L + x n α n = [α 1
α2
⎡ x1 ⎤ ⎢x ⎥ L αn ] ⎢ 2 ⎥ ⎢M⎥ ⎢ ⎥ ⎣ xn ⎦
成立,则称这组有序数 x1,x2,……,xn 为元素α 在基α1 ,α2 ,……,αn 下的坐 标,记作(x1,x2,……,xn )T,称为坐标向量.
⎡1 2⎤ 2.例子:V = R2×2 中的元素 α = ⎢ ⎥ ,则 ⎣3 4⎦ ⎡1 0 ⎤ ⎡0 1 ⎤ ⎡0 0 ⎤ ⎡0 0 ⎤ + 2⎢ + 3⎢ + 4⎢ α=⎢ ⎥ ⎥ ⎥ ⎥ = [E 1 ⎣0 0 ⎦ ⎣0 0 ⎦ ⎣1 0 ⎦ ⎣0 1 ⎦ ⎡1 ⎤ ⎢ 2⎥ E4 ] ⎢ ⎥ , ⎢ 3⎥ ⎢ ⎥ ⎣ 4⎦
讨论所成矩阵的秩: A = [X 1
⎡1 ⎢1 X3]= ⎢ ⎢0 ⎢ ⎣1
X2
1 − 1⎤ ⎡1 ⎢0 ⎥ 0 0⎥ →⎢ ⎢0 1 2⎥ ⎢ ⎥ 0 3⎦ ⎣0
0 0⎤ ⎡1 ⎥ ⎢0 1 − 1⎥ →⎢ ⎢0 1 2⎥ ⎥ ⎢ 0 3⎦ ⎣0
0 0⎤ 1 − 1⎥ ⎥ , 0 3⎥ ⎥ 0 0⎦
即 R( A ) = 3,所以 X1 , X2 , X3 线性无关,从而α1 , α 2 , α 3 也线性无关. 四、基变换与坐标变换 1.同一线性空间中,两个(实为两套)基之间的变换矩阵称为过渡矩阵—— 设线性空间 V 中,有两个基α i 与β i ,i = 1, 2, ……, n ; 其关系写成矩阵式:
线性代数讲稿
§6.2 n 维线性空间的基与向量的坐标
一、线性空间的基与维数[P.185] 若在线性空间 V 中存在 n 个线性无关的向量α1 ,α2 ,……,αn 使得 V 中的任 何元素α 都可由它们表出,则称 α1 ,α2 ,……,αn 为 V 的一个基,基所含向量的 个数 n 称为线性空间 V 中的维数,记为 dimV,并称 V 为 n 维线性空间. 1.简单的例子 ① 二维线性空间 R2(平面),常用基向量 i = ( 1, 0 ),j = ( 0, 1 ) . ② 三维线性空间 R3,常用基向量 i = ( 1, 0, 0 ),j = ( 0, 1, 0 ) ,k = ( 0, 0, 1 ) . ③ n 维线性空间 Rn,常用基向量 e1 = ( 1, 0, …, 0 ),j = ( 0, 1, …, 0 ) ,……,k = ( 0, 0, …, 1 ) . 2.抽象的例子 ① V 的元素是二阶方阵 A = ( a i j )2×2 ,方阵的元素 a i j 是实数 R ;F 为实数 ⎡0 1 ⎤ ⎡0 0 ⎤ ⎡0 0 ⎤ ⎡1 0⎤ 域 R .可用基 E1 = ⎢ , E2 = ⎢ , E3 = ⎢ , E4 = ⎢ ⎥ ⎥ ⎥ ⎥ ; ⎣0 0 ⎦ ⎣1 0⎦ ⎣0 1 ⎦ ⎣0 0 ⎦ 可知为 4 维线性空间;记 R2×2 . ② V 的元素是所有实系数多项式,F 为 R .可用基 1,x,x2,……,xn,……; 为无限维线性空间. 3.有关定理 ① 子空间的维数 dimW ≤ 母空间的维数 dimV . ② 向量组 α1 ,α2 ,……,αn 的生成子空间的维数等于该向量组的秩. dimL( α1 ,α2 ,……,αn ) = R{ α1 ,α2 ,……,αn } . ③ V 中向量组 α1 ,α2 ,……,αn 可以作为基的充分必要条件,是 V = L( α1 ,α2 ,……,αn ) . 二、向量在基下的坐标 1.定义[P.188]:设 α1 ,α2 ,……,αn 为 n 维线性空间 V 的一个基,若取 α ∈V,总有且仅有一组有序数 x1,x2,……,xn 使得

向量空间的基与维数定理

向量空间的基与维数定理

向量空间的基与维数定理一、基的定义与性质在向量空间中,基是指能够通过线性组合生成整个向量空间的一组向量。

具体来说,若向量空间V中的向量组{v1, v2, ..., vn}:1. 线性无关:任意一个向量vi都不能由其他向量的线性组合表示出来。

2. 生成性:任意一个向量v都可以表示成向量组{v1, v2, ..., vn}的线性组合。

二、基的存在性与维数定理对于任意一个向量空间V,都存在一组基。

而且,不同的基所含有的向量个数是相同的,称为这个向量空间的维数,记作dim(V)。

三、基的个数与维数之间的关系设V是一个有限维向量空间,则:1. 若V中存在有限个向量,它们组成了V的一组基,则称V是有限生成的;2. 若V是有限生成的,则V中的任何一组基所含有的向量个数都相同。

四、维数定理相关的证明与推论1. 维数定理的证明:设V为一个有限维向量空间,存在两个有限的基:{v1, v2, ..., vm} 和 {u1, u2, ..., un}。

首先,我们需要证明向量组{v1, v2, ..., vm}线性无关。

即对于任意一个向量的线性组合:a1v1 + a2v2 + ... + amvm = 0,若存在不全为零的系数a1, a2, ..., am,则上述方程成立,从而基{u1, u2, ..., un}中的向量也可以表示成{v1, v2, ..., vm}的线性组合,与其构成基的定义相矛盾,所以{v1, v2, ..., vm}是线性无关的。

其次,我们需要证明向量组{v1, v2, ..., vm}能生成整个向量空间V。

任意一个向量u都可以表示为基{u1, u2, ..., un}的线性组合:u = b1u1 + b2u2 + ... + bun,并且可以将基{u1, u2, ..., un}中的向量表示成基{v1, v2, ..., vm}的线性组合:ui = a1i v1 + a2i v2 + ... + ami vm,因此,u也可以表示成基{v1, v2, ..., vm}的线性组合:u = (b1a11 + b2a21 + ... + banan) v1 + (b1a12 + b2a22 + ... + banan) v2 + ... + (b1a1m + b2a2m + ... + banan) vm,即向量组{v1, v2, ..., vm}能够生成整个向量空间V。

向量空间的基和维数

向量空间的基和维数
为什么唯一
8
例如:在 R3 中,
= (2, -3, 1)T
= 2ε1-3 ε2 + 1 ε3
注:1、基并不是唯一的 2、向量在不同基坐标也不同
9
例 求向量 (x1, x2在,如下x基n下) 的坐标 1 (1, 0,K 0),2 (1,1,K 0),K n (1,1,K 1)
10
5
注1:若将向量空间V看成无穷个向量组成的向量组,其基就是其极大
线性无关组,其维数就是其秩。
注2:零空间 { } 没有基,规定其维数为0。
6
例如:对于Rn
(1) 基本单位向量组
是一1 ,组 2基,K,称, 为n 标准基。
(2) 1 = (1, 0, 0,…, 0), 2 = (1, 1, 0,…, 0), …,n = (1, 1,…, 1) 也是 基。
x1 y1 (x2 y2 ) x3 y3 0, V1
k (kx1, kx2 , kx3 )T , kx1 kx2 kx3 k(x1 x2 x3 ) 0, k V1
4
二、向量空间的基与维数
定义
设V为向量空间,若存在1, 2, …, r V.
且满足: (1) 1, 2, …, r 线性无关; (2) V 中任一向量都可以由1, 2, …, r 线性表示; 则称1, 2, …, r 为V的一组基底,简称基, r 为V的维数,并称 V 为 r 维向量空间。
向量空间、基和维数
1
Hale Waihona Puke 一、向量空间概念定义 设V是非空的n维向量的集合,如果
(1)V对加法运算具有封闭性,

,有
(2) V对数乘运算具有封闭性,

, V
V
R, V ,有 V

线性空间的基与维数

线性空间的基与维数

即 E 11 , E 12 , E 21 , E 22线性无关.
对于任意二阶实矩阵 a 11 a 12 A V , a 21 a 22
有 A a 11 E 11 a 12 E 12 a 21 E 21 a 22 E 22
因此 E 11 , E 12 , E 21 , E 22为V的一组基.
x1 1 x2 2 xn n ,
有序数组x1 , x2 , , xn 称为元素在 1 , 2 , , n 这个 基下的坐标 , 并记作
T x1 , x2 ,, xn .
例1 在线性空间P[ x ]4中, p1 1, p 2 x , p 3 x 2 , p 4 x 3 , p 5 x 4 就是它的一个基 .
定义 设U、V是两个线性空间,如果它们的元素 之间有一一对应关系 ,且这个对应关系保持线性 组合的对应,那末就称线性空间 U 与 V 同构.
例如
Vn x11 x2 2 xn n x1 , x2 ,, xn R
与 n 维数组向量空间 R n 同构. 因为 T (1) Vn中的元素与R n中的元素( x1 , x2 ,, xn ) 形成一一对应关系;
(a 1,a 2 ,,a n ) 和 (b1,b 2 ,,b n ) , 则 ( a 1 b1 ) 1 ( a 2 b 2 ) 2 ( a n b n ) n
k k a 1 1 k a 2 2 k a n n

四、小结
1.线性空间的基与维数;
2.线性空间的元素在给定基下的坐标; 坐标:(1)把抽象的向量与具体的数组向 量联系起来; (2)把抽象的线性运算与数组向量 的线性运算联系起来. 3.线性空间的同构.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
{k1, k2, …, kr}T —— 在1, 2, …, r 这组
基下的坐标(coordinate).
第四章 n维列向量空间
§ 4.4 向量空间
四. 基变换与坐标变换
设1, 2, …, r和1, 2, …, r是V 的两组基,
则存在rr矩阵P使
(1, 2, …, r) = (1, 2, …, r)P.
称P为从基1, 2, …, r到1, 2, …, r的过
渡矩阵(transition matrix).
由r = r(1, 2, …, r) r(P) r可得r(P) = r.
ቤተ መጻሕፍቲ ባይዱ(1) V = {(x, y, 0) | x, y R};
(2) V = {(x, y, z) | x, y, z R, x+yz = 0};
(3) ARmn, bRm, b0,
KA = {Rn | A = 0}; SB = {Rn | A = b}.
第四章 n维列向量空间
§ 4.4 向量空间
故|P| 0, 即P可逆.
第四章 n维列向量空间
§ 4.4 向量空间
定理2.8. 设1, 2, …, r和1, 2, …, r是V 的 两组基, V 在这两组基下的坐标
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(4) 1, 2, …, sRn,
s
L(1, 2, …, s) = { kii | 诸kiR}.
i=1
——由1, 2, …, s生成的向量空间 (generated/spanned by 1, …)或 {1, 2, …, s}的线性包(linear closure).
1, 2, …, s——生成元(generator).
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
关于数乘: (5) 1· =; (6) k(l) = (kl);
(7) (k+l) = k +l;
(8) k(+) = k +k.
第四章 n维列向量空间
§ 4.4 向量空间
2. 设V是Rn的非空子集, 且对向量的加法及数 乘封闭(closed), 即
, V, kR, 有+V, kV,
closure conditions
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
Rn和{0}称为Rn的平凡(trivial)子空间.
第四章 n维列向量空间
§ 4.4 向量空间
例1. 检验下列集合是否构成向量空间.
第四章 n维列向量空间
§4.4 向量空间
§4.4 向量空间
一. 向量空间(vector space)的概念 1. n维实(列)向量的全体
Rn = {(x1, x2, …, xn)T | x1, x2, …, xnR} 关于向量(即列矩阵)的加法和数乘运算 满足如下8条基本性质:
关于加法: (1) 交换律; (2) 结合律; (3) 0; (4)
第四章 n维列向量空间
§ 4.4 向量空间
二. 向量空间的基(basis)与维数(dimension)
1, 2, …, r ——V的一组基:
① 1, 2, …, r线性无关, ② V都能由1, 2, …, r线性表示.
r称为V的维数. 记为维(V)或dim(V).
n维基本单位向量组就是Rn的一组基, dim{Rn} = n;
零空间没有基, 规定dim{0} = 0.
例2. 求例1中的各向量空间的基与维数.
第四章 n维列向量空间
§ 4.4 向量空间
定理2.7. 1, 2, …, s的极大无关组是 L(1, 2, …, s)的基
dimL(1, …, s) = r(1, …, s).
特别地, A = (A1, A2, …, As),
相关文档
最新文档