人教版八年级数学下册 平均数1教案

合集下载

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1平均数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级下册20.1.1平均数(1) 教学设计一、内容和内容解析1.内容人教版八年级下册“20.1.1平均数”第一课时.2.内容解析统计活动的几个环节中,数据的分析是在对数据的收集、整理基础之上进行的,是统计活动中最重要的环节.平均数是最常用、最基本的数据分析方法,反映一组数据的“平均水平”,并与中位数、众数相结合,通过对数据集中趋势的描述,体现数据向其中心值靠拢或聚集的程度,因此平均数(尤其是加权平均数)是统计中的一个重要概念.本节着重研究加权平均数,“权”的重要性在于它反映的是数据的相对“重要程度”.尽管学生在以前的学习中已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及“权”的作用理解仍将非常困难,教学中应尽量列举典型的、贴近学生生活和具有现实意义的生活例子,在对实际问题的分析和解决中加深对“权”的理解和体会,渗透平均数和“权”的统计思想,为更好地进行数据的描述与分析,为实现后继统计知识的学习目标──建立统计观念、突出统计思想奠定基础.基于上述分析,确定本节教学重点是:以具体问题为载体,在实际问题情景中理解加权平均数的意义和作用,学会运用加权平均数解决实际问题.二、目标和目标解析1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数.教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题.2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度.3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性.通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性.三、教学问题诊断分析1.教师教学可能存在的问题:(1)就本论本,不能很恰当地列举典型的、贴近学生生活的现实例子,以具体的实际问题为载体,创设问题情景,揭示概念;(2)不能设计有效的数学问题,使学生通过有思维含量的数学活动,引导学生对“权”的意义和作用有深刻的理解;(3)过分强调知识的获得,忽略了统计思想的揭示和统计观念的建立;(4)对前两个学段中学生已经具有的相关平均数的知识经验了解不足,致使引入的问题太过简单或难度要求过高,导致学生的学习积极性不高.2.学生学习中可能出现的问题:(1)由于生活经验不足,同时受认知水平的影响,对抽象的“权”的意义和作用的理解会有所困难;(2)尽管在第一、第二学段已经学习了统计的简单知识,但对统计的意义和统计思想的理解尚处在最粗浅的认识层面,加之对“权”理解的困难,所以可能会感到这部分知识的学习比较抽象,缺少学习的激情.鉴于上述分析,确定本节的教学难点是:列举典型的、贴近学生生活的、和具有现实意义的生活例子,通过设计有效的、有思维含量的数学问题,激活学生的数学思维,深入理解数据的权的意义和作用.三、学准备:多媒体课件、导学案四、学过程。

《20.1.1平均数》学历案-初中数学人教版12八年级下册

《20.1.1平均数》学历案-初中数学人教版12八年级下册

《平均数》学历案(第一课时)一、学习主题本课学习主题为“初中数学课程《平均数》”,旨在让学生掌握平均数的概念、计算方法及其在日常生活中的应用。

通过本课的学习,学生将能够理解平均数的意义,学会用平均数来描述一组数据的整体水平。

二、学习目标1. 知识与技能:(1)理解平均数的概念,知道平均数是一组数据的和除以数据的个数所得的结果。

(2)掌握平均数的计算方法,能够熟练地运用平均数进行计算。

(3)了解平均数在日常生活中的应用,能够用平均数来描述一组数据的整体水平。

2. 过程与方法:(1)通过观察、分析具体实例,让学生自主探究平均数的概念和计算方法。

(2)通过小组合作,让学生共同解决问题,培养合作与交流的能力。

3. 情感态度与价值观:(1)激发学生的学习兴趣,提高学生对数学的认识和热爱。

(2)通过实际问题,让学生感受到数学在生活中的作用,培养应用意识。

三、评价任务1. 概念理解评价:通过课堂提问和小组讨论,评价学生对平均数概念的理解程度。

2. 计算能力评价:通过布置相关练习题,评价学生的平均数计算能力。

3. 应用能力评价:通过让学生解决实际问题,评价学生将平均数应用于实际生活的能力。

四、学习过程1. 导入新课:通过生活中的实例,引导学生思考如何描述一组数据的整体水平,从而引入平均数的概念。

2. 探究新知:通过具体实例,让学生自主探究平均数的概念和计算方法。

教师可以引导学生观察、分析、总结,让学生自主发现平均数的计算方法。

3. 小组合作:让学生分组,共同解决问题,互相交流,培养合作与交流的能力。

教师可以根据学生的实际情况,设计合适的问题,让学生进行小组合作。

4. 归纳总结:让学生总结本课所学知识,巩固记忆。

教师可以进行适当的补充和强调。

五、检测与作业1. 检测:通过布置相关练习题,检测学生对平均数概念和计算方法的掌握情况。

2. 作业:布置相关实际问题,让学生将所学知识应用于实际生活中,培养学生的应用意识。

六、学后反思1. 教师反思:教师应对本课教学进行反思,总结教学经验,找出不足之处,为今后的教学提供借鉴。

初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件

初中人教部编版八年级数学下册教案《平均数》数据的分析PPT课件

载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71
91 111
频数(班次)
3 5 20 22 18 15
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
之间有何关系?
面积
=
总耕地面积 人口总数
郊 县
人数(万)
人均耕地面积(公顷)
A
15
0.15
B
7
0.21
C
10
0.18
总耕地
人均耕地
面积
面积
=
人口总数
思考1:总耕地面积
三个郊县耕地面积之和
思考2:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 + 0.21×7 + 0.18×10 15+7+10
共汽车每个运行班次的载客量,得到下表,这天5路公共汽车平均每班
的载客量是多少?
载客量/人 1≤x<21 21 ≤x<41 41 ≤x<61 61 ≤x<81
频数(班次) 3 5 20 22
表格中载客量是六个 数据组,而不是一个具体 的数,各组的实际数据应 该选谁呢?
81 ≤x<101
18
101 ≤x<121
15
组中值:数据分组后,这个小组的两个端点的数的平均数叫做 这个组的组中值.
载客量/人
1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值
11 31 51 71

人教版八年级数学下册(RJ)教案 第1课时 平均数和加权平均数

人教版八年级数学下册(RJ)教案 第1课时 平均数和加权平均数

20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高他们的自信心。
(四)反思与评价
1.教师引导学生回顾本节课所学内容,帮助他们巩固知识点,提高他们的自主学习能力。
2.让学生进行自我评价,发现自己的不足,明确今后的学习方向。
3.教师对学生的学习情况进行总结评价,强调平均数在实际生活中的应用,激发他们的学习兴趣。
1.情境创设贴近生活:本节课通过展示运动员比赛成绩的统计数据和生活实例,让学生感受到平均数的概念和应用,增强了学生的学习兴趣和积极性。
2.问题导向引导思考:本节课设计了丰富的问题,引导学生思考和探讨平均数的定义、性质和计算方法,提高了学生的思维能力和解决问题的能力。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学方法和策略,确保每个学生都能在导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
五、案例亮点
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,确保每个学生都能在情境创设、问题导向、小组合作和反思与评价等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
四、教学内容与过程
(一)导入新课
2.新课导入:通过具体案例,让学生探究并总结平均数的定义和性质。
3.实践环节:设计一些实际问题,让学生分组讨论,运用平均数解决生活中的问题。
4.总结提升:引导学生总结本节课所学内容,并展望平均数在实际生活中的广泛应用。
5.作业布置:选取一些有关平均数的练习题,巩固所学知识,提高学生的应用能力。

人教版八年级数学下册20.1.1平均数(第一课时)优秀教学案例

人教版八年级数学下册20.1.1平均数(第一课时)优秀教学案例
3.小组合作:教师将学生分成小组,让他们在小组内讨论问题,培养合作意识和团队协作能力。此外,小组竞赛和分享环节进一步激发学生的学习积极性,提高他们的表达能力和交流能力。这种教学方式有助于培养学生的团队合作能力和社交技能。
4.反思与评价:教师引导学生对自己的学习过程进行反思,总结经验教训,提高自我认知。同时,同伴评价和教师评价环节给予学生肯定和鼓励,培养良好的评价习惯。这种教学方式有助于培养学生的自我反思能力和评价能力。
5.寓教于乐:教师运用图形演示、故事引导等多种教学手段,使抽象的数学概念变得形象生动,提高学生的学习兴趣。此外,实践操作环节让学生在动手操作中感受平均数的含义,增强学生的动手能力。这种教学方式有助于培养学生的创新思维和实践能力。
1.贴近生活:本节课以学生熟悉的生活场景为例,如运动会、家庭聚会等,创设实际问题情境,让学生感受到平均数与生活的紧密联系。这种教学方式有助于激发学生的学习兴趣,培养学生的应用能力。
2.问题导向:教师设计具有启发性的问题,引导学生主动思考,探究平均数的性质和求法。同时,鼓励学生提出问题,培养他们的问题意识和解决问题的能力。这种教学方式有助于提高学生的思维能力和批判性思维。
二、教学目标
(一)知识与技能
1.理解平均数的定义和性质,掌握求平均数的方法。
2.能够运用平均数解决实际问题,提高数据分析能力。
3.了解平均数在生活中的应用,培养运用数学知识解决生活问题的能力。
(二)过程与方法
1.通过案例分析、小组讨论等形式,培养学生的合作意识和团队协作能力。
2.利用实践操作,让学生在实际操作中感受平均数的含义,提高动手操作能力。
3.分享讨论成果:鼓励小组成员分享自己的思考和心得,培养学生的表达能力和交流能力。
(四)总结归纳

人教版八年级数学 下册 第二十章 20.1.1 平均数 第1课时 加权平均数 课件

人教版八年级数学 下册 第二十章 20.1.1 平均数 第1课时 加权平均数 课件
的各个数据同等重要,也就是权相等 时,计算平均数采用算术平均数;各 数据权不相等时,计算平均数时采用 加权平均数。
“权”能反映数据的重要程度, 数据的权重不一样,会形成不同的结 果。
某公司欲招聘一名公关人员.对甲、乙 两位应试者进行了面试和笔试,他们的成 绩(百分制)如下表所示。
应试者 甲 乙
面试 86 92
载客量/人 1≤x<21 21≤x<41 41≤x<61 61≤x<81 81≤x<101 101≤x<121
组中值 11 31 51 71 91 111
频数(班次) 3 5 20 22 18 15
注:(1)数据分组后,一个小组的组中值是 指这个小组的两个端点的数的 平均 数. (2)统计中常用各组的组中值代表各组的实 际数据,把各组的频数看作这组数据的 _权__.
人均耕地面积与哪些 人均耕 因素有关?它们之间 地面积
=
有何关系?
总耕地面积 人口总数
郊 人数 县 (万) A 15
B7 C 10
人均耕地面积 (公顷) 0.15
0.21 0.18
总耕
人均耕
地面积
地面积 =
人口总数
思考2:总耕地面积
三个郊县耕地面积之和
思考3:人口总数
三个郊县人数之和
解答:这个市郊县的人均耕地面积是: 0.15×15 +0.21×7 + 0.18×10 ≈ 0.17(公顷) 15+7+10
加权平均数公式
x1ω1+x2ω2+x3ω3 +…+xnωn ω1+ω2+ω3 +…+ωn
例1:如果公司想招一名笔译能力较强的翻译,用 算术平均数来衡量他们的成绩合理吗?
听、说、读、写的成绩按照2:1:3:4的比确定.
重要程度 不一样!

人教版数学八年级下册20.1.1《平均数》教学设计1

人教版数学八年级下册20.1.1《平均数》教学设计1

人教版数学八年级下册20.1.1《平均数》教学设计1一. 教材分析人教版数学八年级下册20.1.1《平均数》是学生在学习了统计学基础知识后进一步研究平均数这一概念。

平均数是描述一组数据集中趋势的重要指标,它在日常生活和各种科学研究中有着广泛的应用。

本节内容通过对平均数的定义、性质和求法的学习,使学生能理解平均数在统计学中的意义,掌握求平均数的方法,并能够运用平均数解决一些实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了统计学的一些基础知识,如数据、统计表、统计图等。

他们具备了一定的数据分析能力,但对于平均数的概念和求法还比较陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。

三. 教学目标1.知识与技能目标:使学生理解平均数的含义,掌握求平均数的方法,能够运用平均数解决一些实际问题。

2.过程与方法目标:通过实例分析,培养学生的数据分析能力,提高他们运用数学解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的良好学习习惯。

四. 教学重难点1.重点:平均数的定义及其求法。

2.难点:理解平均数在统计学中的意义,以及如何运用平均数解决实际问题。

五. 教学方法1.情境教学法:通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。

2.启发式教学法:在教学过程中,教师要善于提问,引导学生积极思考,提高他们的问题解决能力。

3.小组合作学习法:通过小组讨论、合作交流,培养学生的团队协作能力,提高他们的数据分析能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。

2.学生准备:预习教材内容,了解平均数的概念和求法。

3.教学资源:多媒体教学设备、教学课件、练习题等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题——平均数。

例如:某班有30名学生,他们的身高分别是160cm、165cm、170cm……200cm,请问该班学生的平均身高是多少?2.呈现(10分钟)教师通过PPT展示平均数的定义和性质,让学生初步了解平均数的概念。

人教版初中数学八年级下册教案《平均数》

人教版初中数学八年级下册教案《平均数》

人教版初中数学八年级下册教案《平均数》一. 教材分析平均数是初中数学中的一个重要概念,它反映了数据集中的趋势。

在本节课中,学生将学习平均数的定义、性质和计算方法,并能运用平均数解决实际问题。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握平均数的概念,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在小学阶段已经接触过平均数的概念,但对平均数的理解和计算方法可能还不够深入。

他们对平均数有一定的认识,但缺乏对平均数性质和应用的理解。

此外,学生可能对平均数的计算公式记忆不牢,需要通过练习来巩固。

三. 教学目标1.理解平均数的定义和性质,掌握平均数的计算方法。

2.能够运用平均数解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和团队合作能力。

四. 教学重难点1.重点:平均数的定义、性质和计算方法。

2.难点:平均数的性质和应用。

五. 教学方法1.情境教学法:通过实例引入平均数的概念,让学生在实际情境中理解和掌握平均数。

2.练习法:通过大量的练习,巩固学生对平均数的理解和计算方法。

3.小组合作学习:让学生在小组内讨论和解决问题,培养学生的团队合作能力。

六. 教学准备1.教材和教辅资料。

2.实例和练习题。

3.投影仪和黑板。

七. 教学过程1.导入(5分钟)通过一个实际问题引入平均数的概念,例如:“某班有30名学生,他们的身高分别为160cm、165cm、170cm等,请计算该班学生的平均身高。

”让学生思考和讨论如何计算平均身高,引出平均数的概念。

2.呈现(15分钟)介绍平均数的定义和性质,通过实例和讲解让学生理解和掌握平均数的概念。

强调平均数的性质,例如:平均数是一组数据的集中趋势,受到极端值的影响等。

3.操练(15分钟)让学生进行大量的练习,巩固对平均数的理解和计算方法。

可以设置不同难度级别的题目,让学生根据自己的能力选择练习。

4.巩固(10分钟)通过小组合作学习,让学生在小组内讨论和解决问题。

人教版初中数学八年级下册教学设计《平均数》

人教版初中数学八年级下册教学设计《平均数》

人教版初中数学八年级下册教学设计《平均数》一. 教材分析人教版初中数学八年级下册的教学内容是《平均数》,本节课的主要内容是让学生掌握平均数的定义、性质和求法,能够运用平均数解决实际问题。

教材通过生活中的实例引入平均数的概念,让学生体会数学与生活的联系,培养学生的应用意识。

二. 学情分析学生在八年级上册已经学习了统计学的一些基本概念,如数据、众数、中位数等,对统计学有一定的了解。

但是,对于平均数的定义和求法还不够清楚,需要通过本节课的学习来加深理解。

此外,学生对于解决实际问题的能力还需提高。

三. 教学目标1.知识与技能:理解平均数的定义,掌握求平均数的方法,能够运用平均数解决实际问题。

2.过程与方法:通过实例引入平均数的概念,培养学生的抽象思维能力;通过小组合作探究,提高学生的合作能力和解决问题的能力。

3.情感态度与价值观:体会数学与生活的联系,培养学生的应用意识。

四. 教学重难点1.重点:平均数的定义和求法。

2.难点:理解平均数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实例引入平均数的概念,让学生感受数学与生活的联系。

2.小组合作探究法:引导学生分组讨论,共同探索平均数的求法,培养学生的合作能力。

3.实践教学法:让学生通过解决实际问题,运用平均数的方法,提高学生的应用能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示。

2.实例材料:收集一些与生活相关的数据,用于引入和巩固平均数的概念。

3.练习题:准备一些有关平均数的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的数据,如班级同学的体重、身高等,引导学生思考:如何描述这些数据的“平均”水平?从而引入平均数的概念。

2.呈现(10分钟)讲解平均数的定义,让学生理解平均数是所有数据的总和除以数据的个数。

通过实例演示,让学生掌握平均数的求法。

3.操练(10分钟)让学生分组讨论,共同探究平均数的求法。

人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计

人教版八年级数学下册20.1.1《平均数》(第2课时)一等奖优秀教学设计

20.1.1 平均数(第2课时)教学设计
一、教材分析:
1、地位作用:这节课时学生在第一课时学习了平均数的基础上,对平均数的进一步深入拓展,通过本节课的学习,让学生平均数的运算由一般的加权平均数扩大到特殊的加权平均数的运算,为统计知识的学习奠定良好的基础。

2、教学目标:
(1)、熟练掌握平均数的计算方法;
(2)、运用加权平均数进行有关计算.
(3)、数学思考:通过实践,培养学生的计算、归纳能力.
3、教学重、难点
教学重点:①探究加权平均数的运算方法;②运用加权平均数的运算性质解决问题.
教学难点:探究加权平均数的运算方法.
突破难点的方法:通过加权平均数的运算,让学生归纳加权平均数的运算方法.
二、教学准备:多媒体课件、导学案
三、教学过程
k个数的加权平均数,其中。

八年级数学第二课时《平均数》教案

八年级数学第二课时《平均数》教案

八年级数学第二课时《平均数》教案八年级数学第二课时《平均数》教案范文一、教学目标:1、会根据频数分布表求加权平均数,从而解决一些实际问题2、会用计算器求加权平均数的值3、会运用样本估计总体的方法来获得对总体的认识二、重点、难点:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数三、教学过程:1、复习组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的最大好处是简化了计算量.为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.2、教材P140探究栏目的意图①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的'具体意义.3、教材P140的思考的意图.①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.4、利用计算器计算平均值这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.5、运用样本估计总体要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.。

八年级数学《平均数》教案

八年级数学《平均数》教案
2
3、为调查居民生活环境质量,环保局对所辖的
50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,
求每个小区噪音的平均分贝数。
答案:1.约2.95万元 2.约29岁 3.60.54分贝
第五步:课堂小结:
1、体会运用样本平均数去估计总体平均数的意义.
2、会运用样本平均数估计总体平均数
3、增强数学应用意识
创新能力
计算机能力
公关能力
A
72
50
88
B
85
74
45
C
67
72
67
如果公司招聘的职员分别是网络维护员、客户经理或创作总监,给三项成绩赋予相同的权合理吗?
请你设计合理的权重,为公司招聘一名职员:①网络维护员; ②客户经理; ③创作总监.
3. ① 一组数据为 8,9,10,11,,12,则这组数据的平均数是_____.
初二 数学备课组第17周供18周用主备课稿
课题
20.1.1平均数标
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
教学重点
用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析的观念。
教学难点
对权的意义的理解,用加权平均数描述数据的集中趋势。
思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?
分析
由表格可知, 81≤x<101的18个班次 和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39.8%
活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如 键),计算器便会求出平均数的值。

新人教版八年级下册数学20.1.1 平均数 教案1

新人教版八年级下册数学20.1.1 平均数  教案1

教学设计2、一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.问题1的权相等,也就是重要程度同等主要。

今后我们学习要怎样学才能取得好成绩?问题2的权不同。

分析问题1、2中的加权平均数:问题1、2中的计算都可以看作是求加权平均数。

加权平均数:一般说来,如果在n 个数n x x x ,...,,21的权分别是nωωωω,...,,,321( ) 则nn n x x x x ωωωωωω++++++= (212211)相应练习:某市的7月下旬最高气温统计如下:气温 35度 34度 33度 32度 28度 天数23221(1)在这十个数据中,34的权是_____,32的权是______.(2)该市7月中旬最高气温的平均数是_____,这个平均数是_________平均数.(三 )例题讲授,探索新知例1、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?(2)如果公司想招一名笔译能力强的翻译,听、说、读、写成绩按2:2:3:3 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?本道例题学生独立分析,发表自己的看法。

培养学生养成自学的好习惯,并能根据情况解决简单的问题,为下面的学习做好铺垫通过讨论交流结合自己的预习情况学习,对培养学生的自学能力和合作学习都有很大的帮助。

教师在教学中的作用是进行适当的引导,使学生能把握住知识的重点,强调知识要点是必不可少的。

n n =+++ωωωΛ21相应队员数 1 3 1 4 2(1)在这五个数据中,28的权是_____,31的权是______.(2) 中国篮球队队队员的平均年龄是_____,这个平均数是_________平均数.3、某市三个郊县的人数与人均耕地面积如下表:求这个市三个郊县的人均耕地面积 (精确到0.01公顷).小明的作法:18.0318.021.015.0=++=x(公顷)你认为小明的这种做法有道理吗?为什么?在上面的问题中,三个数据0.15、0.21、0.18的权分别是15、7、10,说明三个数据在计算这个市郊县人均耕地面积时的相对重要程度不同.(五)课堂小结反思升华1、什么情况下用加权平均数来求平均数答:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.2、数据的权的意义是什么?答:数据的权能够反映数据的相对“重要程度”.3、加权平均数公式:4、权的几种表现形式?(1)直接以数据形式给出;(2)比例形式给出;(3)百分数形式给出.例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,加深了学生对权的意义的理解。

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

人教版八年级数学下册_20.1.1平均数

人教版八年级数学下册_20.1.1平均数

A.3.5 元
B.6 元
C.6.5 元
人数就“权”.
10 1
D.7 元
感悟新知
解题秘方:根据“定义(2)的公式”进行计算.
_ 解:x =
5 2+6 3+7 2+101
=6.5(元).
8
知2-讲
感悟新知
知2-练
2-1. 为了解乡镇企业的水资源的利用情况,市水利管理部 门抽查了部分乡镇企业在一个月中的用水情况, 其中 用水15 吨的有3 家,用水20 吨的有5 家,用水30 吨的 有7 家, 那么平均每家企业一个月用水( A ) A.23.7 吨 B.21.6 吨 C.20 吨 D.5.416 吨
能性及付出的代价;
(2)抽取的样本要具有一般性和代表性,这样有利于推测全
貌、估计总体,作出决策,解决有关问题.
感悟新知
特别提醒 用样本估计总体的两种类型: 1. 用样本平均数估计总体平均数; 2. 用样本的总量估计总体的总量.
知3-讲
感悟新知
例 5 某校为了了解八年级学生某 次体育测试的成绩,现对该 年级学生这次体育测试成绩 进行抽样调查,结果统计如 下表及扇形统计图(如图20.13),其中扇形统计图中C 组 所在的扇形圆心角为36°.
解:由频数分布直方图可以看出: P=60,则Q=200-50-60-70=20.
知2-讲
感悟新知
知2-讲
(2)请把如图20.1-1 所示的频数分布直方图补充完整;
解:如图20.1-2 所示.
感悟新知
知2-讲
(3)这200 名女生的平均身高大约为__1_5_3_c_m__.
解:求出每组的组中值分别为140,150,160,170, 用每组的组中值近似地作为该组内女生的平均身高. 140 50+150 60+160 70+170 20 =153(cm),因此
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平均数1》教案
一、教学目的
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数.
二、重点、难点和难点突破的方法
1、重点:会求加权平均数
2、难点:对“权”的理解
三、例习题意图分析
1、教材P136的问题及讨论栏目在教学中起到的作用.
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式.
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误.在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用.
(3)、客观上,教材P136的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用.
(4)、P137的云朵其实是复习平均数定义,小方块则强调了权意义.
2、教材P137例1的作用如下:
(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿.
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解.
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用.
3、教材P138例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤.
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解.
(3)、它也充分体现了统计知识在实际生活中的广泛应用.
四、课堂引入
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一
例可供借鉴参考. 某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:
x =4
1
(79+80+81+82)=80.5 五、例习题分析
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权.。

相关文档
最新文档