八年级数学:角的平分线(教学设计)
湘教版数学八年级下册1.4《角平分线的性质》教学设计
湘教版数学八年级下册1.4《角平分线的性质》教学设计一. 教材分析湘教版数学八年级下册1.4《角平分线的性质》是初中数学的重要内容,主要介绍了角平分线的性质。
本节课的内容是学生学习几何知识的基础,也是学生进一步学习圆的知识的前提。
通过本节课的学习,学生可以掌握角平分线的性质,并能够运用角平分线的性质解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经学习了角的概念、线的概念等基础知识,对几何图形有一定的认识。
但是,学生对角平分线的性质还没有接触过,对于如何运用角平分线的性质解决实际问题还需要引导。
三. 教学目标1.知识与技能:学生能够理解角平分线的性质,并能够运用角平分线的性质解决一些实际问题。
2.过程与方法:通过学生自主探究、合作交流的方式,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.角平分线的性质的推导过程。
2.如何运用角平分线的性质解决实际问题。
五. 教学方法采用问题驱动法、学生自主探究法、合作交流法等教学方法。
通过引导学生提出问题、自主探究、合作交流的方式,激发学生的学习兴趣,培养学生的几何思维能力。
六. 教学准备教师准备PPT、黑板、粉笔等教学工具。
学生准备课本、笔记本等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考:“如何找到一个角的平分线?”学生可以自由发言,教师引导学生提出问题,引出本节课的主题——角平分线的性质。
2.呈现(10分钟)教师通过PPT展示角平分线的性质,让学生初步了解角平分线的性质。
然后,教师引导学生自主探究,让学生通过观察、思考、推理等过程,推导出角平分线的性质。
3.操练(10分钟)教师通过PPT展示一些练习题,让学生运用角平分线的性质解决问题。
学生在纸上完成练习题,教师选取部分学生的作业进行讲解和评价。
4.巩固(10分钟)教师通过PPT展示一些巩固题,让学生再次运用角平分线的性质解决问题。
人教版数学八年级上册教学设计12.3《角的平分线的性质》
人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。
这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。
教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。
但是,对于角的平分线的性质,学生可能较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:如何运用角的平分线的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。
2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。
3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。
2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。
同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。
3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。
人教版数学八年级上册《角平分线的性质(1)》教学设计
人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
八年级数学上册《角平分线的性质和判定定理》教案、教学设计
-如果一个角的平分线同时也是这个角的垂直平分线,那么这个角有什么特殊的性质?请给出证明;
-如果一个角的平分线同时也是另一个角的平分线,那么这两个角之间有什么关系?请给出证明。
4.实践活动:
-与同学合作,设计一个关于角平分线的数学小报,内容包括定义、性质、判定定理以及生活中的应用等;
-利用所学知识,尝试解决实际生活中的问题,如测量角度、划分土地等,并撰写解题报告。
2.学生在运用角平分线判定定理解决问题时的逻辑思维能力和解题技巧;
3.学生在合作交流、动手操作等方面的学习习惯和团队协作能力。
针对学情,教师应采取以下策略:
1.设计富有启发性的问题,引导学生主动探究角平分线的性质;
2.创设生活情境,让学生在实际问题中体会角平分线判定定理的应用;
3.注重个体差异,给予学生个性化的指导,提高学生的自主学习能力;
4.加强课堂讨论与交流,培养学生的团队合作意识和解决问题的能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:角平分线的性质及其应用,角平分线的判定定理。
2.难点:理解并灵活运用角平分线的性质和判定定理解决实际问题。
(二)教学设想
1.创设情境,激发兴趣:
-通过引入生活中的实例,如折纸、剪纸等,让学生感受角平分线的存在和应用,激发学生的学习兴趣;
作业要求:
1.请同学们认真完成作业,书写规范,保持卷面整洁;
2.作业完成后,进行自查,确保解题过程和答案正确;
3.遇到问题时,与同学讨论,或向老师请教,及时解决疑问;
4.作业提交时间:课后第二天。
二、学情分析
八年级学生在前期的数学学习中,已经掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角平分线的性质和判定定理的学习具备了一定的基础。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解角平分线的性质和判定定理方面存在困难。
北师大版数学八年级下册1.4《角平分线》教案
北师大版数学八年级下册1.4《角平分线》教案一. 教材分析《角平分线》是北师大版数学八年级下册第1章“几何变换”中的一个重要内容。
本节课主要介绍了角平分线的性质及其在几何图形中的应用。
学生通过学习角平分线,可以进一步理解几何图形的性质,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了线段的中垂线、垂直平分线的性质,对几何图形的变换有一定的了解。
但部分学生对角平分线的概念和性质理解不够深入,运用角平分线解决实际问题的能力较弱。
三. 教学目标1.理解角平分线的定义及其性质;2.学会运用角平分线解决简单几何问题;3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.角平分线的定义及其性质;2.运用角平分线解决实际问题。
五. 教学方法采用讲授法、示范法、讨论法、实践法等多种教学方法,引导学生通过观察、思考、操作、交流等活动,掌握角平分线的性质和应用。
六. 教学准备1.准备相关课件和教学素材;2.准备角平分线的模型或实物;3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)利用课件或实物展示,引导学生回顾线段的中垂线、垂直平分线的性质。
提问:线段的垂直平分线和中垂线有什么关系?它们在几何图形中有什么作用?2.呈现(10分钟)展示角平分线的模型或实物,引导学生观察并思考:角平分线是什么?它有什么特点?通过示范和讲解,阐述角平分线的定义及其性质。
3.操练(10分钟)学生分组讨论,尝试运用角平分线解决简单几何问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行点评,指出错误并讲解原因。
5.拓展(10分钟)出示拓展题,引导学生运用所学知识解决实际问题。
学生分组讨论,教师巡回指导。
6.小结(5分钟)总结本节课所学内容,强调角平分线的性质及其在几何图形中的应用。
7.家庭作业(5分钟)布置适量的作业,让学生巩固所学知识。
8.板书(5分钟)设计简洁明了的板书,突出角平分线的性质和应用。
人教版八年级数学上册《角的平分线的性质(第1课时)》示范教学设计
角的平分线的性质(第1课时)教学目标1.会用直尺和圆规作一个角的平分线,知道作法的合理性.2.探索并证明角的平分线的性质.3.能用角的平分线的性质解决简单问题.教学重点探索并证明角的平分线的性质.教学难点证明以文字命题形式给出的角的平分线的性质.教学过程新课导入【问题】下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是这个角的平分线.你能说明它的道理吗?【师生活动】教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.【答案】证明:在△ACD和△ACB中,AD ABDC BCAC AC=⎧⎪=⎨⎪=⎩,,,∴△ACD≌△ACB(SSS).∴∠CAD=∠CAB.∴AC平分∠DAB.【动图】仔细观察下面的动图,感受用仪器平分角的过程.【设计意图】让学生运用全等三角形的知识解释平分角的仪器的工作原理,体会数学的应用价值.新知探究一、探究学习【问题】从利用平分角的仪器画角的平分线的过程中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?【师生活动】师生分别在黑板和练习本上画出∠AOB,学生尝试利用直尺和圆规作∠AOB的平分线,教师与学生共同归纳,得出利用直尺和圆规作角的平分线的具体方法.如果学生没有思路,教师可作如下提示:在用平分角的仪器画角的平分线时,把仪器放在角的两边,仪器的顶点与角的顶点重合且仪器的两边相等,怎样在作图中体现这个过程呢?【问题】已知:∠AOB.求作:∠AOB的平分线.【操作】(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC .射线OC 即为所求.【问题】第2步中,为什么要以大于12MN 的长为半径画弧? 【师生活动】教师引导学生结合作图过程,进行回答. 【答案】若以小于或等于12MN 的长作为半径画弧,则两弧没有交点,不存在点C ,无法作出角的平分线.【问题】第3步中,可以说成是连接OC 吗?【师生活动】引导学生复习角的平分线的定义,从而得出答案.【答案】不可以.因为角平分线OC 是射线,而不是线段.【问题】如何证明OC 是∠AOB 的平分线?【师生活动】学生用三角形全等进行证明,明确作图的理论依据.【答案】证明:连接CM ,CN ,可得OM =ON ,MC =NC .则在△OCM 和△OCN 中,OM ON MC NC OC OC =⎧⎪=⎨⎪=⎩,,,∴△OCM ≌△OCN (SSS ).∴∠MOC =∠NOC .即射线OC 平分∠AOB .【设计意图】让学生通过解释平分角的仪器的工作原理,获得启发,能够用直尺和圆规作角的平分线,增强作图技能,最后让学生在简单推理的过程中,体会作法的合理性.【动图】仔细观察下面的动图,感受用直尺和圆规作角的平分线的过程.【思考】利用直尺和圆规我们可以作一个角的平分线,那么角的平分线有什么性质呢?【操作】如图,任意作一个角∠AOB,作出∠AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB的垂线,分别记垂足为D,E,测量PD,PE并作比较,你得到什么结论?在OC上再取几个点试一试.通过以上测量,你能发现角平分线的什么性质?【师生活动】学生动手操作,独立思考,然后汇报自己的发现.学生之间互相补充,教师指导,一起概括出角的平分线的性质.【问题】通过动手实验、观察比较,我们发现“角的平分线上的点到角的两边的距离相等”,你能通过严格的逻辑推理证明这个结论吗?【师生活动】教师首先引导学生分析命题的条件和结论,发现并找出隐含条件,再让学生画出图形,用符号语言写出已知和求证,最后独立完成证明过程.【答案】已知∠AOC=∠BOC,点P 在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO 和△PEO 中,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴ △PDO ≌△PEO (AAS ).∴PD =PE .【问题】由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗?【师生活动】师生共同概括证明几个命题的一般步骤.【答案】(1)明确命题中的已知和求证;(2)根据题意,画出图形,并用符号表示已知和求证;(3)经过分析,找出由已知推出要证的结论的途径,写出证明过程.【动图】仔细观察下面的动图,感受角的平分线的性质.【设计意图】让学生通过实验发现、分析概括、推理证明角的平分线的性质,体会研究几何问题的基本思路.以角的平分线的性质的证明为例,让学生概括证明几何命题的一般步骤,发展他们的归纳概括能力.二、典例精讲【例】如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm ,BD =5 cm ,点D 到直线AB 的距离是_______cm .【师生活动】教师引导学生思考,角的平分线的性质有什么作用,学生回答.【解析】如图,过点D 作DE ⊥AB 于点E ,则点D 到直线AB 的距离是DE 的长.∵∠C=90°,AD平分∠CAB,∴DE=CD.又∵BC=8 cm,BD=5 cm,∴DE=CD=3 cm.【答案】3【设计意图】让学生体会到证明两条线段相等时利用角的平分线的性质比证明两个三角形全等更便捷.课堂小结板书设计一、用直尺和圆规作角的平分线二、角的平分线的性质三、几何命题的证明步骤课后任务完成教材第50页练习第2题.。
角的平分线的判定 教学设计 2024-2025学年人教版数学八年级上册
第2课时角的平分线的判定1.探究并证明角的平分线的判定定理.(难点)2.会判断一个点是否在一个角的平分线上.(重点)一、新课导入【情境导入】如图,要在S区建一个集贸市场,使它到公路、铁路的距离相等,并且离公路与铁路的交叉处500m.这个集贸市场应建于何处?(在图上标出它的位置,比例尺为1∶20000)学习了今天的内容,我们就能很快地解决这个问题了.二、新知探究知识点1角的平分线的判定【提出问题】我们知道,角的平分线上的点到角的两边的距离相等.到角的两边的距离相等的点是否在角的平分线上呢?【学生猜想】到角的两边的距离相等的点在角的平分线上.(也有一部分学生得不到准确答案)教师鼓励学生按照上节课学过的证明命题的步骤,验证一下他的猜想!【学生思考】给学生思考的时间,可同桌之间讨论.提醒应将文字语言转化为数学语言,同时画出图形,找准“已知”和“求证”,并写出证明过程.之后点名一位学生上台板演,对于错误和不完整的地方,其他学生纠正或补充.教师利用多媒体展示如下验证过程:如图,P是∠AOB内的一点,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE.求证:点P在∠AOB的平分线OC上.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△PDO和Rt△PEO中,{PD=PE,PO=PO,∴Rt△PDO≌Rt△PEO(HL).∴∠AOC=∠BOC.∴点P在∠AOB的平分线OC上.学生有异议的,及时提出,教师予以纠正.【归纳总结】角平分线的判定定理:角的内部到角的两边的距离相等的点在角的平分线上.该性质定理的几何语言:∵P是∠AOB内的一点,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE,∴点P在∠AOB的平分线OC上.提醒学生:(1)前提条件:使用该判定定理的前提是这个点必须在角的内部,且该点到角两边的距离相等;(2)定理的作用:角的平分线的判定定理是证明两角相等的重要办法.【提出问题】现在你能解决集贸市场的问题了吗?【学生回答】教师点名一位学生回答解题过程及依据.教师利用多媒体展示如下作图过程:解:如图,作出公路和铁路相交的角的平分线OC,按照比例尺的比例,在OC上截取OD=2.5cm.点D的位置即为建集贸市场的位置.知识点2三角形的内角平分线【提出问题】我们知道三角形有三条内角平分线,你会画出它的三条内角平分线吗?动手试一试吧?【实际操作】学生在已经剪好的锐角、直角和钝角三角形卡纸上分别画出它们的三个内角的平分线.之后我们发现:三角形三个内角的平分线交于一点,该交点位于三角形的内部.【提出问题】那么三角形的三条内角平分线的交点到三角形三边的距离有什么特点呢?【实际操作】学生继续在锐角、直角和钝角三角形卡纸上过交点分别作这三个三角形三边的垂线,并测量每一组垂线段的长度.我们发现:过交点作三角形三边的垂线段相等.【提出问题】由于作图和测量存在误差,我们仍需来证明一下我们的猜想.教师利用多媒体展示如下验证猜想的题目.例如图,△ABC的角平分线BM,CN相交于点P.求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.【提出问题】点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系?【学生回答】学生集体回答.(由PD=PF可知,点P在∠A的平分线上.从而也验证了“三角形的三条角平分线交于一点”这一结论.)知识点3角的平分线的性质定理与判定定理的关系教师利用多媒体展示表格,学生根据表格中的内容,集体回答;教师引导学生观察所填内容,由不同颜色标注的内容可知角平分线的性质定理中的“已知”变成了角平分线的判定定理中的“结论”.角的平分线的性质 角的平分线的判定 图形已知条件∠1=∠2 PD ⊥OA ,PE ⊥OB PD ⊥OA ,PE ⊥OB PD =PE 结论PD =PE ∠1=∠2 【归纳总结】点在角的平分线上(角的内部)点到角的 两边的距离相等正确理解两个定理的条件和结论,性质定理和判定定理的条件和结论是相反的,性质定理是证明两条线段相等的依据,判定定理是证明两个角相等的依据.【跟踪训练】判断,不正确的请说明原因.①如图,若PD =PE ,则OC 平分∠AOB .( ✕ )因为PD 不垂直OA ,PE 不垂直OB ,即PD ,PE 均不是角平分线上的点到角两边的距离.②如图,若点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,则OC 平分∠AOB .( ✕ )因为没有说明PD 与PE 的等量关系,只有PD =PE 时,OC 才平分∠AOB .三、课堂小结角的平分线的判定{ 判定定理{内容➡角的内部到角的两边的距离相等的点在角的平分线上作用➡判定点在平分线上(判定两角相等)三角形的三条角平分线➡交于一点,且该点到三角形三边的距离相等角平分线的性质定理与判定定理的关系四、课堂训练1.如图,P 是△ABC 外部一点,PD ⊥AB ,交AB 的延长线于点D ,PE ⊥AC ,交AC的延长线于点E ,PF ⊥BC 于点F ,且PD =PE =PF .关于点P 有下列三种说法:①点P 在∠DBC 的平分线上;②点P 在∠BCE 的平分线上;③点P 在∠BAC 的平分线上.其中说法正确的个数为( D )A.0B.1C.2D.32.如图, 已知D ,E ,F 分别是△ABC 三边上的点,CE =BF ,且△DCE 的面积与△DBF 的面积相等.求证:AD 平分∠BAC .解:如图,过点D 作DM ⊥AB 于点M ,DN ⊥AC 于点N .∵△DCE 的面积与△DBF的面积相等,∴12BF ·DM =12CE ·DN .又CE =BF ,∴DM =DN .∴AD 平分∠BAC .。
人教版数学八年级上册12.3角平分线的性质教学设计
在学生小组讨论环节,我会将学生分成小组,并给出一些实际的几何问题,让学生运用角平分线的性质进行解决。例如,证明一条线段是某个角的平分线,或者求解一个角的度数等。学生会在小组内进行讨论和合作,共同解决问题。通过这样的讨论,学生能够更好地理解和运用角平分线的性质,并培养他们的合作和交流能力。
2.实践性作业:我会设计一些实际问题,让学生运用所学的角平分线性质进行解决。例如,设计一道题目要求学生测量一张纸张的某个角的平分线长度,或者求解一个实际图形中某个角的度数等。通过这样的实践性作业,学生能够将所学的知识运用到实际问题中,提高他们的实践操作能力。
3.合作性作业:我会设计一些需要学生合作完成的作业,让他们在小组内进行讨论和交流。例如,设计一道题目要求学生共同探究角平分线的性质,并用自己的语言进行描述和证明。通过这样的合作性作业,学生能够培养合作和交流的能力,提高他们的团队协作能力。
(三)情感态度与价值观
在本节课的教学中,学生将培养以下情感态度和价值观:
1.对数学学习的兴趣:学生通过观察和实验,发现角平分线的性质,增强对数学学习的兴趣;
2.探究精神:学生在探索角平分线的性质的过程中,培养独立思考和解决问题的能力;
3.合作意识:学生在与同伴的合作与交流中,培养团队协作的能力,提高沟通和表达能力;
4.严谨态度:学生在学习和证明角平分线的性质时,培养严谨的科学态度,注重细节和逻辑性。
二、学情分析
在开展人教版数学八年级上册12.3角平分线的性质的教学之前,对学生的学情进行分析是必要的。首先,学生在之前的学习中已经掌握了角的概念、线段的长度等基础知识,具备了一定的几何图形观察和推理能力。然而,对于角平分线的性质,他们可能还没有直观的认识,需要通过观察、实验和证明来建立。
八年级数学上册《角平分线的性质定理》教案、教学设计
(一)教学重点
1.角平分线的定义及其性质定理的理解和应用。
2.能够运用角平分线的性质解决实际问题,提高几何推理能力。
3.培养学生运用数学符号和几何语言进行表达的能力。
(二)教学难点
1.角平分线性质定理的推导过程,以及如何引导学生从具体实例中抽象出一般性结论。
2.学生在解决实际问题时,对角平分线性质的灵活运用和与其他几何知识的综合运用。
(二)过程与方法
在本章节的学习过程中,引导学生采用以下方法:
1.采用直观演示法,通过实际操作,让学生感受角平分线的定义和性质,培养学生的观察能力和动手操作能力。
2.采用问题驱动法,设置一系列具有启发性的问题,引导学生主动探究角平分线的性质定理,提高学生的问题解决能力和合作学习能力。
3.运用比较法,将角平分线与其他线段(如中垂线、高线等)进行对比,让学生发现它们之间的联系与区别,提高学生的概括和总结能力。
(4)巩固:设计不同难度的练习题,让学生在实际操作中巩固所学知识,提高解决问题的能力。
(5)拓展:布置一些具有挑战性的问题,鼓励学生发挥想象力和创造力,提高学生的几何思维能力。
3.教学评价:
(1)关注学生在课堂上的表现,观察学生对角平分线性质的理解程度和应用能力。
(2)通过课后作业和小测验,了解学生对知识点的掌握情况,针对性地进行辅导。
八年级数学上册《角平分线的性质定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解角平分线的定义,了解其基本性质,能够准确识别并画出角平分线。
2.掌握角平分线性质定理的内容,并能够运用该定理解决相关问题。
3.学会运用角平分线性质解决实际问题时,能够灵活运用数学符号和几何语言进行表达。
人教版数学八年级上册12.3角的平分线的判定教学设计
(二)过程与方法
1.采用探究式教学方法,引导学生从实际操作中发现角的平分线的判定定理,培养学生的观察能力和逻辑思维能力。
2.通过小组合作、讨论交流等形式,让学生在合作中学习,提高解决问题的能力和团队协作精神。
3.设计具有梯度性的练习题,使学生在巩固基础知识的同时,逐步提高解题能力,培养良好的学习习惯。
(三)学生小组讨论
1.教学活动:教师给出几个实例,让学生分组讨论如何找出这些角的平分线。
2.小组讨论:学生在小组内分享自己的思考过程,讨论如何运用角的平分线判定定理解决问题。
3.教师指导:教师巡回指导,对学生的疑问进行解答,引导学生运用角的平分线性质解决问题。
(四)课堂练习
1.教学内容:教师布置以下练习题,让学生独立完成。
a.判断题:判断下列各题中,哪个是角的平分线。
b.解答题:已知一个角的度数,求这个角的平分线。
c.应用题:运用角的平分线性质解决实际问题。
2.解答与讲解:教师选取部分学生的答案进行展示和讲解,指出解题过程中的关键步骤和注意事项。
(五)总结归纳
1.教学内容:教师引导学生回顾本节课所学内容,总结角的平分线的定义、性质和判定定理。
1.学生在空间想象力方面的发展水平,引导他们通过实际操作,将抽象的角的平分线概念具体化、形象化。
2.学生在逻辑推理能力上的差异,针对不同水平的学生设计不同难度的问题,使他们在解决问题的过程中逐步提高推理能力。
3.学生在团队合作中的表现,鼓励他们积极参与讨论,学会倾听他人意见,提高沟通能力和团队协作精神。
4.培养学生的创新意识,鼓励他们敢于尝试、勇于探索,形成独立思考的能力。
及反思人教版数学八年级上册12.3角的平分线的性质教学设计
3.拓展作业:
-设计一道探索性问题,如“在等腰三角形中,角的平分线与其他线段有何关系?”鼓励学生进行深入探究,培养他们的创新意识和探究精神。
-要求学生查阅资料,了解角的平分线在生活中的应用,例如在建筑、艺术等领域中的应用,并在课堂上分享。
及反思人教版数学八年级上册12.3角的平分线的性质教学设计
教学设计:
一、教学目标
(一)知识与技能
1.理解角的平分线的概念,掌握角的平分线的表示方法。
2.掌握角的平分线的性质,能够运用性质解决相关问题。
3.能够运用角的平分线性质进行图形的折叠、剪切等操作,培养空间想象能力和动手操作能力。
(二)过程与方法
(二)过程与方法
1.通过实际操作和几何画板的演示,观察角的平分线的特点,培养观察力和直觉思维。
2.与同伴合作,通过讨论和论证来探究角的平分线的性质,锻炼逻辑推理和数学表达能力。
3.运用角的平分线性质解决一系列问题,学会运用几何直观和逻辑推理相结合的方法。
(三)情感态度与价值观
本章节的教学旨在激发学生的:
4.小组合作作业:
-分成小组,共同探讨和研究一个与角的平分线相关的问题,如“如何利用角的平分线构造特殊的几何图形?”要求小组提交一份研究报告,并在课堂上进行展示。
在布置作业时,要注意以下几点:
1.作业难度要适中,既要保证基础知识的巩固,又要激发学生的思考。
2.作业形式要多样化,既要注重学生的动手操作,又要培养他们的逻辑思维和创新能力。
3.鼓励学生在完成作业过程中相互讨论、交流,提高合作能力。
4.及时批改和反馈作业,了解学生的学习情况,为下一步教学提供参考。
人教版数学八年级上册《角平分线的判定》教学设计
人教版数学八年级上册《角平分线的判定》教学设计一. 教材分析人教版数学八年级上册《角平分线的判定》是初中数学的重要内容,主要让学生了解角平分线的性质和判定方法。
本节内容是在学生学习了角的概念、垂线的性质等知识的基础上进行学习的,为后续学习几何中的线段和平面的位置关系打下基础。
本节课的主要内容包括角平分线的定义、判定定理及其应用。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角、线段等基本几何概念有了一定的了解。
但是,对于角平分线的性质和判定方法,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对几何图形的直观感知能力较强,但对于用数学语言来描述和证明几何性质的能力还需加强。
三. 教学目标1.知识与技能:使学生了解角平分线的定义,掌握角平分线的判定方法,能运用角平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:角平分线的定义,角平分线的判定方法。
2.难点:角平分线性质的证明,角平分线在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入角平分线,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作意识。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备。
2.学具:学生用三角板、直尺、圆规。
3.教学素材:角平分线的实例、图片、动画等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的角平分线的实例,如钟表指针、蝴蝶翅膀等,引导学生观察并思考:这些实例中有什么共同特点?从而引出本节课的主题——角平分线。
2.呈现(10分钟)(1)介绍角平分线的定义:角平分线是指从一个角的顶点出发,把这个角分成两个相等的角的射线。
角的平分线的性质的教学设计
角的平分线的性质的教学设计角的平分线的性质的教学设计1教材分析1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。
所以本节内容在初中数学知识体系中起到承上启下的作用。
学情分析1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。
2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的性质定理的证明和运用性质定理证明线段相等。
3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等教学目标1、知识与技能:角平分线定理及定理的证明及应用。
2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。
3、情感、态度与价值观:通过自主学习的`发展体验获取数学知识的感受。
教学重点和难点教学重点:角平分线的性质定理的探究、证明、运用。
教学难点:角平分线的作图方法、角平分线的性质的运用。
角的平分线的性质的教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2=∠AOB).2.角平分线的画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的'距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E.求证:PD=PE.(投影)证明:∵OC是∠AOB的平分线,∴∠1=∠2.∵PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵OP=OP,∴△ODP≌△OEP(AAS).∴PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。
人教版八年级数学上册教学设计:12.3.角平分线的性质
2.选做题(供学有余力的学生挑战):
a.证明:如果一个角的平分线上的点距离这个角的两边相等,那么这个点一定在这个角的平分线上。
b.在一个三角形中,若两边的中点到第三边的距离相等,证明这两边平分这个角。
作业要求:
1.学生需独立完成作业,确保作业质量,培养自主学习能力。
1.尺规作图:教师示范如何用尺规作图画出角的平分线,并解释作图原理,让学生跟随操作,加深理解。
2.性质探究:引导学生通过观察、猜想、验证的方式,发现角平分线的性质,如角平分线上的点到角的两边的距离相等。
3.性质证明:教师引导学生用几何知识对角平分线的性质进行证明,强调逻辑推理和证明方法。
(三)学生小组讨论,500字
3.布置课后作业,鼓励学生运用所学知识解决实际问题,提高数学应用能力。
五、作业布置
为了巩固学生对角平分线性质的理解和应用,以及提高学生的几何推理和问题解决能力,特布置以下作业:
1.必做题:
a.根据课堂学习,完成课本第十二章第三节后的练习题1、2、3。
b.利用尺规作图,画出给定角的平分线,并简要说明作图步骤。
2.提问:什么是角平分线?如何用尺规作图画出角的平分线?
二、自主探究
1.让学生尝试用尺规作图画出角的平分线,观察并总结角平分线的性质。
2.引导学生通过合作交流,验证彼此的发现,形成共识。
三、讲解与示范
1.教师详细讲解角平分线的性质,并通过实际例题进行示范。
2.解释角平分线在实际生活中的应用,让学生认识到数学知识的实用性。
2.教师巡回指导,解答学生在练习中遇到的问题,关注学生的个体差异。
3.针对不同水平的学生,提供不同难度的练习题,使每个学生都能在原有基础上得到提高。
2024~2025学年度八年级数学上册第1课时 角的平分线的性质教学设计
12.3角的平分线的性质第1课时角的平分线的性质教学步骤师生活动教学目标课题12.3第1课时角的平分线的性质授课人素养目标1.能用尺规作图:作一个角的平分线,强化学生的分析及作图能力.2.理解角平分线的概念,探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等,并能运用这个定理解决相关问题,培养学生观察、归纳及动手能力,发展学生的推理能力.教学重点尺规作图:作一个角的平分线,探索并证明角平分线的性质定理及应用.教学难点角平分线的性质定理的探索过程.教学活动教学步骤师生活动活动一:旧知回顾,新课引入设计意图回顾角的平分线的概念及作法,并设问为引入角平分线的尺规作图及其性质做铺垫.【复习引入】问题1:想一想,我们学过的角的平分线的概念是什么?答:问题2:我们在练习本上画一个角,怎样得到它的平分线?答:用量角器度量,或者用折纸的方法.我们已经能用尺规作一个角等于已知角了,那能否用尺规作一个角的平分线呢?角的平分线除了平分角之外,还具有其他的性质吗?让我们在这节课中展开探索吧.【教学建议】教师提问,选取学生代表进行回答,对于问题2,学生也可动手尝试,活跃气氛,在进入新课前进行实操演练.教师最后用总结结束回顾,以提问的方式引发学生思考,从而过渡到新课的内容.活动二:动手操作,交流新知设计意图通过实际情境引入角的平分线的尺规作图方法,并引导学生动手作图,加深学生对于作已知角的平分线的理解,加强作图能力.探究点1角的平分线的作法思考如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,AE 就是这个角的平分线.你能说明它的道理吗?答:在△ABC 和△ADC 中,AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS).∴∠BAC =∠DAC.∴AE 是∠BAD 的平分线.【教学建议】这里由一种平分角的仪器的工作原理引入了作一个角的平分线的尺规作图.与作一个角等于已知角的尺规作图类似,它们依据的都是全等三角形的“边边边”判定方法.教师可演示这种角平分仪,从而加深学生的直观感受.通过实验启发引入角平分线的尺规作图方法后,学生交流探究,自主动手画图.注意该作图属这种平分角的方法告诉了我们一种作已知角的平分线的方法,如下所示:请按这种方法自己动手试试看,然后与同伴交流操作心得,并回答下列问题:问题1:作图步骤(2)中,为什么要以“大于12MN 的长”为半径画弧?答:以“大于12MN 的长为半径画弧”是因为以小于12MN 的长为半径画弧,两弧没有交点,以等于12MN 的长为半径画弧不易操作.问题2:作图步骤(2)中,两弧的交点一定在∠AOB 的内部吗?答:若分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧的交点可能在∠AOB 的内部,也可能在∠AOB 的外部.而我们要作的是角的平分线,角的平分线在角的内部,所以交点应在∠AOB 内部寻找,否则两弧交点与顶点连线得到的射线就不是∠AOB 的平分线了.【对应训练】教材P 50练习第1题.于基本的尺规作图,课标有所要求,需要学生加以掌握.通过实践操作,按各种情况动手画一画,就能清楚地解释左栏问题1和问题2.教师注意跟学生强调作图步骤(3)中的“画射线OC”不能说成“连接OC”,因为“连接OC”得到的是线段,而角的平分线是射线,不是线段.【教学建议】设置练习是为了强化学生的基本作图能力,尺规作图可以不写作法,但最后一定要说明所求作的内容,作图痕迹必须保留因为可以据此看出作图思路.设计意图使学生经历探索角的平分线的性质定理的过程,并利用三角形全等证明角的平分线的性质定理,归纳证明几何命题的一般步骤,并通过例题与练习加深对于角的平分线的性质定理的理解.探究点2角的平分线的性质思考如图,任意作一个角∠AOB ,作出∠AOB 的平分线OC ,在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量PD ,PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?答:PD =PE.在OC 上再取几个点试一试,发现上述结论依然成立.于是我们猜想角的平分线有以下性质:【教学建议】设置思考可以让学生通过作图、测量来猜想角的平分线的性质.为了让学生准确推断该性质的内容,并且确信他们推出的性质具有一般性,教师需在学生作图时强调:(1)所作的角应为任意大小的;(2)在角的平分线上取的点应是任意位置的;(3)过角的平分线上一点向角的两边所作的与两边相交的线段必须是垂线教学步骤师生活动拓展:几何画板演示角的平分线的性质:如图,点P在∠AOB的平分线上:下面,我们利用三角形全等证明这个性质.首先,要分清其中的“已知”和“求证”.显然,已知为“一个点在一个角的平分线上”,要证的结论为“这个点到这个角两边的距离相等”.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OBPD=PE.一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即根据题意,画出图形,并用符号表示已知和求证;师生活动活动三:综合运用,巩固新知设计意图综合考查角的平分线的性质与三角形的面积,强化角的平分线的性质定理的运用能力.例如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.若△ABC 的面积为70,AB =16,DE =5,求BC 的长.解:如图,过点D 作DF ⊥BC 于点F.∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴DF =DE =5.∵S △ABD =12AB·DE =12×16×5=40,S △ABC =70,∴S △BCD =S △ABC -S △ABD =70-40=30.又S △BCD =12BC·DF =12BC×5=30,∴BC =12.【对应训练】如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,AF 是△ABC 的中线,AB =16,AC =8,DE =5.求△ADF 的面积.解:如图,过点D 作DM ⊥AB ,垂足为M.∵AD 是△ABC 的角平分线,DE ⊥AC ,DM ⊥AB ,∴DM =DE =5,∴S △ABD =12AB·DM =12×16×5=40,S △ACD =12AC·DE =12×8×5=20,∴S △ABC =S △ABD +S △ACD =40+20=60.∵AF 是△ABC 的中线,∴S △ACF =12S △ABC =12×60=30,∴S △ADF =S △ACF -S △ACD =30-15=15.【教学建议】角平分线的性质定理可以得到垂线段相等,所以角平分线跟三角形的面积结合时,往往能分割出等高的三角形,于是面积问题就转化为了边长问题.解答此类题目,当题干中出现角平分线时,要首先想到是否可利用角的平分线的性质定理解题,有时候也需要添加辅助线,一般是过角的平分线上一点向角的两边作垂线段.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是角的平分线?你能用尺规作一个角的平分线吗?2.角的平分线的性质是什么?你能证明吗?能运用角的平分线的性质解题吗?3.证明一个几何命题的一般步骤是什么?【知识结构】【作业布置】1.教材P51~52习题12.3第2,4,5,6题.2.《创优作业》主体本部分相应课时训练.板书设计12.3角的平分线的性质第1课时角的平分线的性质1.尺规作图:作已知角的平分线.2.角的平分线的性质:角的平分线上的点到角的两边的距离相等.3.证明几何命题的一般步骤.教学步骤师生活动教学反思本节课采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而学生对所学的新知识掌握较好,达到了教学的目的.教学中需要注意:学生对定理的图形语言认识不足出现混淆,如把角平分线上的点到角两边的距离错当成过此点与角平分线垂直(或相交)的直线与角两边相交所得的线段的长.解题大招一与尺规作图有关的推理题作一个角的平分线是课标要求的尺规作图,学生不仅要能够作图,还要了解作图的原理,而最直观的体现就是通过作图痕迹去判断作图目的.例1如图,在Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD=5,P为AB上一动点,则DP的最小值为5.解析:由尺规作图可知:AE是∠CAB的平分线,由垂线段最短可知:当DP⊥AB时,DP最小.∵AE是∠CAB的平分线,DP⊥AB,∠C=90°,∴DP=CD=5.故DP的最小值为5.解题大招二文字类几何命题的证明方法1.根据命题的题设结合图形写出已知,根据命题的结论结合图形写出求证.2.为了便于分清命题中的已知和求证,可以将命题改写成“如果……那么……”或“若……则……”的形式.例2求证:两角和其中一角对应的角平分线分别相等的两个三角形全等.分析:首先将文字命题用符号表示成已知和求证,然后进行证明.解:已知:如图,AD,A′D′分别为△ABC,△A′B′C′的角平分线,且AD=A′D′,∠B=∠B′,∠BAC=∠B′A′C′.求证:△ABC≌△A′B′C′.证明:∵AD,A′D′分别为△ABC,△A′B′C′的角平分线,∴∠1=12∠BAC,∠2=12∠B′A′C′.∵∠BAC=∠B′A′C′,∴∠1=∠2.在△ABD和△A′B′D′B=∠B′,1=∠2,=A′D′,∴△ABD≌△A′B′D′(AAS).∴AB=A′B′.在△ABC和△A′B′C′B=∠B′,=A′B′,BAC=∠B′A′C′,∴△ABC≌△A′B′C′(ASA).解题大招三与角的平分线的性质有关的线段证明(不作辅助线)当题目中要证相等的一组线段分别与一个角的两边垂直,且它们的公共点在这个角的平分线上时,可利用角平分线的性质定理直接得证(学过角平分线的性质定理后,不要再使用先证三角形全等再利用性质去解题,那样会使过程繁琐),所有证明条件的收集都应围绕这个“两垂直,一平分”进行展开,这样可以明确解题思路.例3如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M,N.求证:PM=PN.证明:∵BD是∠ABC的平分线,∴∠ABD=∠CBD.在△ABD 和△CBD =CB ,ABD =∠CBD ,=BD ,∴△ABD ≌△CBD(SAS ).∴∠ADB =∠CDB.∴∠ADP =∠CDP ,即DP 平分∠ADC.∵PM ⊥AD ,PN ⊥CD ,∴PM =PN.解题大招四利用角的平分线的性质作垂线解题利用角的平分线的性质解决问题的关键是确定角的平分线上的点到角的两边的垂线段,若已知条件中存在一条垂线段,则考虑通过作辅助线作出另一条垂线段;若已知条件中不存在垂线段,则考虑通过作辅助线作出两条垂线段.1.作一条垂线例4如图,点P 在∠AOB 的平分线上,过点P 作PC ⊥OA ,垂足为C.若PC =8,点P 到直线OB 的距离为8.解析:如图,过点P 作PD ⊥OB 于点D.∵点P 在∠AOB 的平分线上,PC ⊥OA ,PD ⊥OB ,∴PD =PC =8,即点P 到直线OB 的距离为8.例5如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,E 为AC 上一点,且∠ECD =∠EDC.(1)求证:DE ∥BC ;(2)若∠A =90°,S △BCD =26,BC =13,求AD 的长.(1)证明:∵CD 平分∠ACB ,∴∠ECD =∠BCD.又∠ECD =∠EDC ,∴∠BCD =∠EDC ,∴DE ∥BC.(2)解:如图,过点D 作DF ⊥BC 于点F.∵∠A =90°,DF ⊥BC ,CD 平分∠ACB ,∴AD =DF.∵S △BCD =26,BC =13,∴12×13DF =26,∴DF =4,∴AD =4.2.作两条垂线例6如图,∠AOB =90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C 和点D.求证:PC =PD.证明:如图,过点P 分别作PE ⊥OA 于点E ,PF ⊥OB 于点F ,∴∠PEC =∠PFD =90°.∵OM 是∠AOB 的平分线,∴PE =PF.∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°-90°-90°=180°.又∠PDO +∠PDF =180°,∴∠PCE =∠PDF.在△PCE 和△PDF PCE =∠PDF ,PEC =∠PFD ,=PF ,∴△PCE ≌△PDF(AAS ),∴PC =PD.培优点与角的平分线的性质有关的探究题例(1)如图①,在△ABC 中,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,∠MDN 的两边分别与AB ,AC 相交于M ,N 两点,且DM =DN ,求证:∠BAC +∠MDN =180°;(2)如图②,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,∠BAC +∠MDN =180°,试判断AM ,AN ,AC 之间的数量关系,并说明理由.分析:(1)先利用角的平分线的性质得到DE =DF ,再利用“HL ”证明Rt △DEM ≌Rt △DFN ,于是可得∠MDE =∠NDF ,进一步利用角的和差得∠MDN =∠EDF ,最后再结合四边形的内角和为360°可得结论.(2)先结合已知、四边形的内角和为360°及角的和差可得∠MDE =∠NDC ,再根据角的平分线的性质得DE =DC ,同时易知AE =AC ,然后利用“ASA ”证明△MDE ≌△NDC ,于是得EM =CN ,最后再根据线段的和差可得结论.(1)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠DEM =∠DFN =90°,DE =DF.在Rt △DEM 和Rt △DFN =DN ,=DF ,∴Rt △DEM ≌Rt △DFN(HL ),∴∠MDE =∠NDF.∴∠MDE +∠EDN =∠NDF +∠EDN ,即∠MDN =∠EDF.∵四边形AEDF 的内角和是360°,且∠AED +∠AFD =90°+90°=180,∴∠BAC +∠MDN =∠BAC +∠EDF =360°-(∠AED +∠AFD)=180°.(2)解:AM +AN =2AC.理由如下:如图②,过点D 作DE ⊥AB 于点E ,∴∠AED =∠DEM =90°,∴∠BAC +∠CDE =360°-∠AED -∠C =360°-90°-90°=180°.又∠BAC +∠MDN =180°,∴∠MDN =∠CDE ,∴∠MDN -∠EDN =∠CDE -∠EDN ,即∠MDE =∠NDC.∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DE =DC ,且易得AE =AC.在△MDE 和△NDC DEM =∠C =90°,=DC ,MDE =∠NDC ,∴△MDE ≌△NDC(ASA ),∴EM =CN.∴AM +AN =(AE +EM)+(AC -CN)=(AE +AC)+(EM -CN)=2AC.模型提炼:如图,∠1=∠2,AP =CP ,∠PCB +∠BAP =180°,BF =12(AB +BC),这四个条件可知二推二.。
八年级数学上册《角的平分线的性质》教案、教学设计
学生能够将角的平分线的性质应用于实际问题的解决中,培养学以致用的能力。
(二)过程与方法
1.通过实际操作,让学生经历角的平分线的探索过程,培养动手操作能力和观察能力。
教学过程中,教师引导学生通过实际操作,观察角的平分线,培养学生动手操作的能力和观察能力。
“同学们,你们在生活中见过这样的角吗?它们有什么特殊之处呢?今天我们要学习角的平分线,一起来探索这些角的奥秘吧!”
2.提问:引导学生思考角的平分线的定义及作用。
“谁能来说说什么是角的平分线?它有什么作用呢?”
3.导入新课:通过学生回答,自然导入本节课的学习内容——角的平分线的性质。
(二)讲授新知
1.概念讲解:详细解释角的平分线的定义,并通过图示进行展示。
3.提高题挑战:
完成课后提高题6、7,这两题难度较大,旨在培养学生几何证明的思路和方法,提高学生的逻辑思维能力和解题技巧。
4.探究性问题:
针对本节课所学内容,提出一个探究性问题:“除了点到角的两边的距离相等,角的平分线还有其他性质吗?”鼓励学生在课后进行自主探究,培养学生的创新意识和研究精神。
5.小组合作任务:
五、作业布置
为了巩固本节课所学内容,检验学生对角的平分线性质的理解和应用能力,特布置以下作业:
1.基础知识巩固:
完成课本第章节后的练习题1、2、3,这些题目旨在帮助学生巩固角的平分线的定义和性质,加强对基础知识的掌握。
2.应用题训练:
选择两道应用题(如课本例题4、5),要求学生运用角的平分线性质进行解决。通过解决实际问题,提高学生将理论知识应用于实际情境的能力。
2.强调几何证明的思路和方法。
人教版八年级数学上册12.2角的平分线的性质教学设计
-设计不同形式的练习题和证明题,让学生在解答过程中,逐步巩固对角的平分线性质的理解,并能够灵活运用到解题过程中。
(三)情感态度与价值观
1.培养学生严谨的学习态度和逻辑思维能力。
-在教学过程中,强调几何证明的严谨性,要求学生在解答问题时,注意逻辑推理的严密性,培养学生严谨的学习态度。
(五)总结归纳
在本节课的最后,我将带领学生进行以下总结归纳:
1.总结角的平分线的定义、性质及证明方法。
2.强调角的平分线在实际问题中的应用。
3.指出学生在学习过程中存在的问题,提醒他们在今后的学习中需要注意的地方。
4.鼓励学生继续探索几何图形的性质,提高他们的逻辑思维能力和解决问题的能力。
五、作业布置
2.激发学生对数学学科的兴趣,培养其探究精神。
-通过生动有趣的实例和问题,引导学生体验数学的魅力,激发学生对数学学科的兴趣,培养其探究精神和创新意识。
3.培养学生团队合作意识,提高沟通与交流能力。
-在课堂教学中,组织学生进行小组讨论和合作探究,使学生在交流互动中,提高沟通能力,培养团队合作意识。
二、学情分析
(二)教学设想
1.利用多媒体和实物教学,增强直观感受。
-通过动态多媒体演示和实物操作,如使用折纸和直尺等工具,让学生直观感受角的平分线的作用,从而加深对性质的理解。
2.分层次教学,满足不同学生的学习需求。
-对于基础层次的学生,重点在于让他们掌握角的平分线的定义和基本性质;对于提高层次的学生,则引导他们进行性质的证明和应用,解决更复杂的问题。
八年级的学生已经在之前的数学学习中,掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角的平分线的性质的学习,既是对已有知识的巩固,也是对几何图形性质探究能力的进一步提升。然而,由于角的平分线性质涉及到几何证明,学生在逻辑推理和证明过程中可能存在一定困难。因此,在教学过程中,应关注以下几点:
八年级数学上册《角平分线》教案、教学设计
(3)单元测试:通过测试,了解学生对角平分线知识点的掌握情况,以及运用知识解决问题的能力;
(4)课后访谈:了解学生在学习过程中遇到的困难和问题,及时调整教学策略。
4.教学资源:
(1)教材:充分利用课本资源,结合教学目标进行教学设计;
(2)反思自己在学习过程中的收获和不足,为下一节课的学习做好准备。
作业要求:
1.认真完成作业,保持卷面整洁;
2.思考题要结合所学知识,进行深入分析和研究;
3.遇到问题及时与同学、老师交流,提高解决问题的能力;
4.作业提交时间:下周一下午放学前。
(4)应用:设计有针对性的例题和练习,让学生运用角平分线知识解决问题,巩固所学;
(5)拓展:引导学生思考角平分线在其他几何问题中的应用,培养学生的发散思维;
(6)总结:对本节课的知识点进行梳理,强调重难点,帮助学生巩固记忆。
3.教学评价:
(1)课堂表现:关注学生在课堂上的参与程度、积极性和合作精神;
(五)总结归纳
1.教学活动设计:
(1)对本节课的知识点进行梳理,强调重点和难点;
(2)学生分享学习收获和感受,教师给予鼓励和评价;
(3)布置课后作业,巩固所学知识。
2.教学内容:
(1)总结角平分线的定义、性质和判定方法;
(2)回顾尺规作图的方法,强调注意事项;
(3)明确角平分线在实际问题中的应用价值。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第十五章第二节课后练习题1、2、3;
(2)运用尺规作图,作出给定角的平分线,并简要说明作图过程;
八年级数学上册《角平分线及其画法》教案、教学设计
3.教学步骤:
(1)导入新课:通过展示生活中的实例,引导学生关注角平分线,为新课学习做好铺垫。
(2)自主探究:让学生自主阅读教材,了解角平分线的定义和性质,尝试运用尺规作图法画角平分线。
(3)课堂讲解:针对学生在探究过程中遇到的问题,进行详细讲解,帮助学生掌握重点知识。
3.培养学生具备严谨、细致、踏实的科学态度,提高他们面对困难和挑战时的自信心和毅力。
教学设计:
一、导入新课
1.利用多媒体展示生活中含有角平分线的实物图片,引导学生观察、思考,激发他们的学习兴趣。
2.提问:“什么是角平分线?它在几何图形中有什么作用?”引导学生回顾相关知识,为新课学习做好铺垫。
二、自主探究
这时,我会在黑板上画出一个任意角,让学生思考并尝试回答。在学生回答的基础上,我会引导他们注意到,如果有一条线能够将这个角恰好分成两个相等的部分,那么这条线就是今天我们要学习的角平分线。通过这个实际问题的引入,学生可以直观地感受到角平分线的概念,为新课的学习打下直观的基础。
(二)讲授新知,500字
为了加深学生的理解,我会结合具体的例子,讲解如何利用尺规作图法来画出角平分线。在这个过程中,我会逐步引导学生认识到几何图形的严谨性和美感,并让他们体会到数学在解决问题中的实用性。
四、巩固练习
1.学生完成教材中的练习题,巩固所学知识。
2.教师精选典型例题,引导学生运用角平分线性质解决问题,提高他们的问题解决能力。
五、课堂小结
学生总结本节课所学内容,分享学习心得,教师给予评价和鼓励。
六、课后作业
布置适量的课后作业,巩固学生对角平分线的理解和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 初中数学 / 八年级数学教案
编订:XX文讯教育机构
角的平分线(教学设计)
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
知识结构
重点与难点分析:
本节内容的重点是角平分线的性质定理,逆定理及它们的应用。
性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。
本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。
学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。
对于原命题和逆命题,学生对条件和结论容易混淆,特别是没有明显的提示语言时,更易找不准条件和结论,这就成了教学的难点。
教法建议:
整堂课围绕“以复习为基础,以过程为主线,以思维为中心,以训练为手段”开展教学。
注重学生的参与度,通过提问、板演、讨论等多种形式,让学生直接参加课堂活动,将教与
学融为一体。
具体说明如下:
(1)做好铺垫
新课引入前,作一个具体画图的练习:已知角画出它的角平分线;然后在平分线上任取一点,作出这一点到角两边的距离。
这样做一是复习了角平分线的定义和点到直线距离的定义;二是为本节课的学习奠定了图形基础。
(2)主动获取
利用上面的图形,观察这两个距离的关系,并证明自己的结论。
对基础条件比较好的同学会很容易得出结论并能用文字叙述出来。
对基础稍差一些的同学生得出结论并不难但让他们用文字叙述出来可能不是很准确,此时教师要做指导。
这一环节的教学注意让学生通过观察、分析、推理等活动,主动提出此定理。
(3)激荡思维
在上面定理的基础上,让学找出此定理的条件与结论,并交换条件与结论得到一个新的命题,然后验证此命题的正确性如何?学生通过推理证明不难得到是一个真命题。
此时顺理成章地引出教材中的定理2。
最后注意强调:两个定理的区别与联系;原命题与逆命题、原定理与逆定理的关系及写出一个命题的逆命题的方法步骤。
这一环节完全是由学生给出定理的文字表述及证明过程。
(4)推向深入
进行必要的例题讲解,然后进行有层次阶梯性训练,以达到熟练地运用定理证明有关问题。
教学时,要注意引导学生分析问题解决问题的思考方法。
同时让学生总结积累证明线段相等、角相等的常见方法。
教学目标:
1、知识目标:
(1)掌握角平分线的性质定理和逆定理;
(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;
(3)能够判定两个命题是否为互逆命题,并能写出一个命题的逆命题.
2、能力目标:
(1)通过“判断题”的练习,提高学生的辨析能力;
(2)通过公理的初步应用,培养学生的逻辑推理能力及创新的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征。
教学重点:角平分线的性质定理,逆定理及它们的应用。
教学难点:a、角平分线定理和逆定理的应用;b、这两个定理的区别;c、写命题的逆命题。
教学用具:直尺,微机
教学方法:谈话法
教学过程:
1、新课引入
投影显示
问题:(1)画一个;
(2)在这条平分线上任取一点P,标出P点到角两边的距离。
(3)说出这两段距离的关系并证明。
2、定理的获得让学生用文字语言叙述出定理的内容
角平分线的性质定理:在角平分线上的点到这个角两边距离相等。
强调说明:
(1)、定理的条件及结论的符号表示;
(2)、定理的作用:直接证明两线段相等。
使用的前提是有,关键是图中是否有“垂直”。
3、运用逆向思维,导出定理的逆定理
问题:将定理的条件与结论“换位”得到一个新命题,说出这个新命题的内容,并判断命题是真命题还是假命题?学生分析、讨论用文字叙述内容,老师作必要的提示。
逆定理:到一个角的两边距离相等的点,在这个上。
强调:a逆定理的作用:证明角相等
b、二定理的区别与联系:性质定理说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;判定定理反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。
实际应用中,前者用来证明线段相等,后者用来证明角相等(角平分线)
4、原命题与逆命题
a、概念
b、写出互逆命题的关键。
c、原使命与逆使命的真假性并无一定的依存关系。
5、定理的应用(投影四个例题)
例1、已知:如图1,△ABC的角平分线BM、CN相交于点P.
求证:点P到三边AB、BC、CA的距离相等.
学生先分析,教师巡视并适当点拨。
投影显示学生的证明过程,师生共同纠正补充完善。
投影规范的书写格式:
(见书中例题)
此题设想:(1)语言要规范。
例“过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F”这一段话一定要在证明中写出。
(2)几何证明中,常见“同理”二字,讲清“同理”适用的条件以免以后乱用。
例2、已知:如图2,PB、PC分别是△ABC的外角平分线,相交于点P.
求证:P在∠A的平分线上
证明:(略)
设想:(1)证明“点在线上”这类问题的解决方法
(2)“一般解题方法”的运用
(3)投影显示学生的书写步骤,检查学生数学语言是否规范。
例3、写出下列命题的逆命题,并判断它们是真命题还是假命题
(1)全等三角形的对应角相等;
(2)对顶角相等;
(3)如果,那么;
(4)直角三角形的两个锐角互余.
例4、已知:如图3,PB⊥AB,PC⊥AC,PB=PC,D是AP上一点
求证:∠BDP=∠CDP
证明:(略)
设想:一般解题方法的教学。
6、课堂小结:教师引导学生总结
(1)角平分线的性质定理及逆定理;
(2)二定理的关系;
(3)一般解题方法
让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。
5、布置作业:
(a)书面作业P80#9
(b)思考题:
(1)已知:如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.
求证:∠A+∠C=
(2)求证三角形的三条内角平分线交于一点。
板书设计:
探究活动如图,公路南有一学校在铁路的东侧,到公路的距离与到铁路的距离相等,并且与两路交叉处O的距离为400米,在图上标出学校的位置,并说明理由(比例尺1:10000)。
提示:解决这类问题的方法是把实际应用问题转化为数学问题,然后用数学知识解决。
解:把公路、铁路看作两条相交直线,画出它们交,在上,从顶点量出表示实际400米长的线段便可确定学校的位置。
表示实际400米长的线段为:0.04米=4cm
XX文讯教育机构
WenXun Educational Institution。