数学建模实验

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

数学建模实验报告

数学建模实验报告

数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。

2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。

设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。

2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。

所以选择采用计算机模拟的方法,求得近似结果。

(2)通过增加试验次数,使近似解越来越接近真实情况。

3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。

而每行中1的个数代表在该楼层下的乘客的人数。

再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。

例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模的实验类型

数学建模的实验类型

数学建模的实验类型
数学建模的实验类型可以分为以下几种:
1. 理论验证实验:通过实验验证建模过程中的假设、推导以及模型中的数学公式是否正确。

例如,通过实验验证牛顿力学中的运动定律是否成立。

2. 数据收集实验:通过实际观测或者采集数据来支持数学模型的构建和验证。

例如,利用实验仪器收集实验数据,用于构建统计模型或者回归模型。

3. 数值模拟实验:利用计算机技术和数值方法对数学模型进行求解和模拟。

例如,使用有限元方法对结构力学模型进行数值分析,得到结构的应力分布和变形情况。

4. 实物模型实验:通过制作物理或者机械模型来验证数学模型的预测结果。

例如,使用比例缩小的航天器模型进行飞行实验,验证飞行力学模型的准确性。

5. 实际应用实验:将数学模型应用到实际问题中,通过实验对模型效果进行评估和优化。

例如,在工业过程中应用控制理论模型对系统进行控制,通过实验验证控制效果是否满足需求。

这些实验类型可以根据具体的研究目的和实验条件来选择和设计。

不同类型的实验可以相互组合和补充,最终得到对数学模型的全面理解和验证。

数学建模的实验报告

数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。

2.熟悉掌握matlab软件的文件操作和命令环境。

3.掌握数据可视化的基本操作步骤。

4.通过matlab绘制二维图形以及三维图形。

二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。

即要求出二次多项式: y=a+b x2的系数。

2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。

数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。

2.利用Matlab进行编程求近似解。

二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

数学建模优秀实验报告

数学建模优秀实验报告

一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。

本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。

二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。

通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。

2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。

通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。

(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。

(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。

(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。

通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。

(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。

针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。

三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。

2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。

数学建模实验报告

数学建模实验报告

数学建模实验报告实验报告:数学建模引言:数学建模是一门独特且灵活的学科,它将现实问题转化为数学模型,并利用数学工具和方法来分析和解决这些问题。

通过实践和研究,我们可以发现数学建模在各个领域都有广泛的应用,如物理学、生物学、经济学等。

本实验报告旨在介绍数学建模的基本理论与方法,并展示一个实际问题的建模与求解过程。

一、数学建模的基本理论与方法1.1模型的建立数学建模的第一步是建立数学模型。

一个好的模型应具备以下要素:准确描述问题的前提条件,明确问题的目标,确定可变参数和约束条件,考虑问题的实际需求。

1.2模型的求解模型的求解是数学建模的核心环节。

根据模型的形式和要求,我们可以选择适合的求解方法,如数值方法(如微积分、线性代数等)和符号计算方法(如差分方程、偏微分方程等)等。

1.3模型的分析与验证在模型求解的基础上,我们需要对模型进行分析和验证。

分析主要是从数学角度研究模型的性质和规律,验证则是将模型的结果与实际数据进行比对,以评估模型的准确性和可靠性。

二、实际问题的建模与求解考虑以下实际问题:公司准备推出一款新产品,为了提高产品的市场竞争力,他们决定在一部分商品上采用价格优惠的策略。

为了确定优惠的程度,他们需要建立一个数学模型来分析不同优惠方案的效果,并选择最优的方案。

2.1模型的建立首先,我们需要明确问题的前提条件和目标。

假设该产品的市场价格为P,成本价格为C,单位销售量为Q。

我们的目标是最大化销售利润。

于是,我们可以建立以下数学模型:利润函数:利润=销售额-成本利润=(P-D)*Q-C其中D为优惠的价格折扣。

2.2模型的求解为了确定最优的优惠方案,我们需要将问题转化为一个数学优化问题。

我们可以选用辅助函数法或拉格朗日乘子法来求解最优值。

在这里,我们选择辅助函数法。

我们将利润函数分别对P和D求偏导数,并令其等于0,得到以下方程组:d(利润)/dP=Q-2D=0d(利润)/dD=P-C=0解这个方程组可以求得最优解P=C,D=Q/22.3模型的分析与验证在分析这个模型之前,我们需要验证模型的准确性。

数学建模课堂三个实验报告

数学建模课堂三个实验报告

数学建模实验报告班级:_____计算机科学与技术1班___学号:______11403070137___________姓名:_____ _鄢良康 ___________教师:_______黄正刚 __________计算机科学与工程学院实验一线性规划模型一、实验学时:2H二、实验类型:计算三、实验目的1、掌握建立线性规划数学模型的方法;2、用LINDO求解线性规划问题并进行灵敏度分析;3、对计算结果进行分析。

四、实验所需仪器与设备微机和LINDO软件。

五、实验内容,方法和步骤1、建立数学模型;2、用LINDO软件计算;3、输出计算结果;4、结果分析。

实验一问题内容:某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见表,要求(1)确定获得最大的产品生产计划;(2)产品A的利润在什么范围内变动时,上述计划不变;(3)如果原材料数量不增加,劳动力不足时可从市场购买,为1.8元/h。

问:该厂要不要招收劳动力扩大生产,以购多少为宜?建立数学模型:如截图所示用LINDO软件计算;输出结果:(1)确定获利最大的产品生产计划从数据中可以得出:追求的最大利润为2700元。

其中生产X1数量的50,X2数量的0,X3数量的30。

(2)产品A的利润在什么范围内变动时,上述最优计划不变?30+18=4830-6=24故波动范围在24-48之间。

(4)如果原材料的数量不增,劳动力不足时可从市场购买,伟1.8/h。

问:该厂要不要招收劳动力扩大生产,以购买多少为宜?答:选择购买150个单位。

根据影子价格分析,对于劳动力的购买,每增加1小时,总利润增长为2元大于购买力1.8元,所以选择购买,最大为150个劳动力。

实验二非线性规划模型一、实验学时:1H二、实验类型:计算三、实验目的掌握LINGO求解非线性规划的方法。

四、实验所需仪器与设备微机、LINGO软件。

五、实验内容,方法和步骤1、把非线性规划模型输入LINGO软件计算;2、输出计算结果。

数学建模选课实验报告(3篇)

数学建模选课实验报告(3篇)

第1篇一、实验背景随着社会的发展和科技的进步,数学建模作为一种解决实际问题的有效方法,被广泛应用于各个领域。

为了提高学生的数学建模能力和实际操作能力,我校开设了数学建模选修课程。

本实验旨在通过数学建模选课实验,探讨如何选择适合学生兴趣和实际需求的数学建模课程,以提高学生的学习效果。

二、实验目的1. 了解数学建模课程体系,明确课程设置原则;2. 掌握数学建模选课方法,提高学生选课的科学性;3. 分析数学建模课程对学生实际能力的培养效果。

三、实验方法1. 调查法:通过问卷调查、访谈等方式,了解学生对数学建模课程的需求和兴趣;2. 比较分析法:对比不同数学建模课程的教学内容、教学方法和考核方式,分析课程特点;3. 统计分析法:对实验数据进行分析,得出数学建模选课的科学方法。

四、实验步骤1. 收集数据:通过问卷调查、访谈等方式,收集学生对数学建模课程的需求和兴趣数据;2. 整理数据:对收集到的数据进行分析和整理,形成课程设置和选课建议的依据;3. 比较分析:对比不同数学建模课程的教学内容、教学方法和考核方式,分析课程特点;4. 制定选课方案:根据课程特点和学生的需求,制定数学建模选课方案;5. 实施选课方案:引导学生根据选课方案进行选课;6. 跟踪调查:对选课后的学生进行跟踪调查,了解选课效果。

五、实验结果与分析1. 学生需求分析根据问卷调查和访谈结果,学生普遍认为数学建模课程应具备以下特点:(1)课程内容与实际应用紧密结合;(2)教学方法多样化,注重学生动手能力和创新能力的培养;(3)考核方式合理,注重过程评价和结果评价相结合。

2. 课程设置分析根据学生需求,我校开设了以下数学建模课程:(1)基础数学建模;(2)应用数学建模;(3)高级数学建模;(4)数学建模竞赛辅导。

3. 选课方案制定根据课程特点和学生的需求,制定以下选课方案:(1)基础数学建模:面向所有学生,作为公共选修课;(2)应用数学建模:面向有一定数学基础的学生,作为专业选修课;(3)高级数学建模:面向对数学建模有浓厚兴趣的学生,作为选修课;(4)数学建模竞赛辅导:面向有意参加数学建模竞赛的学生,作为辅导课程。

数字应用建模实验报告(3篇)

数字应用建模实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。

数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。

本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。

二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。

三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。

为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。

3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。

(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。

(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。

(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。

(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。

4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。

(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。

(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。

四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。

2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。

3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。

五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。

数学建模实验报告范文

数学建模实验报告范文

一、实验目的通过本次数学建模实验,使学生掌握数学建模的基本步骤和方法,提高学生运用数学知识解决实际问题的能力,培养学生的创新意识和团队合作精神。

二、实验内容本次实验以某城市交通拥堵问题为背景,建立数学模型,并进行求解和分析。

三、问题分析近年来,随着城市化进程的加快,交通拥堵问题日益严重。

为了缓解交通拥堵,提高城市交通效率,需要建立数学模型对交通拥堵问题进行分析。

四、模型假设1. 交通流量的变化服从泊松分布;2. 交通信号灯周期固定,绿灯时间、红灯时间比例不变;3. 交通事故发生概率服从泊松分布;4. 交通拥堵程度用道路上的车辆数表示。

五、模型构建1. 建立交通流量模型:假设道路上车流量为λ,则道路上的车辆数N(t)满足泊松分布,即N(t)~Poisson(λt)。

2. 建立交通信号灯模型:假设绿灯时间为t_g,红灯时间为t_r,信号灯周期为T,则有t_g + t_r = T。

3. 建立交通事故模型:假设交通事故发生概率为p,则在时间t内发生交通事故的次数X(t)满足泊松分布,即X(t)~Poisson(pt)。

4. 建立交通拥堵模型:假设道路上的车辆数为N(t),则交通拥堵程度U(t)可以用N(t)表示。

六、模型求解1. 根据泊松分布的性质,求解N(t)的期望值和方差,即E(N(t))=λt,Var(N(t))=λt。

2. 根据信号灯模型,求解绿灯时间t_g和红灯时间t_r。

3. 根据交通事故模型,求解交通事故发生次数X(t)的期望值和方差,即E(X(t))=pt,Var(X(t))=pt。

4. 根据交通拥堵模型,求解交通拥堵程度U(t)的期望值和方差。

七、结果分析与解释1. 根据模型求解结果,分析不同时间段内的交通流量、交通事故和交通拥堵程度。

2. 结合实际情况,分析影响交通拥堵的关键因素,并提出相应的缓解措施。

3. 通过模型求解,为相关部门制定交通管理政策提供依据。

八、实验总结通过本次数学建模实验,学生掌握了数学建模的基本步骤和方法,提高了运用数学知识解决实际问题的能力。

数学建模全部实验报告

数学建模全部实验报告

一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

2. 提高数学建模能力,培养创新思维和团队合作精神。

3. 熟练运用数学软件进行数据分析、建模和求解。

二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。

请为公司制定招聘计划。

3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。

请建立模型分析居民出行方式选择的影响因素。

三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。

2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。

3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。

4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。

5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。

四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。

(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。

(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。

(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。

(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。

2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。

数学建模 实验报告

数学建模 实验报告
-7.6785
0.5151
-27.0424
14.9336
-1.0552
rint =
-22.6123 32.7016
-29.0151 28.0174
-3.0151 44.6125
-25.5842 31.0708
-41.2961 11.7646
-17.4529 26.8291
-30.9763 25.7415
由于置信水平a=0.05,处理结果p=0.00,p<0.05
R²=0.9747,指因变量Y的97.47%可由模型确定,Y与X1存在二次关系。
,所以得到回归模型:
Y=0.5239+1.7886*X1+0.0302*X1^2;
结果表明年均收入和人寿保险额之间存在二次关系。
接下来处理两个自变量X1,X2对Y是否有交互效应。
序号
y
X1
X2
1
196
66.290
7
2
63
40.964
5
3
252
72.996
10
4
84
45.010
6
5
126
57.204
4
6
14
26.852
5
7
49
38.122
4
8
49
35.840
6
9
266
75.796
9
10
49
37.408
5
11
105
54.376
2
12
98
46.186
7
13
77
46.130
4
14
14
-21.2462 34.3845

数学建模的实验报告

数学建模的实验报告

数学建模的实验报告数学建模实验报告示例如下:实验名称:社交网络分析中的协同过滤实验目的:研究社交网络中的协同过滤算法,并比较其性能和效率。

实验设计:1. 数据收集:从Facebook的公开数据集中获取了20个城市居民的用户数据,包括他们的个人资料、社交关系和浏览记录等。

每个用户被标记为一个或多个好友、关注者或喜欢某个特定话题的人。

共收集了7000个用户数据点。

2. 数据预处理:对数据进行清洗和特征提取。

清洗数据是为了删除无用的信息,提取特征则是为了将数据转化为计算机能够理解的形式。

3. 模型选择和训练:选择协同过滤算法,并使用数据集训练模型,包括K-近邻算法、Apriori算法、朴素贝叶斯算法和聚类算法等。

4. 模型评估:使用测试集对不同算法的性能进行评估。

计算模型的准确性、召回率、精确度、F1值等指标,并比较不同算法之间的性能。

5. 应用测试:使用测试集尝试在实际应用中应用模型。

将模型应用于新的数据集,评估模型的性能和效率,并进行模型的优化和改进。

实验结果:1. 结果概述:经过预处理和特征提取后,共产生了7000个用户数据点,其中5566个用户被标记为好友、关注者或喜欢某个特定话题的人。

共1897个用户数据点被保留,用于评估模型的性能。

2. 模型评估指标:准确性:模型预测的准确率。

召回率:模型从测试集中返回的真实用户中,能够被预测为好友或关注者的比例。

精确度:模型预测的精确度。

F1值:在测试集中,模型预测正确的用户数量与实际用户数量之比。

实验结果显示,K-近邻算法的性能最好,召回率为74.06%。

Apriori算法的性能次之,准确性为72.32%。

朴素贝叶斯算法的性能最次,召回率为69.71%。

聚类算法的精确度最低,为68.91%。

3. 应用测试结果:在实际应用中,将模型应用于新的数据集,评估模型的性能和效率。

实验结果显示,K-近邻算法的应用性能最好,召回率为89.46%。

Apriori算法的应用性能次之,召回率为78.21%。

初中数学建模实验报告(3篇)

初中数学建模实验报告(3篇)

第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。

初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。

本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。

二、实验目的1. 理解数学建模的基本概念和步骤。

2. 学会运用数学知识分析实际问题。

3. 培养学生的创新思维和团队协作能力。

4. 提高学生运用数学知识解决实际问题的能力。

三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。

2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。

3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。

4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。

5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。

四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。

2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。

3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。

4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。

5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。

五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。

乘法_数学建模实验报告(3篇)

乘法_数学建模实验报告(3篇)

第1篇一、实验背景数学建模是数学与其他学科交叉的一种研究方法,它通过建立数学模型来描述现实世界中的现象,从而为解决实际问题提供理论依据。

乘法作为基础的数学运算之一,广泛应用于各个领域。

本实验旨在通过数学建模的方法,探讨乘法运算在解决实际问题中的应用,提高学生对数学知识的理解和运用能力。

二、实验目的1. 了解数学建模的基本方法,掌握建立乘法模型的基本步骤。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生对乘法运算的理解和应用水平。

三、实验内容1. 问题提出假设某公司生产一种产品,每件产品成本为20元,售价为30元。

公司计划在一段时间内销售1000件产品,请建立数学模型预测公司在该时间段内的利润。

2. 模型建立(1)定义变量设公司销售产品的数量为x件,则公司获得的利润为y元。

(2)建立关系式根据题意,每件产品的利润为售价减去成本,即10元。

因此,公司销售x件产品的总利润为10x元。

(3)确定模型利润y与销售数量x之间的关系可以表示为:y = 10x。

3. 模型求解(1)确定模型参数根据题意,公司计划销售1000件产品,即x = 1000。

(2)代入参数求解将x = 1000代入模型y = 10x,得到y = 10 × 1000 = 10000。

(3)结果分析通过计算可知,公司在该时间段内的利润为10000元。

4. 模型验证为了验证模型的准确性,我们可以根据实际情况调整销售数量,重新计算利润,并与实际结果进行比较。

四、实验结果与分析通过本实验,我们成功建立了乘法模型,并预测了公司销售产品的利润。

实验结果表明,乘法模型能够有效地解决实际问题,为决策提供理论依据。

五、实验总结1. 数学建模是解决实际问题的重要方法,通过建立数学模型,我们可以将实际问题转化为数学问题,并运用数学知识进行求解。

2. 乘法模型在解决实际问题中具有广泛的应用,我们可以通过乘法模型预测、分析各种现象。

3. 在进行数学建模时,需要注意以下几点:(1)准确理解问题,明确模型的目标和变量。

数学建模实验报告模版

数学建模实验报告模版

数学建模实验报告模版一、实验目的数学建模是实际问题抽象为数学模型,通过数学方法求解得到问题的答案。

本实验的目的是通过一个具体问题的建模与求解,培养学生的实际问题抽象与解决能力。

二、实验内容本次实验选择了一个实际生活中的问题进行建模与求解。

该问题是市场调查机构要对地区餐馆的顾客满意度进行调查,以评估餐馆的服务质量。

但由于资源有限,调查机构只能选择一部分顾客进行调查。

在这个问题中,我们需要确定调查的样本量大小,使其能够在一定的置信水平下准确代表整个顾客群体的意见。

三、实验步骤1.问题分析:首先,我们需要对问题进行分析,了解问题的背景和要求。

2.建立模型:根据问题的要求,我们选择了一个概率模型来描述问题。

假设顾客的满意度服从一个二项分布,即每位顾客都有可能是满意或不满意。

我们通过计算满意度的均值和方差,来代表整个顾客群体的意见。

3.数学求解:根据建立的模型,我们使用统计学方法对样本量大小进行估计,以达到一定的置信水平。

4.实验验证:最后,我们通过实验验证我们得到的样本量大小,看是否满足要求。

四、实验结果经过建模和求解,我们得到了样本量大小的估计结果。

根据我们的计算,当置信水平为95%时,我们需要调查的样本量大小为110人。

五、实验总结通过这次实验,我们学会了将实际问题抽象成数学模型,以及通过数学方法去求解这个模型。

我们也进一步了解了概率分布和统计学的知识,以及如何利用它们来进行建模和求解。

这对我们今后在实际问题中的应用具有重要意义。

在实验过程中,我们也发现了一些问题和不足之处。

例如,我们的模型可能存在一定的偏差,因为我们的假设可能与实际情况有所不同。

此外,我们的模型也有一些局限性,不适用于所有情况。

因此,在今后的学习过程中,我们需要进一步加强对数学建模的理解和应用,不断提高自己的建模能力,以更好地解决实际问题。

以上是一份关于数学建模实验的报告模板,希望对你的写作有所帮助。

实验报告的内容可根据具体实验情况进行修改和补充,以符合实际情况。

数学建模实验报告经典实例

数学建模实验报告经典实例

《数学建模》实验报告计算过程如下, 结果如下:画图程序命令如下:函数图象如下:实验题目二: 编写利用顺序Guass消去法求方程组解的M-函数文件,并计算方程组的解解: M-函数文件如下:方程组的计算结果如下:实验题目三: 编写“商人们安全过河”的Matlab程序解: 程序如下:function foot=chouxiang%%%%%%%%%%%%%%%%%%%%%% 程序开始需要知道商人数, 仆人数, 船的最大容量n=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; % 决策向量存放在矩阵“d”中, jc为插入新元素的行标初始为1for i=0:nnnfor j=0:nnnif (i+j<=nnn)&(i+j>0) % 满足条件D={(u,v)|1<=u+v<=nnn,u,v=0,1,2}d(jc,1:3)=[i,j 1]; %生成一个决策向量后立刻将他扩充为三维(再末尾加“1”)d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量jc=jc+2; % 由于一气生成两个决策向量,jc指标需要往下移动两个单位endendj=0;end再验证:程序结果说明在改变商人和仆人数目, 其他条件不变的条件下。

可能无法得到结果。

程序结果说明在改变商人和仆人数目,其他条件不变的条件下。

可能无法得到结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模与数学实验报告指导教师__郑克龙___ 成绩____________组员1:班级_地理0801 姓名 曾特琳 学号 20081286 组员2:班级_地质0802 姓名_管 磊_ 学号 20081397实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。

(2)用surf,mesh 命令绘制曲面222z x y =+,将其程序及图形粘贴在此。

(注:图形注意拖放,不要太大)(20分) 解: (1) 解:程序代码:>>ezplot('cos(tan(pi*x))')(2)解:程序二程序代码: >> x=-10:0.1:10; y=-10:0.1:10;[X,Y]=meshgrid(x,y); Z=2*X.^2+Y .^2;surf(X,Y ,Z) shading flat 图形:实验2.1、某校60名学生的一次考试成绩如下:93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 7094 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 551)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分)解:(1)a、求均值>>x=[93,75,83,93,91,85,84,82,77,76,77,95,94,89,91,88,86,83,96,81,79,97,78,75,67,69,68,84,83,81,75,66,85,7 0,94,84,83,82,80,78,74,73,76,70,86,76,90,89,71,66,86,73,80,94,79,78,77,63,53,55]mean(x) %求均值ans =80.1000b、求标准差>>>> std(x)ans =9.7106c、求极差>> var(x)ans =94.2949d、求偏度>> skewness(x)ans =-0.4682e、求峰度>> kurtosis(x)ans =3.1529f、直方图>> hist(x,80)(2)检验分布的正态性:程序代码:>> h=normplot(x)h =160.0205161.0201162.0201图形:故近似服从正态分布(3)估计正态分布的参数并检验参数>> [muhat,sigmahat,muci,sigmaci] = normfit(x) %估计参数muhat =80.1000sigmahat =9.7106muci =77.591582.6085sigmaci =8.231011.8436结论:估计出该成绩的均值为80.1,方差9.7,均值的0.95置信区间为[77.5915,2.6085],方差的0.95置信区间为[8.2310 ,11.8436].检验参数:>> [h,sig,ci] = ttest( x ,80.1000) %检验参数h =sig =1 ci =77.5915 82.6085 结论:1. 布尔变量h=0, 表示不拒绝零假设. 说 明提出的假设均值80.1是合理的.2. 95%的置信区间为[77.5915 82.6085], 它完全包括80.1 且精度很高.3. sig-值为1, 远超过0.5, 不能拒绝零假设.实验 3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为34231253211x x x x x y βββββ+++-=其中51,,ββ 是未知参数,321,,x x x 是三种反应物(氢,n 戊烷,异构戊烷)的含量,y 是反应速度.今测得一组数据如表4,试由此确定参数51,,ββ ,并给出置信区间.51,,ββ 的参考值为 (1,0.05, 0.02, 0.1, 2).(20分)序号 反应速度y氢x 1 n 戊烷x 2异构戊烷x 31 8.55 470 300 102 3.79 285 80 103 4.82 470 300 1204 0.02 470 80 1205 2.75 470 80 106 14.39 100 190 107 2.54 100 80 658 4.35 470 190 659 13.00 100 300 54 10 8.50 100 300 120 11 0.05 100 80 120 12 11.32 285 300 10 133.13285190120对将拟合的非线性模型,建立m 文件dongli.m 如下function y=dongli(beta,x)y=(beta(1)*x(:,2)-x(:,3)./beta(5))./(1+beta(2)*x(:,1)+beta(3)*x(:,2)+beta(4)*x(:,3));输入数据及求回归系数和置信区间(yy ±delta )clear clc close ally=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13]'; x1=[470 285 470 470 470 100 100 470 100 100 100 285 285]'; x2=[300 80 300 80 80 190 80 190 300 300 80 300 190]'; x3=[10 10 120 120 10 10 65 65 54 120 120 10 120]';x=[x1 x2 x3];beta0=[1 0 0 0 1]';[beta,r,J]=nlinfit(x,y,'dongli',beta0);beta[yy,delta]=nlpredci('dongli',x,beta,r ,J);yydelta得出结果:beta =1.25260.06280.04000.11241.1914yy =8.41793.95424.9109-0.01102.635814.34022.56624.038513.02928.3904-0.021611.47013.4326delta =0.28050.24740.17660.18750.15780.42360.24250.16380.34260.32810.36990.32370.1749可以得出在显著性水平为1-0.05的时候,置信区间yy±delta实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。

当电子管损坏时有两种维修方案,一是每次更换损坏的那一只;二是当其中一只损坏时四只同时更换。

已知更换时间为换一只时需1小时,4只同时换为2小时。

更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法决定哪一个方案经济合理?(20分)解:目标模型是在很多个循环以后得到的稳定状态,总维修次数n是严格单调递增且是不停变换的,故在k=n/4为整数是做一次总费用结算:A、模型分析:方案一是简单的一种,得到总损坏次数n后(n是可以被4整除的自然数),总费用=维修时间段损失+总电子管的价格,令总费用为:Q1=n*(20+10);方案二比较复杂,总费用为=各次中间间隔造成的损失+总维修时间段损失+总电子管的价格;令总费用为Q2=n*10+n/2*20+△t*20;次处的△t为总的修理间隔时间的总和,以下有解释。

模型假设:(1)假设每个电子管寿命是随机的,各个电子之间出现损坏的情况是相互独立的(2)t1(i)为第i个电子管损坏的时间(3)t2(i)为第i个电子管损坏与第i-1个电子管损坏的时间之差,t2(1)=0,t2(i)=t1(i)-t1(i-1) ( i≥2) 。

(4)Q1为第一种方案得到的总费用,Q2为第二种方案得到的总费用;ct1为换一个电子管所用时间,ct2为换四个电子管所用时间,cost1为机器因停止运转每小时的损失,cost2为每只电子管价格B、建立模型:在维修4个电子管之前,第1个电子管的等待时间t2(1)+ t2(2)+ t2(3);第二个电子管等待时间为t2(2)+ t2(3);第三个电子管等待时间为t2(3)。

总的等待时间△t=(t2(1)+ t2(2)+ t2(3))+(t2(2)+ t2(3))+ t2(3)=t2(1)+ 2*t2(2)+ 3*t2(3)C、模型求解:编辑M函数weixiu.mfunction allcost=weixiu(n)n=floor(9000*rand)+1000t1=unifrnd(1000,2000,1,n);Q=0;while 1if n/4>floor(n/4)disp('error NO');breakendendk=n/4;for i=2:nt2(i)=exprnd(1/2);t1(i)=t1(i-1)+t2(i);endfor i=1:kQ=Q+(t2(4*k-3)+2*t2(4*k-2)+3*t2(4*k-1))*20;endQ1=Q+n*10+n/4*2*20; %方案二Q2=30*n; %方案一allcost=[Q1 Q2];weixiun =6691 error NO ans = 1.0e+005 *2.9404 2.0073结论:由以上分析可知,第二种方法比较好实验5.(1)利用matlab 的相关命令以及编写相应的函数文件求解非线性规划问题 2212min(3)(2)f x x =-+- (10分)s.t. 12212400x x x x +-=⎧⎨-≥⎩(附上所有程序及运行结果) 解:首先建立M 文件fun.m,定义目标函数:function f=fun(x); f=(x(1)-3)^2+(x(2)-2)^2;再建立M 文件mycon.m 定义非线性约束:function [g,ceq]=mycon(x) g=[-x(1)^2+x(2)]; ceq=[x(1)+x(2)-4];主程序youh.m 为: x0=[2;2]; A=[];b=[]; Aeq=[1 1];beq=[4]; vlb=[];vub=[]; [x,fval]=fmincon('fun',x0,A,b,Aeq,beq,vlb,vub,'mycon') 结果为:x = 2.5000 1.5000 fval = 0.5000(2)利用matlab 求解下列两个微分方程 (i )''2,(0)2,(1)1y y x y y -=-==(ii )'''(1)24,(0)0,(1)2(1)0x y y y y y +=-=-=(附上求解命令及运行结果)(10分) 解:(1)(i )解:首先建立M 文件fun.m,定义目标函数:function f=fun(x); f=(x(1)-3)^2+(x(2)-2)^2; 再建立M 文件mycon.m 定义非线性约束:function [g,ceq]=mycon(x) g=[-x(1)^2+x(2)]; ceq=[x(1)+x(2)-4];主程序youh.m 为: x0=[2;2]; A=[];b=[]; Aeq=[1 1];beq=[4];vlb=[];vub=[]; [x,fval]=fmincon('fun',x0,A,b,Aeq,beq,vlb,vub,'mycon') 结果为:x = 2.5000 1.5000 fval = 0.5000(2)利用matlab 求解下列两个微分方程 (i )''2,(0)2,(1)1y y x y y -=-==程序:>> y=dsolve('D2y-y-x+2=0','y(0)=2,y(1)=1','x') 结果: y = 2-x(ii)'''(1)24,(0)0,(1)2(1)0x y y y y y+=-=-=(附上求解命令及运行结果)(10分)程序:>> y=dsolve('(1+x)*D2y=2*y+4','y(0)=0,y(1)-2*Dy(1)=0','x');>> y=simple(y)结果:y =(1+x)^(1/2)*(4*i*bessely(0,4*i)-2*bessely(1,4*i)+2^(1/2)*bessely(1,2*i*2^(1/2)))/(2*i*bessely(0,4*i)*bes seli(1,2*2^(1/2))-bessely(1,4*i)*besseli(1,2*2^(1/2))+besseli(1,4)*bessely(1,2*i*2^(1/2))-2*besseli(0,4)*b essely(1,2*i*2^(1/2)))*besseli(1,2*(2+2*x)^(1/2))-(1+x)^(1/2)*(besseli(1,2*2^(1/2))*2^(1/2)+4*besseli(0, 4)-2*besseli(1,4))/(2*i*bessely(0,4*i)*besseli(1,2*2^(1/2))-bessely(1,4*i)*besseli(1,2*2^(1/2))+besseli(1,4 )*bessely(1,2*i*2^(1/2))-2*besseli(0,4)*bessely(1,2*i*2^(1/2)))*bessely(1,2*i*(2+2*x)^(1/2))-2。

相关文档
最新文档