高二数学《充分条件与必要条件》PPT课件
合集下载
上课1.2《充分条件与必要条件》课件 (共20张PPT)
2
(充要条件) 4)同旁内角互补 " "是 " 两直线平行 "的
5)" x 5" 是 " x 3"的
(必要不充分条件) 6)" a b " 是 " a c b c "的 (充要条件)
7)已知ABC不是直角三角形, "A<B" 是 "tan A tan B "的 (既不充分也不必要条件)
定义: 对于命题“若p则q”
1.若p q, q p, 则p是q的充分不必要条件. q是p的必要不充分条件.
2.若p q, q p,即p q, 则p是q充分必要条件, 简称充要条件 . 也说p与q互为充要条件 .
3.若p q, q p, 则p是q的既充分不必要条件. q是p的既必要不充分条件.
作业:
• P.15 A组 第4题 B组第2题
真
2 0 ac 00 (5方程有 )若ab ax ,则 ; 假 bx (a 0) 两个不等的实数解 b 2 4ac 0
(6) 若两三角形全等 ,则两三角形面积相等; 两三角形全等
真
两三角形面积相等
定义:
充分条件与必要条件:一般地,如果已知 p q , 即命题“若p则q” 为真命题,那么就说,p 是q 的充分条件, q 是p 的必要条件.
1 1 当x 0, y 0时,有: . x y
必要性(q p) 1 1 yx 若 , 则有: 0,即xy( y x) 0. x y xy x y y x 0 xy 0.
例2、已知ab 0, 求证:a b 1的充要条件是 a 3 b3 ab a 2 b 2 0.
(充要条件) 4)同旁内角互补 " "是 " 两直线平行 "的
5)" x 5" 是 " x 3"的
(必要不充分条件) 6)" a b " 是 " a c b c "的 (充要条件)
7)已知ABC不是直角三角形, "A<B" 是 "tan A tan B "的 (既不充分也不必要条件)
定义: 对于命题“若p则q”
1.若p q, q p, 则p是q的充分不必要条件. q是p的必要不充分条件.
2.若p q, q p,即p q, 则p是q充分必要条件, 简称充要条件 . 也说p与q互为充要条件 .
3.若p q, q p, 则p是q的既充分不必要条件. q是p的既必要不充分条件.
作业:
• P.15 A组 第4题 B组第2题
真
2 0 ac 00 (5方程有 )若ab ax ,则 ; 假 bx (a 0) 两个不等的实数解 b 2 4ac 0
(6) 若两三角形全等 ,则两三角形面积相等; 两三角形全等
真
两三角形面积相等
定义:
充分条件与必要条件:一般地,如果已知 p q , 即命题“若p则q” 为真命题,那么就说,p 是q 的充分条件, q 是p 的必要条件.
1 1 当x 0, y 0时,有: . x y
必要性(q p) 1 1 yx 若 , 则有: 0,即xy( y x) 0. x y xy x y y x 0 xy 0.
例2、已知ab 0, 求证:a b 1的充要条件是 a 3 b3 ab a 2 b 2 0.
2.1 充分条件与必要条件(共14张PPT)
2、必要条件的特征是: 当p不成立时,必有q不成立, 但当p成立时,未必有q 成立。 因此要使q成立,必须具备条件p,故称p是q成 立的必要条件。
学习新知 1、判别步骤:
判别充分条件 与必要条件
① 认清条件和结论。 ② 考察p q和q p的真假。
2、判别技巧:
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。
⑴命题:若“A为绿色”,则“B为 绿色”中,“A为绿色”是“B为绿 色”的什么条件; “B为绿色”又是 “A为绿色”的什么条件.
⑵命题:若“红点在B内”,则“红点一定在 A内”中,“红点在B内”是“红点在A内” 的什么条件;
“红点在A内”又是“红点在B内”的什么条 件.
应用新知
练习:下列“若p,则q”形式的命题中 p是q的
(1) x2=y2
x=y;
(2)内错角相等
两直线平行;
(3)整数a能被6整除 a的个位数字
为偶数;
(4)ac=bc a=b
学习新知
(1)若一个三角形有两个角相等,则这个三角 形是等腰三角形。 (2)若a2>b2,则a>b。
在真命题(1)中,p足以推出q,也就是说条件p 充分了。在假命题(2)中条件p不充分。
在真命题(1)中, q是p 成立所必须具备的前提。 在假命题(2)中, q不是p 成立所必须具备的前提。
学习新知
定义:“如果若p则q” 为真命题是指由p通 过推理可以得出q,这时我们就说,由p可
以推出q,记作 p q 并且说
p是q的充分条件(sufficient condition),
q是p的必要条件(necessary condition).
(1)“0<x <5”是“ x – 2 <3”的
学习新知 1、判别步骤:
判别充分条件 与必要条件
① 认清条件和结论。 ② 考察p q和q p的真假。
2、判别技巧:
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。
⑴命题:若“A为绿色”,则“B为 绿色”中,“A为绿色”是“B为绿 色”的什么条件; “B为绿色”又是 “A为绿色”的什么条件.
⑵命题:若“红点在B内”,则“红点一定在 A内”中,“红点在B内”是“红点在A内” 的什么条件;
“红点在A内”又是“红点在B内”的什么条 件.
应用新知
练习:下列“若p,则q”形式的命题中 p是q的
(1) x2=y2
x=y;
(2)内错角相等
两直线平行;
(3)整数a能被6整除 a的个位数字
为偶数;
(4)ac=bc a=b
学习新知
(1)若一个三角形有两个角相等,则这个三角 形是等腰三角形。 (2)若a2>b2,则a>b。
在真命题(1)中,p足以推出q,也就是说条件p 充分了。在假命题(2)中条件p不充分。
在真命题(1)中, q是p 成立所必须具备的前提。 在假命题(2)中, q不是p 成立所必须具备的前提。
学习新知
定义:“如果若p则q” 为真命题是指由p通 过推理可以得出q,这时我们就说,由p可
以推出q,记作 p q 并且说
p是q的充分条件(sufficient condition),
q是p的必要条件(necessary condition).
(1)“0<x <5”是“ x – 2 <3”的
充分条件与必要条件课件
例子1
如果天下雨(条件A),那么地面会 湿(结果B)。
例子2
如果一个人吃饭(条件A),那么他会 饱(结果B)。
பைடு நூலகம்
逻辑推理
01
02
03
逻辑推理
充分条件的逻辑推理是确 定性的,即如果条件A存 在,那么结果B一定会发 生。
推理过程
例如,如果已知“天下雨 ”,则可以逻辑推理出“ 地面会湿”。
推理规则
充分条件的推理规则是单 向的,即从条件到结果的 单向逻辑联系。
件。
如果A是B的必要不充分条件 ,那么B是A的充分不必要条
件。
充分条件与必要条
04
件的区别与联系
区别
定义不同
充分条件指的是某一事件或条件是另一事件或结果发生的充分条件,即只要满足这一条件,另一事件或结果就会 发生;而必要条件则是某一事件或结果发生的必要条件,即如果没有这一条件,另一事件或结果就不会发生。
THANKS.
充分条件与必要条件 ppt课件
目录
• 充分条件 • 必要条件 • 充分必要条件 • 充分条件与必要条件的区别与联系
充分条件
01
定义
充分条件的定义
如果条件A存在,那么结果B一定 发生,记作A→B。
解释
充分条件是指某一事件(即“结 果”)的发生是由另一事件(即 “条件”)的存在所充分决定的 。
实例
实例
充分条件实例
如果下雨(条件A),那么地面会湿(结果B)。
必要条件实例
要使汽车启动(结果B),必须先打开点火开关(条件A)。
逻辑推理
01
02
03
04
如果A是B的充分条件,那么B 是A的必要条件。
如果A是B的必要条件,那么B 是A的充分条件。
如果天下雨(条件A),那么地面会 湿(结果B)。
例子2
如果一个人吃饭(条件A),那么他会 饱(结果B)。
பைடு நூலகம்
逻辑推理
01
02
03
逻辑推理
充分条件的逻辑推理是确 定性的,即如果条件A存 在,那么结果B一定会发 生。
推理过程
例如,如果已知“天下雨 ”,则可以逻辑推理出“ 地面会湿”。
推理规则
充分条件的推理规则是单 向的,即从条件到结果的 单向逻辑联系。
件。
如果A是B的必要不充分条件 ,那么B是A的充分不必要条
件。
充分条件与必要条
04
件的区别与联系
区别
定义不同
充分条件指的是某一事件或条件是另一事件或结果发生的充分条件,即只要满足这一条件,另一事件或结果就会 发生;而必要条件则是某一事件或结果发生的必要条件,即如果没有这一条件,另一事件或结果就不会发生。
THANKS.
充分条件与必要条件 ppt课件
目录
• 充分条件 • 必要条件 • 充分必要条件 • 充分条件与必要条件的区别与联系
充分条件
01
定义
充分条件的定义
如果条件A存在,那么结果B一定 发生,记作A→B。
解释
充分条件是指某一事件(即“结 果”)的发生是由另一事件(即 “条件”)的存在所充分决定的 。
实例
实例
充分条件实例
如果下雨(条件A),那么地面会湿(结果B)。
必要条件实例
要使汽车启动(结果B),必须先打开点火开关(条件A)。
逻辑推理
01
02
03
04
如果A是B的充分条件,那么B 是A的必要条件。
如果A是B的必要条件,那么B 是A的充分条件。
充分条件与必要条件(共14张PPT)
得P: x + y =-2, q :x =-1且y = -1, 因为 q能推出 P,但 P不能推出 q.
∴p 是 q 的充分而不必要条件. 选A.
例4、已知P:|1- x3-1| 2,q:x2 -2x+1-m2 0,(m>0), 若 q是 p的充分不必要条件,求实数m的取值范围?
解: 由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.
(3)若 p q ,那么q是p的充要条件 条件
p (4)若 p
q q ,那么q是p的 既不充分也不必要条件
例3. 已知条件 P: x + y ≠-2,条件q: x , y不都 是-1, 则p 是 q的( A )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 解: 由p : x + y ≠-2 ,q: x , y不都是-1,
所以由“|¬q1-”:x-A3 =1 {|≤x∈2,R|得xp>:1-+2m≤或x≤x<101,-m,m>0}
所以“¬p”:B={x∈R|x>10或x<-2}.
由“¬q ”是“¬p”的充分而不必要条件知:A
B.
m 0
从而可得 1 m 2
1 m 10
解得 m≥ 9为所求.
1-m -2
10 1+m
②从集合角度看
⑴p是q的充分不必要条 件,相当于P Q,如右图
⑵p是q的必要不充分条 件,相当于P Q ,如左图
⑶p q,相当于P=Q ,
即:互为充要条件的两个事物
表示的是——同一事物。如 右图:
练习:下列电路图中,闭合开关A是灯泡B亮的什么条件?
A
B
C
A
CB
A
B
∴p 是 q 的充分而不必要条件. 选A.
例4、已知P:|1- x3-1| 2,q:x2 -2x+1-m2 0,(m>0), 若 q是 p的充分不必要条件,求实数m的取值范围?
解: 由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.
(3)若 p q ,那么q是p的充要条件 条件
p (4)若 p
q q ,那么q是p的 既不充分也不必要条件
例3. 已知条件 P: x + y ≠-2,条件q: x , y不都 是-1, 则p 是 q的( A )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 解: 由p : x + y ≠-2 ,q: x , y不都是-1,
所以由“|¬q1-”:x-A3 =1 {|≤x∈2,R|得xp>:1-+2m≤或x≤x<101,-m,m>0}
所以“¬p”:B={x∈R|x>10或x<-2}.
由“¬q ”是“¬p”的充分而不必要条件知:A
B.
m 0
从而可得 1 m 2
1 m 10
解得 m≥ 9为所求.
1-m -2
10 1+m
②从集合角度看
⑴p是q的充分不必要条 件,相当于P Q,如右图
⑵p是q的必要不充分条 件,相当于P Q ,如左图
⑶p q,相当于P=Q ,
即:互为充要条件的两个事物
表示的是——同一事物。如 右图:
练习:下列电路图中,闭合开关A是灯泡B亮的什么条件?
A
B
C
A
CB
A
B
1.4充分条件与必要条件(共50张PPT)
■微思考 2 (1)若 p 是 q 的充要条件,则命题 p 和 q 是两个相互等价的命题.这种说法对 吗? 提示:正确.若 p 是 q 的充要条件,则 p⇔q,即 p 等价于 q,故此说法正确. (2)“p 是 q 的充要条件”与“p 的充要条件是 q”的区别在哪里? 提示:①p 是 q 的充要条件说明 p 是条件,q 是结论. ②p 的充要条件是 q 说明 q 是条件,p 是结论.
2.(2020·佛山检测)设 a 是实数,则 a<5 成立的一个必要不充分条件是( )
A.a<6
B.a<4
C.a2<25
D.1a>15
解析:选 A.因为 a<5⇒a<6,a<6\⇒a<5,所以 a<6 是 a<5 成立的一个 必要不充分条件.故选 A.
探究点 3 充分条件、必要条件、充要条件的应用 已知 p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若
【解】 (1)因为 x=1 或 x=2⇒x-1= x-1,x-1= x-1⇒x=1 或 x=2, 所以 p 是 q 的充要条件. (2)若一个四边形是正方形,则它的对角线互相垂直平分,即 p⇒q.反之,若 四边形的对角线互相垂直平分,该四边形不一定是正方形,即 q\⇒ p. 所以 p 是 q 的充分不必要条件.
探究点 1 充分、必要、充要条件的判断 下列各题中,p 是 q 的什么条件?(指充分不必要、必要不充分、充要、
既不充分也不必要条件) (1)p:x=1 或 x=2,q:x-1= x-1; (2)p:四边形是正方形,q:四边形的对角线互相垂直平分; (3)p:xy>0,q:x>0,y>0; (4)p:四边形的对角线相等,q:四边形是平行四边形.
3.设 p:x<3,q:-1<x<3,则 p 是 q 成立的
充分条件与必要条件PPT优秀课件
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
如 果 p q , 那 么 p 与 q 互 为 充 要 条 件
"p是 q的 充 要 条 件 "也 说 成 "p等 价 于 q" 或 "q当 且 仅 当 p"
例5.下列各题中,哪些p是q的充要条件? (1)p:b=0,q:函数f (x)=ax2+bx+c是偶函数; (2)p:x>0、y>0,q:xy>0; (3)p:a>b,q:a+c>b+c.
(1)若x=1,则x2-4x+3=0; (2)若f (x)=x,则f (x)在(-∞,+∞)上为增函数; (3)若x是无理数,则x2是无理数.
解:(1)p:x=1
q: x2-4x+3=0
x 1 x 2 4 x 3 0 ,即 p q
∴“x=1”是“x2-4x+3=0”的充分条件 (2)p:f (x)=x q: f (x)在(-∞,+∞)上为增函数
所以我们说, “x>2ab”是“x>a2+b2”成立的必要条件
一般地,对“若p则q”型的命题,如果
pq
则我们说,p是q的充分条件,q是p的必要条件
89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰]
如 果 p q , 那 么 p 与 q 互 为 充 要 条 件
"p是 q的 充 要 条 件 "也 说 成 "p等 价 于 q" 或 "q当 且 仅 当 p"
例5.下列各题中,哪些p是q的充要条件? (1)p:b=0,q:函数f (x)=ax2+bx+c是偶函数; (2)p:x>0、y>0,q:xy>0; (3)p:a>b,q:a+c>b+c.
(1)若x=1,则x2-4x+3=0; (2)若f (x)=x,则f (x)在(-∞,+∞)上为增函数; (3)若x是无理数,则x2是无理数.
解:(1)p:x=1
q: x2-4x+3=0
x 1 x 2 4 x 3 0 ,即 p q
∴“x=1”是“x2-4x+3=0”的充分条件 (2)p:f (x)=x q: f (x)在(-∞,+∞)上为增函数
所以我们说, “x>2ab”是“x>a2+b2”成立的必要条件
一般地,对“若p则q”型的命题,如果
pq
则我们说,p是q的充分条件,q是p的必要条件
高二数学《充分条件与必要条件》PPT课件
解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的p是q的充分条件.
新课
复习
新课
小结
作业
例2、下列“若p,则q”形式的命题中, 哪些命题中的q是p的必要条件? 2 2 (1) 若x=y,则x =y ; (2) 若两个三角形全等,则这两个三角形的 面积相等; (3) 若a>b,则ac>bc.
(3)p q ,q
-x2+4x+5>0
x≠0或y≠0
q ,q
p
p
(原问题 q p)
新课
复习
新课
小结
作业
判别充分与必 要条件问题的
6 判别步骤: ① 认清条件和结论。 ② 考察p q 和q p的真假。
7 判别技巧:
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。
(2) 若f(x)=x,则f(x)在(-, +)上为
增函数; (3) 若x为无理数,则x2为无理数.
总结规律:A={x|x满足条件p},B={x|x满足条件q} p,q的逻辑 集合A,B的 结论 韦恩图示 关系 关系
p是q的充分 不必要条件
p是q的必要 不充分条件
p是q的充要 条件
p是q的既非 充分又非必 要条件
复习
新课
小结
作业
复习引入
复习
新课
小结
作业
1、命题: 可以判断真假的陈述句,可写成:若p则q。 2、四种命题及相互关系: 原命题 若p则q
互 否 互逆
逆命题 若q则p
互 否
互为
逆否
否命题 若 p则 q互逆逆否命题 Nhomakorabea q则 p
12充分条件与必要条件共32张PPT
1.2
目标导航
充分条件与必要条件
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习导引
1.初步理解充分条件、必要条件、充分必要条件等概念,并能从逻辑关
学习
目标
系和集合间的关系上进行理解.
2.了解命题 p 与命题 q 的条件关系的四类情况,会判断两命题的条件关
轴确定 m 的取值范围.
1.2
问题导学
充分条件与必要条件
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
迁移与应用
1.(2014 届湖北重点中学高三 10 月阶段性统考)已知集合
3
A= = 2 - 2 x + 1,x∈
3
,2
4
,B={x|x+m2≥1},p:x∈A,q:x∈B,并且 p
∵命题 p 是命题 q 的充分条件,
7
16
3
4
3
4
∴A⊆ B,即 1-m2≤ ,解得 m≤- 或 m≥ .
∴实数 m 的取值范围是
3
-∞,4
∪
3
,+∞
4
.
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
1.2
问题导学
充分条件与必要条件
课前预习导学
课堂合作探究
善于应用它去分析和解决有关问题.
(1)“若 p,则 q”形式的命题,其条件 p 与结论 q 之间的逻辑关系有四
种可能:①p⇒ q,但 q⇒ p 不一定成立,这时,称 p 是 q 的充分而不必要条
目标导航
充分条件与必要条件
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习导引
1.初步理解充分条件、必要条件、充分必要条件等概念,并能从逻辑关
学习
目标
系和集合间的关系上进行理解.
2.了解命题 p 与命题 q 的条件关系的四类情况,会判断两命题的条件关
轴确定 m 的取值范围.
1.2
问题导学
充分条件与必要条件
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
迁移与应用
1.(2014 届湖北重点中学高三 10 月阶段性统考)已知集合
3
A= = 2 - 2 x + 1,x∈
3
,2
4
,B={x|x+m2≥1},p:x∈A,q:x∈B,并且 p
∵命题 p 是命题 q 的充分条件,
7
16
3
4
3
4
∴A⊆ B,即 1-m2≤ ,解得 m≤- 或 m≥ .
∴实数 m 的取值范围是
3
-∞,4
∪
3
,+∞
4
.
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
1.2
问题导学
充分条件与必要条件
课前预习导学
课堂合作探究
善于应用它去分析和解决有关问题.
(1)“若 p,则 q”形式的命题,其条件 p 与结论 q 之间的逻辑关系有四
种可能:①p⇒ q,但 q⇒ p 不一定成立,这时,称 p 是 q 的充分而不必要条
充分条件和必要条件教学ppt课件
集合法
利用集合论的方法,判断非A和非B 两个集合之间的关系,如果非A是非 B的子集,则非A是必要条件。
充分条件与必要条件的综合应用
判定实例
通过具体实例的判定,加 深对充分条件和必要条件 的理解。
判定步骤
介绍判定充分条件和必要 条件的步骤和方法。
应用场景
介绍充分条件和必要条件 在日常生活、科学研究等 方面的应用场景。
04
充分条件与必要条件的推 理关系
充分条件推理关系的应用
定义
如果一个条件A能够推理得到结 论B,那么称A是B的充分条件。
示例
如果天下雨,那么地会湿。这里 “下雨”是“地湿”的充分条件
。
应用
在日常生活中,充分条件的推理 关系非常常见,比如:如果按下 开关,那么灯会亮;如果发烧,
那么可能是流感。
必要条件推理关系的应用
03
充分条件与必要条件的应 用场景
法律逻辑中的充分条件和必要条件
法律逻辑中的充分条件
在法律逻辑中,充分条件通常指的是能够充分证明某一事实或证据的条款或条 件。如果某一事实或证据是另一个事实或证据的充分条件,那么只要这个事实 或证据成立,另一个事实或证据也就必然成立。
法律逻辑中的必要条件
在法律逻辑中,必要条件通常指的是某一事实或证据必须满足的不可缺少的条 件。如果缺少这个条件,那么另一个事实或证据就无法成立。
经济案例中的充分条件和必要条件
经济案例1
在国际贸易中,出口商品符合进口国的技术 标准是充分条件,而进口国颁发进口许可证 则是必要条件。如果出口商品不符合进口国 的技术标准,则无法获得进口许可证。
经济案例2
在投资决策中,投资项目的盈利前景是充分 条件,而投资者的资金实力则是必要条件。 如果投资项目的盈利前景不佳,则投资者可 能会放弃该项目。
利用集合论的方法,判断非A和非B 两个集合之间的关系,如果非A是非 B的子集,则非A是必要条件。
充分条件与必要条件的综合应用
判定实例
通过具体实例的判定,加 深对充分条件和必要条件 的理解。
判定步骤
介绍判定充分条件和必要 条件的步骤和方法。
应用场景
介绍充分条件和必要条件 在日常生活、科学研究等 方面的应用场景。
04
充分条件与必要条件的推 理关系
充分条件推理关系的应用
定义
如果一个条件A能够推理得到结 论B,那么称A是B的充分条件。
示例
如果天下雨,那么地会湿。这里 “下雨”是“地湿”的充分条件
。
应用
在日常生活中,充分条件的推理 关系非常常见,比如:如果按下 开关,那么灯会亮;如果发烧,
那么可能是流感。
必要条件推理关系的应用
03
充分条件与必要条件的应 用场景
法律逻辑中的充分条件和必要条件
法律逻辑中的充分条件
在法律逻辑中,充分条件通常指的是能够充分证明某一事实或证据的条款或条 件。如果某一事实或证据是另一个事实或证据的充分条件,那么只要这个事实 或证据成立,另一个事实或证据也就必然成立。
法律逻辑中的必要条件
在法律逻辑中,必要条件通常指的是某一事实或证据必须满足的不可缺少的条 件。如果缺少这个条件,那么另一个事实或证据就无法成立。
经济案例中的充分条件和必要条件
经济案例1
在国际贸易中,出口商品符合进口国的技术 标准是充分条件,而进口国颁发进口许可证 则是必要条件。如果出口商品不符合进口国 的技术标准,则无法获得进口许可证。
经济案例2
在投资决策中,投资项目的盈利前景是充分 条件,而投资者的资金实力则是必要条件。 如果投资项目的盈利前景不佳,则投资者可 能会放弃该项目。
《充分条件与必要条件》课件(共38张PPT)
1.对充分条件的理解 充分条件是某一个结论成立应具备的条件,当命题具备此条件 时,就可以得出此结论;或要使此结论成立,只要具备此条件就 足够了,当命题不具备此条件时,结论也有可能成立.例如,x=6 ⇒x2=36,但是,当x≠6时,x2=36也可以成立,所以“x=6”是“x2 =36成立”的充分条件.
(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q 的充分条件,同时q是p的必要条件. ②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同 时q也不是p的必要条件.
【变式训练】已知p:|x|=|y|,q:x=y,则p是q的什么条件?
【解题指南】解答本题的关键是判断命题“若|x|=|y|,则
1.判一判(正确的打“√”,错误的打“×”) (1)若p是q的必要条件,则q是p的充分条件.( (2)若p是q的充分条件,则﹁p是﹁q的充分条件.( ) ) )
(3)“两角不相等”是“两角不是对顶角”的必要条件.(
【解析】(1)正确.若p是q的必要条件,即p⇐q,所以q是p的充分 条件. (2)错误.若p是q的充分条件,即p⇒q,其逆否命题为﹁p⇐﹁q,所 以﹁p是﹁q的必要条件. (3)错误.“对顶角相等”的逆否命题为“不相等的两个角不是
3 2 2 3
所以p是q的充分条件,但p不是q的必要条件. ②因为(x+1)(x-2)=0 x+1=0,但x+1=0⇒(x+1)(x-2)=0,所 以p是q的必要条件,但p不是q的充分条件.
【方法技巧】充分条件、必要条件的两种判断方法 (1)定义法:①确定谁是条件,谁是结论. ②尝试从条件推结论,若条件能推出结论,则条件为充分条件, 否则就不是充分条件. ③尝试从结论推条件,若结论能推出条件,则条件为必要条件, 否则就不是必要条件.
高二数学人教A版选修2-1课件:1.2.1 充分条件与必要条件(共20张ppt)
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
案例式
学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必
备习惯
积极
以终
主动
为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完
整过程
方向
资料
筛选
认知
高效学习模型-学习的完
整过程
消化
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
例如:
x a2 b2 x 2ab
x a 2 b 2是 x 2ab的 充 分 条 件 x 2ab是 x a 2 b 2的 必 要 条 件
例1 下列“若p,则q”形式的命题中,哪些命题 中的p是q的充分条件? (1)若x=1,则x2-4x+3=0; (2)若f(x)=x,则f(x)在(-∞,+∞)上为增函数; (3)若x为无理数,则x2为无理数 .
p :两 个 角 是 相 似 三 角 形 的 对 应 角 q : 这 两 个 角 相 等
(3)若 x 2 y 2 ,则 x y ; 假
(4)若 x a 2 b 2,则 x 2 a b ; 真
1.设集合M={x|0<x≤3},N={x|0<x≤2},那么 “a∈M ”是“a∈N ”的__必__要____条件.
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
学习知识的能力 (学习新知识 速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
案例式
学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必
备习惯
积极
以终
主动
为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完
整过程
方向
资料
筛选
认知
高效学习模型-学习的完
整过程
消化
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
例如:
x a2 b2 x 2ab
x a 2 b 2是 x 2ab的 充 分 条 件 x 2ab是 x a 2 b 2的 必 要 条 件
例1 下列“若p,则q”形式的命题中,哪些命题 中的p是q的充分条件? (1)若x=1,则x2-4x+3=0; (2)若f(x)=x,则f(x)在(-∞,+∞)上为增函数; (3)若x为无理数,则x2为无理数 .
p :两 个 角 是 相 似 三 角 形 的 对 应 角 q : 这 两 个 角 相 等
(3)若 x 2 y 2 ,则 x y ; 假
(4)若 x a 2 b 2,则 x 2 a b ; 真
1.设集合M={x|0<x≤3},N={x|0<x≤2},那么 “a∈M ”是“a∈N ”的__必__要____条件.
1.4 充分条件与必要条件课件ppt
3.掌握证明充要条件的一般方法.(逻辑推理)
思维脉络
课前篇 自主预习
[激趣诱思]
上午上学时,小明上学迟到了,老师问小明为什么迟到了,小明对老师说:“老
师,今天早上我起来晚了”,老师说:“你的理由很充分啊!”老师为什么说小明
的理由很充分呢?通过本节课的学习,你就能找出答案.
[知识点拨]
知识点一:充分条件与必要条件
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】A
)
【解析】若a≥b≥0,则|a|=a≥b即|a|≥b;若b≤a≤0,则|a|=
-a≥0≥b,即|a|≥b;若a≥0≥b,则|a|=a≥0≥b即|a|≥b;或由
|a|≥a,a≥b可得|a|≥b,可知充分条件成立;当a=-3,b=-2时,
微练习
已知A,B,C是△ABC的三个内角,则“A+C=2B”是“B=60°”的(
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
答案 C
)
课堂篇 探究学习
探究一
充分条件、必要条件的判断
例1(1)判断下列各题中,p是不是q的充分条件:
①p:a∈Q,q:a∈R.
②p:a<b,q: <1.
由p可以推出q,记作p⇒q.
(2)类似地,如果“若p,则q”为假命题,说明p与q之间有什么关系?
提示 说明由条件p不能推出结论q,记作p
q.
(3)若p是q的充分条件,p是唯一的吗?q是唯一的吗?
提示 不一定唯一.凡是能使结论q成立的条件都是它的充分条件,如x>2是x>1的
充分条件,x>5、x>10等都是x>1的充分条件;凡是能由条件p推出的结论都是它
思维脉络
课前篇 自主预习
[激趣诱思]
上午上学时,小明上学迟到了,老师问小明为什么迟到了,小明对老师说:“老
师,今天早上我起来晚了”,老师说:“你的理由很充分啊!”老师为什么说小明
的理由很充分呢?通过本节课的学习,你就能找出答案.
[知识点拨]
知识点一:充分条件与必要条件
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【答案】A
)
【解析】若a≥b≥0,则|a|=a≥b即|a|≥b;若b≤a≤0,则|a|=
-a≥0≥b,即|a|≥b;若a≥0≥b,则|a|=a≥0≥b即|a|≥b;或由
|a|≥a,a≥b可得|a|≥b,可知充分条件成立;当a=-3,b=-2时,
微练习
已知A,B,C是△ABC的三个内角,则“A+C=2B”是“B=60°”的(
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
答案 C
)
课堂篇 探究学习
探究一
充分条件、必要条件的判断
例1(1)判断下列各题中,p是不是q的充分条件:
①p:a∈Q,q:a∈R.
②p:a<b,q: <1.
由p可以推出q,记作p⇒q.
(2)类似地,如果“若p,则q”为假命题,说明p与q之间有什么关系?
提示 说明由条件p不能推出结论q,记作p
q.
(3)若p是q的充分条件,p是唯一的吗?q是唯一的吗?
提示 不一定唯一.凡是能使结论q成立的条件都是它的充分条件,如x>2是x>1的
充分条件,x>5、x>10等都是x>1的充分条件;凡是能由条件p推出的结论都是它
1.4 充分条件与必要条件 课件(21张)
导师点睛 (1)判断p是q的什么条件,主要是判断p⇒q及q⇒p两命题的正确性,若p ⇒q为真,则p是q的充分条件,若q⇒p为真,则p是q的必要条件. (2)当条件和结论是不等式时,可以利用集合间的关系判断充分性和必要性.
充分条件、必要条件的证明与探究
已知命题p:y=ax2-2x-1恒为负值.
问题
1.命题p的充要条件可以是
充分必要条件 ,简称为 充要条件 .显然,如果p是q的充要条件,那么q也 是p的充要条件.概括地说,如果p⇔q,那么p与q 互为充要条件 .
四种条件与命题真假的关系
如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种 情形:
原命题
逆命题
p与q的关系
q与p的关系
真
真
p是q的充要条件
5.若p是q的充要条件,q是r的充要条件,则p是r的充要条件. ( √ ) 提示:若p是q的充要条件,q是r的充要条件,则p⇔q,且q⇔r,因此p⇔r,故p是r的充要 条件. 6.“A∩B是空集”是“A与B均是空集”的充要条件.( ✕ )
充分条件、必要条件和充要条件的判断 观察下面4个电路图.
问题 1.①中开关A闭合是灯泡B亮的什么条件? 提示:充分不必要. 2.②中开关A闭合是灯泡B亮的什么条件? 提示:必要不充分. 3.③中开关A闭合是灯泡B亮的什么条件? 提示:充要. 4.④中开关A闭合是灯泡B亮的什么条件? 提示:既不充分也不必要. 5.将①中开关A与灯泡B位置互换,开关C始终是断开状态,结论变吗? 提示:变为充要.
q是p的充要条件
真
假
p是q的充分不必要条 q是p的必要不充分条
件
件
假
真
p是q的必要不充分条 q是p的充分不必要条
充分条件、必要条件的证明与探究
已知命题p:y=ax2-2x-1恒为负值.
问题
1.命题p的充要条件可以是
充分必要条件 ,简称为 充要条件 .显然,如果p是q的充要条件,那么q也 是p的充要条件.概括地说,如果p⇔q,那么p与q 互为充要条件 .
四种条件与命题真假的关系
如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种 情形:
原命题
逆命题
p与q的关系
q与p的关系
真
真
p是q的充要条件
5.若p是q的充要条件,q是r的充要条件,则p是r的充要条件. ( √ ) 提示:若p是q的充要条件,q是r的充要条件,则p⇔q,且q⇔r,因此p⇔r,故p是r的充要 条件. 6.“A∩B是空集”是“A与B均是空集”的充要条件.( ✕ )
充分条件、必要条件和充要条件的判断 观察下面4个电路图.
问题 1.①中开关A闭合是灯泡B亮的什么条件? 提示:充分不必要. 2.②中开关A闭合是灯泡B亮的什么条件? 提示:必要不充分. 3.③中开关A闭合是灯泡B亮的什么条件? 提示:充要. 4.④中开关A闭合是灯泡B亮的什么条件? 提示:既不充分也不必要. 5.将①中开关A与灯泡B位置互换,开关C始终是断开状态,结论变吗? 提示:变为充要.
q是p的充要条件
真
假
p是q的充分不必要条 q是p的必要不充分条
件
件
假
真
p是q的必要不充分条 q是p的充分不必要条
充分条件、必要条件ppt课件
解析:由题意知,成功实现太空握手 空间站组合体与梦天实验舱处于同一轨
道高度,空间站组合体与梦天实验舱处于同一轨道高度
太空握手,所以“梦
天实验舱与天和核心舱成功实现‘太空握手’
”是“空间站组合体与梦天实验舱
处于同一轨道高度”的充分不必要条件.故选 A.
5.若“ x 2 ”是“ m 2 x 2 (m 3) x 4 0 ”的充分不必要条件,则实数 m 的值为
2014年3月4日);
(3)“积极乐观的人,相信办法总比问题多,内心充满希望,当然,他们更懂得
去寻求必要的帮助,给自己创造更多的机会”(《中国青年报》2015年6月22日);
(4)“文学不只是知识,同时也是一种能力,写作对于一个文学系的学生而言是
一种必要的素质”(《人民日报》2015年7月28日).
等边三角形”是等边三角形的定义,这就意味着,只要三角形的三条边都相等,
那么这个三角形一定是等边三角形;反之,如果一个三角形是等边三角形,那
么这个三角形的三条边都相等. 不难看出,一个数学对象的定义实际上给出了这
个对象的一个充要条件,上例中,“三角形的三条边都相等”是“三角形是等
边三角形”的充要条件.
出其中涉及的充分条件或必要条件:
(1)形如 y = ax2(a是非零常数)的函数是二次函数;
(2)菱形的对角线互相垂直.
解:(1)这可以看成一个判定定理,因此“ y = ax2(a 是非零常数)的函数”
是“这个函数是二次函数”的_______条件.
充分
(2) 这可以看成菱形的一个性质定理,因此“四边形对角线互相垂直”
1
.当 m 1 时, x 2 是
2
1
1
第2讲充分条件与必要条件共43张PPT
解析
角度 2 集合法判断充分、必要条件
例 2 (2020·济南市高三上学期期末)设 x∈R,则“2x>4”是“lg (|x|
-1)>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 设 p:2x>4,即 p:2x>22,整理得 p:x>2;设 q:lg (|x|-1)
3.若 a,b 都是正整数,则 a+b>ab 成立的充要条件是( ) A.a=b=1 B.a,b 至少有一个为 1 C.a=b=2 D.a>1 且 b>1 解析 因为 a+b>ab,所以(a-1)(b-1)<1.因为 a,b∈N*,所以(a-1)(b -1)∈N,所以(a-1)(b-1)=0,所以 a=1 或 b=1.故选 B.
要条件.故选 C.
解析 答案
8.已知平面 α,直线 m,n 满足 m⊄α,n⊂α,则“m∥n”是“m∥α”
的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 答案
5.已知 p 是 r 的充分不必要条件,s 是 r 的必要条件,q 是 s 的必要条 件,那么 p 是 q 的________条件.
答案 充分不必要 解析 由已知可得 p⇒r⇒s⇒q,且 r p,所以 p⇒q,而 q p,故 p 是 q 的充分不必要条件.
解析 答案
6.已知 p:x>a 是 q:2<x<3 的必要不充分条件,则实数 a 的取值范围 是________.
a-1≥-1, a+1≤2
(等号不同时成立),解得 0≤a≤1.
解析 答案
(2)(2020·青岛二中检测)直线 x-y-k=0 与圆(x-1)2+y2=2 有两个不 同交点的充要条件是________.
角度 2 集合法判断充分、必要条件
例 2 (2020·济南市高三上学期期末)设 x∈R,则“2x>4”是“lg (|x|
-1)>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 设 p:2x>4,即 p:2x>22,整理得 p:x>2;设 q:lg (|x|-1)
3.若 a,b 都是正整数,则 a+b>ab 成立的充要条件是( ) A.a=b=1 B.a,b 至少有一个为 1 C.a=b=2 D.a>1 且 b>1 解析 因为 a+b>ab,所以(a-1)(b-1)<1.因为 a,b∈N*,所以(a-1)(b -1)∈N,所以(a-1)(b-1)=0,所以 a=1 或 b=1.故选 B.
要条件.故选 C.
解析 答案
8.已知平面 α,直线 m,n 满足 m⊄α,n⊂α,则“m∥n”是“m∥α”
的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 答案
5.已知 p 是 r 的充分不必要条件,s 是 r 的必要条件,q 是 s 的必要条 件,那么 p 是 q 的________条件.
答案 充分不必要 解析 由已知可得 p⇒r⇒s⇒q,且 r p,所以 p⇒q,而 q p,故 p 是 q 的充分不必要条件.
解析 答案
6.已知 p:x>a 是 q:2<x<3 的必要不充分条件,则实数 a 的取值范围 是________.
a-1≥-1, a+1≤2
(等号不同时成立),解得 0≤a≤1.
解析 答案
(2)(2020·青岛二中检测)直线 x-y-k=0 与圆(x-1)2+y2=2 有两个不 同交点的充要条件是________.
充分条件与必要条件 课件
题型二 充分、必要条件的应用 【例 2】已知 p:x2-8x-20≤0.q:x2-2x+1-m2≤0(m>0).若 綈 p 是綈 q 的充分而不必要条件,求实数 m 的取值范围.
思路点拨:利用条件关系的性质解决问题.
【解析】 解法一::由 x2-8x-20≤0. 得-2≤x≤10, 由 x2-2x+1-m2≤0,得 1-m≤x≤1+m(m>0). ∴綈 p:A={x|x>10 或 x<-2},
① ②
由①+②得 x=-(a+c),将其代入①并整理可得 a2=b2+c2,
所以 A=90°.
方法点评: 充要条件的证明关键是根据定义确定条件和结论,然后搞清充 分性是由条件推结论,必要性是由结论推条件.也可以理解为:证 充分性就是证原命题成立,证必要性就是证原命题的逆命题成立.
误区解密
【例 4】 已知关于 x 的方程 x2-mx+2m-3=0 的两根均大于
2.应用充分条件、必要条件、充要条件时需注意的问题 (1)确定条件是什么,结论是什么; (2)尝试从条件推结论,从结论推条件; (3)确定条件是结论的什么条件; (4)要证明命题的条件是充要的,就是既要证明原命题成立, 又要证明它的逆命题成立.证明原命题即证明条件的充分性,证明
逆命题即证明条件的必要性.
m2-42m-3≥0, 所以m>2,
2m-3-m+1>0.
所以 m≥6.
所以 m 的取值范围为{m|m≥6}.
【解析】
(1)∵p⇒q,而 q p,∴p 是 q 的充分不必要条件.
(2)p 对应的集合为 A={x|x>1},q 对应的集合为 B={x|x<-1 或 x>1},∵A B,∴p 是 q 的充分不必要条件.
充分条件与必要条件优秀ppt课件
充分条件与必要条件优秀ppt 课件
汇报人:
2023-12-04
目录
CONTENTS
• 引言 • 充分条件 • 必要条件 • 充分条件与必要条件的区别与联系 • 充分条件与必要条件的应用 • 总结与展望
01 引言
CHAPTER
什么是充分条件与必要条件
充分条件
如果条件A成立,那么结论B一定 成立,此时称A为B的充分条件。
必要条件
指在逻辑推理中,如果没有某些条件,相应的结果就无法成立。如果A是B的必要 条件,那么只有当A成立时,B才能成立。
联系
相互依存
在许多情况下,充分条件和必要条件是相互依存的。也就是说,某些条件既是充分条件又 是必要条件。例如,在一个逻辑推理中,某个条件是结论成立的充分条件,同时也是结论 成立的必要条件。
充分条件的例子
例如,如果一个公司招聘要求是本科 及以上学历,那么本科及以上学历就 是招聘的充分条件。
如果一个公司招聘要求是相关工作经 验5年以上,那么相关工作经验5年以 上就是招聘的充分条件。
03 必要条件
CHAPTER
必要条件的定义
必要条件是指为了使某一结论成立所必须满足的条件,如果 该条件不满足,则结论不成立。
在日常生活中的应用
充分条件
在日常生活中,充分条件可以用于解释 某个事件发生的原因。例如,“他吃了 太多的糖果”是“他牙疼”的充分条件 。
VS
必要条件
在日常生活中,必要条件可以用于确定某 个事件发生的必要条件。例如,“他必须 吃饱饭”是“他有力气干活”的必要条件 。
06 总结与展充分条件是指能使一个命题成立 的最小条件,也就是说,只要有 这个条件,命题就能成立。
02
充分条件是原因,也是结果,是 导致命题成立的直接原因。
汇报人:
2023-12-04
目录
CONTENTS
• 引言 • 充分条件 • 必要条件 • 充分条件与必要条件的区别与联系 • 充分条件与必要条件的应用 • 总结与展望
01 引言
CHAPTER
什么是充分条件与必要条件
充分条件
如果条件A成立,那么结论B一定 成立,此时称A为B的充分条件。
必要条件
指在逻辑推理中,如果没有某些条件,相应的结果就无法成立。如果A是B的必要 条件,那么只有当A成立时,B才能成立。
联系
相互依存
在许多情况下,充分条件和必要条件是相互依存的。也就是说,某些条件既是充分条件又 是必要条件。例如,在一个逻辑推理中,某个条件是结论成立的充分条件,同时也是结论 成立的必要条件。
充分条件的例子
例如,如果一个公司招聘要求是本科 及以上学历,那么本科及以上学历就 是招聘的充分条件。
如果一个公司招聘要求是相关工作经 验5年以上,那么相关工作经验5年以 上就是招聘的充分条件。
03 必要条件
CHAPTER
必要条件的定义
必要条件是指为了使某一结论成立所必须满足的条件,如果 该条件不满足,则结论不成立。
在日常生活中的应用
充分条件
在日常生活中,充分条件可以用于解释 某个事件发生的原因。例如,“他吃了 太多的糖果”是“他牙疼”的充分条件 。
VS
必要条件
在日常生活中,必要条件可以用于确定某 个事件发生的必要条件。例如,“他必须 吃饱饭”是“他有力气干活”的必要条件 。
06 总结与展充分条件是指能使一个命题成立 的最小条件,也就是说,只要有 这个条件,命题就能成立。
02
充分条件是原因,也是结果,是 导致命题成立的直接原因。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课Βιβλιοθήκη 复习新课小结
作业
如果命题“若p则q”为真,则记作p q(或q p)。 如果命题“若p则q”为假,则记作p q。
则说p不是q的充分条件,
q不是p的必要条件。
新课
从集合角度理解:
•P足以导致q,也就是 说条件p充分了; •q是p成立所 必须具 备的前提。
P q 或 P、q
p
q,相当于P q ,即
根 据 四 种 命 题 之 间 的 关 系 , 命 题 “ p q” 的逆否命题也是真命题。这就是说,如果 q不 成 立 , 那 么 p也 不 成 立 。 也 就 是 说 , 若 p 成 立 , 则 q 必 须 成 立 。 所 以 说 q 是 p的 必要条件。
新课
复习
新课
小结
作业
例3、 判断下列命题中前者是后者的什么条件? (1)若a>b,c>d,则a+c>b+d。 (2)ax2+ax+1>0的解集为R,则0<a<4。 (3)若a2>b2,则a>b。
(1) p (2) p (3) p
q,q q,q q,q
p 前者是后者的充分不必要条件。 p 前者是后者的必要不充分条件。 p 前者是后者的既不充分也不必要条件。
新课
复习
新课
小结
作业
例4 、 判断下列问题中,p是q成立的什么条件? p q (1) x2>1 x<-1 (2) |x-2|<4 -x2+4x+5>0 (3) xy≠0 x≠0或y≠0
(2)若ab=0,则a=0。
(3)有两角相等的三角形是等腰三角形。
(4)若a2>b2,则a>b。
(1)、(3)为真命题。
(2)、(4)为假命题。
新课
复习
新课
小结
作业
如果命题“若p则q”为真,则记作p p)。
q(或q
定义:如果 p q ,则说p是q的充分条件 (sufficient condition),
q是p的必要条件(necessary condition).
新课
复习
新课
小结
作业
例1、 下列“若p,则q”形式的命题中,哪 些命题中的p是q的充分条件? (1)若 x=1,则x2-4x+3=0; (2)若f(x)=x,则f(x)在(-∞,+∞)上为增函数; (3)若x为无理数,则x2为无理数 .
解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的p是q的充分条件.
新课
复习
新课
小结
作业
例2、下列“若p,则q”形式的命题中, 哪些命题中的q是p的必要条件? (1)若x=y,则x2=y2; (2)若两个三角形全等,则这两个三角形 的面积相等; (3)若a>b,则ac>bc.
解:命题(1)(2)是真命题,命题(3)是假命题. 所以,命题(1)(2)中的q是p的必要条件.
小结
作业
小结
定 义:
复习
新课
小结
作业
如果已知p
q,则说p是q的充分条件,
q是p的必要条件。 判别步骤: ① 认清条件和结论。② 考察p 判别技巧: ① 可先简化命题。 否定一个命题只要举出一个反例即可。 ② ③ 将命题转化为等价的逆否命题后再判断。 q和q p的真假。
作业
课本P 12 练习3、4。
复习
新课
复习
新课
小结
作业
复习引入
复习
新课
小结
作业
1、命题: 可以判断真假的陈述句,可写成:若p则q。 2、四种命题及相互关系: 原命题 若p则q
互 否 互逆
逆命题 若q则p
互 否
互为
逆否
否命题 若 p则 q
互逆
逆否命题 若 q则 p
复习引入
复习
新课
小结
作业
例
判断下列命题是真命题还是假命题?
(1)若x>a2+b2,则x>2ab。
(1)、(2) p (3)p q,q q,q p p (原问题 q p)
新课
复习
新课
小结
作业
判别充分与必 要条件问题的
6 判别步骤: ① 认清条件和结论。 ② 考察p q和q p的真假。
7 判别技巧:
① 可先简化命题。 ② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。