导体棒在磁场中的运动分析

合集下载

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F安=BIh=0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

磁场中单导体棒在导轨上运动问题分析

磁场中单导体棒在导轨上运动问题分析


R

_
g

2
如 图
2
所 示

水 平 放 置 的平 行 金 属 导 轨
≤ ‰
篇器 羊
— —
s
刚开 始运 动时
n c
杆产
人 活
着 总得 有 个 坚 定 的 信 仰


不 光是 为 了
自己 的 衣 食 住 行 还 要 对 社 会 有 所 贡 献


张 志新
鲰赢

名 师大课 堂
生 的感 应 电 动势 大 小 为

B
= = =
的匀


3
强 磁 场 中 磁 场 的方 向垂 直 于 导 轨平 面
若使杆 以初

1
a r
g
(
s
in
a
+ /c ~
o s
a
)
Q

速度

。 。

1 0
m
s

向右运 动

不计杆 和导 轨 的 电阻
1 × 2 × 0
10 × 1 0


1
0 5 × 0

× 10 × ( 0

6 +
8 )
2
Q



简要讨论

4

a
c
棒 以后 的运 动情况
(1 ) 根 据 法 拉
第 电磁 感应 定 律


Ct C
棒 中 的

河北
袁振 卓
0
感应 电 动 势 为

19、物理高考中电磁感应计算题问题归类例析

19、物理高考中电磁感应计算题问题归类例析

物理选考中电磁感应计算题问题归类例析导体在磁场中运动切割磁感线产生电磁感应现象,是历年物理选考的一个热点问题。

因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。

通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,要探讨的问题不外乎以下几种: (1)导体棒的总体动态分析:①受力分析:导体棒切割磁感线时,相当于电源,注意单杆切割和双杆切割的区别,安培力会随速度的变化而改变;仔细分析研究对象的受力情况,写出牛顿第二定律公式分析导体棒的加速度。

②运动过程分析:分析运动过程中速度和加速度的动态变化过程,电磁感应过程中物体的运动大多为加速度减小的变加速直线运动。

最后分析导体棒在稳定状态下的运动情况。

③等效电路分析:谁为等效电源,外电路的串并联、路端电压、电流如何求解等。

(2)能量转化的计算:分析运动过程中各力做功和能量转化的问题:如安培力所做的功、摩擦力做功等,结合研究对象写好动能定理。

明确在电磁感应现象中,通过克服安培力做功,把其他形式的能转化为电能,再通过电流做功,把电能转化为内能和其他形式的能。

(3)各运动量速度v 、位移x 、时间t 的计算:①位移x 的计算一般需要结合电量q :②速度v 和时间t 的计算一般需要结合动量定理:, 上式还可以计算变力的冲量。

③以电荷量作为桥梁,可以直接把上面的物理量位移x 、速度v 、时间t 联系起来。

按照不同的情景模型,现举例分析。

一、“单杆”切割磁感线型1、杆与电阻连接组成回路:此时杆相当于电源,,安培力和速度v 成正比 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、质量为m,阻值为R /2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

导体在磁场中运动

导体在磁场中运动

导体在磁场中的运动湖北省兴山县第一中学 鲁军 443711导体在磁场中受到安培力作用,大小为BIL sin θ,θ角为电流方向与磁场方向间的夹角;在用左手定则时一定要注意电流、磁场、安培力三者间的空间关系,安培力总是垂直于电流方向与磁场方向所确定的平面,因此只有当电流方向与磁场方向垂直时,三者才是两两垂直的关系。

导体在磁场中的运动产生感应电动势,公式有tn E ∆∆=φ和E =Blv sin θ(θ角为电流方向与磁场方向间的夹角),前者算出的为平均电动势,后者既可算瞬时的也可算平均的电动势,就看用什么速度了!一、安培力的静态分析:本问题属于电磁学与静力学的结合问题,受力分析是基础,空间想象是解题的关键。

例1:质量为m ,导体棒MN 静止于水平导轨上,导轨间距为L ,通过MN 的电流为I ,匀强磁场的磁感强度为B ,方向垂直MN 且与导轨成α角斜向下,如图1所示.求棒受到的摩擦力与弹力.解析:棒MN 受力较多,画出正确的受力图至关重要,而且必须将空间的问题转到平面上来!沿NM 看过去是最佳的视线,受力图如图2所示。

分解安培力F 安并结合物体平衡条件可得弹力、摩擦力大小分别为:F N = mg +F 安sin α = mg +BIL sin α F f = F 安cos α = BIL cos α点评:为避免弄错安培力方向,受力图中有意画出了磁场方向(虚线)。

二、安培力的动态分析这类问题就是分析通电直导体或线圈在安培力作用下的运动情况。

基本方法有以下几种:⑴电流元分析法:把环形电流分成很多的小段直线电流,然后用左手定则判断出每段电流元的安培力方向,最后确定出整段电流的合力方向以确定环形电流的运动方向。

⑵等效分析法:把环形电流等效成小磁针,通电螺绕环等效为条形磁体。

⑶平行电流的相互作用规律:同向电流相互吸引,异向电流相互推斥。

⑷特殊位置法:把导体放到特殊的便于分析的位置上来判断安培力的方向,以确定运动方向。

重点内容回味无穷_电磁感应中导体棒运动问题归类解析

重点内容回味无穷_电磁感应中导体棒运动问题归类解析

27
试题研究
B
2
L2 R
v
0
,
则当
ma -
B
2L 2v R
0>
0
时,

v0<
maR B2L2
=
10 m/ s
时, F > 0, 方向 F 方向与 x 轴方向相反.
当 ma-
B
2L 2 R
v
0
<
0 时,
即 v 0>
L
maR B2L 2
=
10 m/ s 时,
F< 0, 方向与 x 轴方向相同.
二、双导棒问题
较宽部分, 此后两棒运动情况同例 3, 动 量守恒, 且最终 同向匀速前进.
3. 导轨宽度均匀, 两棒所受的合外力不为零 例 5 如图 8, 在相
距 L= 0. 5 m 的 两条水 平 放置 无 限 长 的金 属 导 轨
上, 放 置 两 根 金 属 棒 ab 和 cd, 两棒质量均为 m =
0. 1 kg, 电阻均为 R = 3 欧 姆, 整 个 装 置 处 于 无 限
对 ab 棒由动量定理: - 2BILt= mv - mv0 对 cd 棒由动量定理: - 2BILt = mv - 0
由上分 析知, 要使两棒产 生相等 感应电 动势, 必须
v = 2v
由以上两棒中 I 相等, 令 I = BILt
则- 2I = mv - mv 0 I = 2mv - 0
v = v0 / 5, v = 2v0 / 5
于同 一 水 平面 内, 两 导 轨 间距为 L , 导轨上放着两 根
导体棒 ab 和 cd , 构 成矩 形 回路, 两根导棒的 质量皆 为 m, 电 阻均 为 R , 回路 中其

高中物理复习:导体切割磁感线时的感应电动势

高中物理复习:导体切割磁感线时的感应电动势

高中物理复习:导体切割磁感线时的感应电动势【知识点的认识】2.导体切割磁感线的情形以及感应电动势(1)一般情况:运动速度v和磁感线方向夹角为θ,则E=Blvsinθ。

(2)常用情况:运动速度v和磁感线方向垂直,则E=Blv。

(3)导体棒在磁场中转动导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E=Blv=Bl2ω(平均速度等于中点位置线速度lω)。

【命题方向】题型一:导体切割磁感线产生感应电动势的分析与计算如图所示,三角形金属导轨EOF上放一金属杆AB,在外力作用下使AB保持与OF垂直,以速度v从O点开始右移,设导轨和金属棒均为粗细相同的同种金属制成,则下列说法正确的是()A.电路中的感应电动势大小不变B.电路中的感应电动势逐渐增大C.电路中的感应电流大小不变D.电路中的感应电流逐渐减小分析:感应电动势大小根据公式E=BLv,L是有效的切割长度分析;要判断感应电流,先由电阻定律分析回路中电阻中如何变化,再根据欧姆定律分析。

解答:设导轨和金属棒单位长度的电阻为r。

∠EOF=α。

A、B从O点开始金属棒运动时间为t时,有效的切割长度 L=vt•tanα,感应电动势大小 E =BLv=Bvt•tanα•v∝t,则知感应电动势逐渐增大,故A错误,B正确。

C、D根据电阻定律得t时刻回路中总电阻为R=(vt+vt•tanα+)r感应电流大小为 I===与t无关,说明感应电流大小不变,故C正确,D错误。

故选:BC。

点评:本题关键要抓住感应电流既与感应电动势有关,还与回路中的电阻有关,根据物理规律推导解析式,再进行分析。

【解题方法点拨】闭合或不闭合电路的一部分导体在磁场中做切割磁感线运动时,导体两端将产生感应电动势。

如果电路闭合,电路中形成感应电流。

切割磁感线运动的那部分导体相当于电路中的电源。

常见的情景有以下几种:1.在E=BLv中(要求B⊥L、B⊥v、L⊥v,即B、L、v三者两两垂直),式中的L应该取与B、v均垂直的有效长度(所谓导体的有效切割长度,指的是切割导体两端点的连线在同时垂直于v和B的方向上的投影的长度,下图中的有效长度均为ab的长度)。

动量观点在电磁感应中的应用

动量观点在电磁感应中的应用

小于磁场区域的宽度。若线框进、出磁场的过程中通
过线框横截面的电荷量分别为q1、q2,线框经过位置
Ⅱ时的速度为v。则下列说法正确的是( BD)
A.q1=q2 C.v=1.0 m/s
B.q1=2q2 D.v=1.5 m/s
01 02 03 04 05 06 07 08
图2
目录
提升素养能力
解析 根据 q=ΔRΦ=BRΔS可知,线框进、出磁场的过程中通过线框横截面的电 荷量 q1=2q2,故 A 错误,B 正确;线圈从开始进入到位置Ⅱ,由动量定理- B-I1LΔt1=mv-mv0,即-BLq1=mv-mv0,同理线圈从位置Ⅱ到位置Ⅲ,由动 量定理-B-I2LΔt2=0-mv,即-BLq2=0-mv,联立解得 v=13v0=1.5 m/s,故 C 错误,D 正确。
目录
研透核心考点
解析 对 ab 棒由动量定理有-B-ILt=0-mv0,而 q=-It,即-BqL=0-mv0,当流过棒的电荷量为q2 时,有-B·q2L=mv1-mv0,解得 v1=12v0,A 错误; 当棒发生位移为 s 时,q=ΔRΦ=BRLs,则当棒发生位移为3s时,q′=ΔRΦ′=B3LRs, 可知此时流过棒的电荷量 q′=q3,代入 B-ILΔt=BLq′=mv2-mv0,解得棒的速 度为 v2=32v0,B 错误;定值电阻与导体棒释放的热量相同,在流过棒的电荷量 达到q2的过程中,棒释放的热量为 Q=1212mv20-12mv21=136mv20=3B1q6Lv0,C 正确; 同理可得整个过程中定值电阻 R 释放的热量为 Q′=21×21mv20=qB4Lv0,D 错误。
给金属棒 ab 一个水平向右的初速度 v0,金属棒沿着金属导轨滑过磁场的过程中,流 过金属棒的电流最大值为 I,最小值为12I。不计导轨电阻,金属棒与导轨始终接触良

电磁感应中金属棒在匀强磁场中的运动

电磁感应中金属棒在匀强磁场中的运动

利用公式E‎=BLv求电‎动势这类习‎题在中学物‎理中是常见‎的,但利用此公‎式时应注意‎以下几点。

1. 此公式的应‎用对象是一‎部分导体在‎磁场中做切‎割磁感线运‎动时产生感‎应电动势的‎计算,一般用于匀‎强磁场(或导体所在‎位置的各点‎的磁感应强‎度相同)。

2. 此公式一般‎用于导体各‎部分切割磁‎感线速度相‎同的情况,如果导体各‎部分切割磁‎感线的速度‎不同,可取其平均‎速度求电动‎势。

例1. 如图1所示‎,导体棒AB‎长为L,在垂直纸面‎向里的匀强‎磁场中以A‎点为圆心做‎匀速圆周运‎动,角速度为。

磁感应强度‎为B,求导体棒中‎感应电动势‎的大小。

图1解析:导体棒AB‎在以A点为‎圆心做匀速‎圆周运动过‎程中,棒上每一点‎切割磁感线‎的线速度是‎不同的,我们可以求‎出导体棒切‎割磁感线的‎平均速度为‎:则导体棒中‎感应电动势‎为:3. 此公式中的‎L不是导体‎棒的实际长‎度,而是导体切‎割磁感线的‎有效长度,所谓有效长‎度,就是产生感‎应电动势的‎导体两端点‎的连线在切‎割速度v的‎垂直方向上‎投影的长度‎。

例2. 如图2甲、乙、丙所示,导线均在纸‎面内运动,磁感应强度‎垂直纸面向‎里,其有效长度‎L分别为:甲图:乙图:沿方向运动‎时,L=MN,沿方向运动‎时,L=0丙图:沿方向运动‎时,,沿方向运动‎时,L=0,沿方向运动‎时,L=R甲乙丙图24. 在匀强磁场‎里,若切割速度‎v不变,则电动势E‎为恒定值,若v为时间‎t里的平均‎速度,则E为时间‎t里的平均‎电动势。

若v为瞬时‎值,则E为瞬时‎电动势。

5. 若v与导体‎棒垂直但与‎磁感应强度‎B有夹角时‎,公式中的v‎应是导体棒‎的速度在垂‎直于磁场方‎向的分速度‎。

此时,公式应变为‎:。

例3. 如图3所示‎,磁感应强度‎为B,方向竖直向‎下。

一导体棒垂‎直于磁场放‎置,导体棒的速‎度方向与磁‎场方向的夹‎角为,大小为v。

求导体棒上‎感应电动势‎的大小。

导体棒切割磁感线问题

导体棒切割磁感线问题

导体切割磁感线问题电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

(如果学生能力足够,完全可以力学和电学同时分析,找到中间那个联系点,一般联系点都是合力,之后运用牛二定律很容易解题。

)导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q 之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2(1)根据欧姆定律,R中的电流强度为0.4A,方向从N经R到Q。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F=F安=BIh=0.02N。

(3)金属棒ab两端的电势差等于U ac、U cd与U db三者之和,由于U cd=E cd-Ir cd,所以U ab =E ab-Ir cd=BLv-Ir cd=0.32V。

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题-精品资料

导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。

往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。

导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。

1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。

由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。

说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。

动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。

外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。

外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。

若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。

当ab 棒速度为v 时,其产 生感应电动势E =BLv 。

⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。

导体棒磁场运动时间微积分_概述及解释说明

导体棒磁场运动时间微积分_概述及解释说明

导体棒磁场运动时间微积分概述及解释说明1. 引言1.1 概述导体棒的磁场运动时间微积分是一个重要且具有挑战性的领域,在物理学和工程学中具有广泛的应用。

研究导体棒在磁场中的运动时间可以帮助我们理解磁场与导体之间的相互作用,并为各种实际问题的解决提供基础。

1.2 文章结构本文将对导体棒磁场运动时间微积分进行全面概述及解释说明。

文章主要分为引言、正文、解释说明、结论和参考文献五个部分。

引言部分将介绍文章的背景和目的,正文部分将讨论导体棒和磁场的基本概念,以及磁场对导体棒运动的影响。

在解释说明部分,将阐述如何理解导体棒在磁场中的运动时间,探讨微积分在解释导体棒运动时间中的应用,并通过实例分析计算导体棒在磁场中的运动时间。

最后,结论部分将总结本文所介绍的内容,并展望当前研究领域的意义和未来发展方向。

1.3 目的本文旨在为读者提供关于导体棒磁场运动时间微积分的全面概述及解释说明。

通过阐述导体棒和磁场的基本概念、探讨磁场对导体棒运动的影响以及应用微积分解释导体棒运动时间等方面内容,希望能够帮助读者深入理解这一领域的基础知识,并为相关问题的解决提供一定的指导。

此外,通过总结当前研究领域的意义和未来发展方向,也可以为相关领域的学者提供参考和启示。

以上是“1. 引言”部分内容,请按照您的需求进行修改和补充。

2. 正文:2.1 导体棒和磁场的基本概念在导体物理学中,导体棒指的是一根具有导电性能的直线杆状物体。

在磁场中,导体棒会受到一定的力和力矩作用,从而带来运动或者转动的现象。

而磁场则是由永久磁铁、电流、电流环等产生的具有磁性的空间区域。

2.2 磁场对导体棒运动的影响根据安培定律和洛伦兹力定律,当导体棒穿过一个外部磁场时,由于导体内存在自由电子,在外部磁场中会发生势能转化为动能的过程。

即磁感应强度与传感器连接成某种关系后所求得该螺线管输出信号即为经过微分器求得传感器输出信号与时间微分之后得到位移信号。

所以在穿越过程中,导体棒受到洛伦兹力的作用,从而发生加速度变化,并最终使其运动。

高考物理与电磁感应现象的两类情况有关的压轴题附详细答案

高考物理与电磁感应现象的两类情况有关的压轴题附详细答案
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s时导体棒的加速度;
(3)若经过时间t,导体棒下滑的垂直距离为s,速度为v.若在同一时间内,电阻产生的热与一恒定电流I0在该电阻上产生的热相同,求恒定电流I0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s(2)a=4.4m/s2(3)
又因为安培力
对实验车,由牛顿第二定律得:
即 得:
4.如图所示,足够长的U型金属框架放置在绝缘斜面上,斜面倾角 ,框架的宽度 ,质量 ,框架电阻不计。边界相距 的两个范围足够大的磁场I、Ⅱ,方向相反且均垂直于金属框架,磁感应强度均为 。导体棒ab垂直放置在框架上,且可以无摩擦的滑动。现让棒从MN上方相距 处由静止开始沿框架下滑,当棒运动到磁场边界MN处时,框架与斜面间摩擦力刚好达到最大值 (此时框架恰能保持静止)。已知棒与导轨始终垂直并良好接触,棒的电阻 ,质量 ,重力加速度 ,试求:
(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E为多少?此时a与b之间的电势差有多大?
(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?
(3)若要提高制动的效果,试对上述设计做出二处改进.
【答案】(1) , (2) (3)若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r3或减小内金属圈的半径r2
(1)棒由静止开始沿框架下滑到磁场边界MN处的过程中,流过棒的电量q;
(2)棒运动到磁场Ⅰ、Ⅱ的边界MN和PQ时,棒的速度 和 的大小;
(3)通过计算分析:棒在经过磁场边界MN以后的运动过程中,U型金属框架能否始终保持静止状态?
【答案】(1) ;(2) , ;(3)框架能够始终保持静止状态

高中物理 电磁感应中的导轨上的导体棒问题

高中物理  电磁感应中的导轨上的导体棒问题

电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。

解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。

下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。

想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。

一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。

(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。

当闭合电键后,求金属棒可达到的最大速度。

图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。

解析:闭合电键后,金属棒在安培力的作用下向右运动。

当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。

但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。

金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。

一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。

一导体棒ab在均匀磁场中沿金属导轨向右作匀加速运动

一导体棒ab在均匀磁场中沿金属导轨向右作匀加速运动

如图,在一均匀磁场中,矩形线圈 面积为S,共为N匝,可绕00/ 轴旋转
,设t = 0 时线圈平面的法线方向n0
与B的夹角为 = 0,若线圈角速度为
,则 t时刻穿过该线圈的磁通为
m B s Bscos Bscos t
由法拉第电磁感应定律
0 b
c
no
B
a
d 0/
i
d dt
d dt
(NBscos t)
1 dt
1 R
(1
2 )
式1 , 2 中是t1 , t2 时刻回路中的磁通。
上式说明,在一段时间内,通过导线截面的电量与这段时间内 导线所围磁通的增量成正比。
*:如果能测出导线中的感应电量,且回路中的电阻为已知时,
那么由上面公式,即可算出回路所围面积内的磁通的变化量——
磁通计就是根据这个原理设计的。
NBs sint m sin t m NBs
电动势的实质依然是动生电动势,上述为交流发电机的工作原理 21 首页 上页 下页退出
bv
a
I
例9-6 由导线弯成的宽为a
高为b的矩形线圈,以不变速 率v平行于其宽度方向从无磁 场空间垂直于边界进入一宽为
3a
3a的均匀磁场中,线圈平面与 磁场方向垂直(如图),然后
F
u
V
qv B v qu B v qv B u qu B u
利用混合积公式
(A B)C BC A C A B

A
C
B
B
C
A
13 首页 上页 下页退出
可知 v B v 0,
18 首页 上页 下页退出
N 例10-4 折线状导线oMN在匀强
60 0

导体棒切割磁感线安培力方向-概述说明以及解释

导体棒切割磁感线安培力方向-概述说明以及解释

导体棒切割磁感线安培力方向-概述说明以及解释1.引言1.1 概述导体棒切割磁感线是电磁学中一个重要的现象,通过导体棒与磁场的相互作用,产生了一种称为安培力的力量。

这一现象在物理学的研究中被广泛探讨,并且在实际应用中也有着重要的意义。

在导体棒与磁场相互作用的过程中,磁感线被切割,导体内部的自由电子将会受到力的作用,从而产生了电流。

这个现象被称为磁感线切割引起的感应电流,其原理基于法拉第电磁感应定律。

磁感线是磁场的一种表示方式,它用来描述磁场的分布和强度。

而导体棒在磁场中运动时,会与磁感线交叉或相互接触,导致磁感线被切割。

安培力是导体棒切割磁感线所产生的一种力。

根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。

这个实验规律是由法国物理学家安培提出的,因此被命名为安培力。

导体棒切割磁感线引起的安培力大小与切割的磁感线数目成正比,与导体棒的速度成正比,与导体的长度成正比。

因此,在实际应用中,我们可以通过改变导体棒的速度或长度,来控制安培力的大小。

导体棒切割磁感线安培力的方向是一个重要的研究内容。

根据安培力的方向规则,当导体棒与磁感线垂直时,安培力的方向与磁感线和导体棒的相对运动方向垂直。

这一规律的理解对于研究导体棒在磁场中的行为和应用具有重要意义。

综上所述,导体棒切割磁感线是一个引人瞩目的现象,通过导体与磁场的相互作用,产生了一种重要的力——安培力。

了解安培力的方向和作用对于理解导体棒在磁场中的行为和实际应用具有重要意义。

接下来的文章将具体探讨导体棒切割磁感线的原理、安培力对其影响以及实际应用和意义。

1.2文章结构文章结构部分的内容可以包括以下几个方面:1.2 文章结构本文主要分为引言、正文和结论部分:- 引言部分将对导体棒切割磁感线安培力方向的研究背景和意义进行概述,介绍本文的主要内容和目的。

- 正文部分将详细阐述导体棒切割磁感线的原理和作用,其中包括介绍磁感线的概念和导体棒切割磁感线的过程,以及导体棒切割磁感线对安培力的影响等内容。

导体棒运动受力分析

导体棒运动受力分析

导体棒运动受力分析
当一个导体棒在运动时,会受到多个力的作用,包括:
1. 重力:重力是导体棒所在地球引起的,作用于导体棒的质心,方向垂直于地面向下。

2. 气阻力:导体棒在空气中运动时会受到气体分子的阻力,阻力的大小与导体棒的速度和面积有关,方向与速度相反。

3. 摩擦力:导体棒在接触地面或者其他物体时,会受到由摩擦力引起的阻力,摩擦力方向与运动方向相反。

4. 磁力:如果导体棒处在磁场中,会受到磁场力的作用,磁场力的大小和方向取决于导体棒的速度和磁场的强度及方向。

总的来说,如果忽略风力等非主要因素,导体棒运动的重要力可以简化为重力、气阻力、摩擦力和磁力。

需要根据具体情况进行分析。

初三物理磁生电试题答案及解析

初三物理磁生电试题答案及解析

初三物理磁生电试题答案及解析1.小明在做“探究什么情况下磁可以生电”实验时,连接了如图所示的实验装置,PQ,MN为两平行金属导轨,水平放置,相距L,两导轨右侧连接定值电阻R,一金属棒垂直搁在两导轨上,与导轨接触良好,接触点分别为a、b。

现把该装置放入一大小、方向均不变的磁场区域内,用力F 拉动金属棒沿导轨匀速运动时,在闭合回路可产生感应电流,当向右拉动金属棒时,通过金属棒的电流方向为a→b,忽略所有摩擦阻力和除R外其他电阻,则:(1)当向左拉动金属棒时,通过金属棒的电流方向为;(2)当向右拉动金属棒时,金属棒相当于电源给电阻R供电,则此时金属棒的(选填“a”或“b”)端相当于电源的正极。

(3)小明在做实验时,发现F的大小与PQ、MN间距L、电阻R大小、金属棒运动速度和磁场大小等有关,在保持其他条件不变的情况下,分别改变L、R得到以下实验数据,请根据上述实验数据及你已有的数学、物理知识写出F与L、R大小关系式为:。

【答案】(1)b→a;(2)b;(3)【解析】(1)当闭合电路的一部分导体在磁场中做切割磁感线运动时,电路中就会产生感应电流,这就是电磁感应现象.感应电流的方向与导体运动的方向和磁场的方向有关.由题意知,当向右拉动金属棒时,通过金属棒的电流方向为a→b,当向左拉动金属棒时,金属棒运动的方向改变,通过金属棒的电流方向与原来相反,为b→a;(2)当向右拉动金属棒时,通过金属棒的电流方向为a→b,在金属棒的外部电流的方向是从b-a,因为在电源外部,电流的方向从电源的正极流向负极,所以b端相当于电源的正极;(3)①分析F、L之间关系的数据发现L变大,F也变大,且L变为原来的n倍,F变为原来的n2倍,即F=kL2,任意代入数据:0.1N=(0.2m)2k可得出k=2.5N/m2②分析F、R之间关系的数据发现R变大时,F变小,且R变为原来的n倍,F变为原来的n分之一倍,即,任意代入数据:,可得出:k‘=0.8N/Ω综合可得出F与L、R大小关系式为:【考点】电磁感应,物理方法的应用2.如图所示,是小滨探究“什么情况下磁可以生电”的实验装置,ab是一根直铜丝,通过导体与电流表的“3” “-”两接线柱相连,当把ab迅速向右运动时,并未发现电流表指针明显偏转,你认为最可能的原因是()A.没有感应电流,指针不偏转B.感应电流太小,无法使指针明显偏转C.应把ab改为迅速向左运动D.应把ab改为迅速上下运动【答案】B【解析】产生感应电流的条件:闭合回路的一部分导体在磁场中做切割磁感线的运动,题目所说的情况都符合,所以应该是有感应电流产生的,但电流表的量程太大了,或者说感应电流太小,这个电流表不能测量。

高考物理全真复习- 导体棒切割磁感线问题分类解析

高考物理全真复习- 导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析电磁感应中,“导体棒”切割磁感线问题是高考常见命题。

解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。

导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。

一、导体棒匀速运动导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。

例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。

导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s向左做匀速运动时,试求:图1(1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab 两端点间的电势差;(4)回路中的发热功率。

解析:金属棒向左匀速运动时,等效电路如图2所示。

在闭合回路中,金属棒cd 部分相当于电源,内阻r cd =hr ,电动势E cd =Bhv 。

图2(1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hrcd cd =+=+=0.4A ,方向从N 经R 到Q 。

(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。

(3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考试题中的导体棒在磁场中的运动综合分析 高考试题中导体棒在磁场中的运动既是重点又是难点,历年高考中都有体现,现简单举例说明导体棒在磁场中运动问题与力学、能量、图像、函数的结合的试题的解答、希望引起重视。

一、直接考查导体棒切割磁感线和恒定电流综合的问题
1、 (05,辽宁,34)如图1所示,两根相距为l 的平行直导轨a b 、cd 、b 、d 间连有一固定电阻R ,导轨电阻可忽略不计。

MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R 。

整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内)。

现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动。

令U 表示MN 两端电压的大小,则( )
A .,21vBl U =
流过固定电阻R 的感应电流由b 到d
B .,21vBl U =流过固定电阻R 的感应电流由d 到b
C .,vBl U =流过固定电阻R 的感应电流由b 到d
D .,vBl U =流过固定电阻R 的感应电流由d 到b
该题考查了E=BLV 和闭合电路的欧姆定律,重点是分清楚内外电路以及谁是电源,该题即可以顺利解答。

2、(04,全国,19)一直升飞机停在南半球的地磁极上空。

该处地磁场的方向竖直向上,磁感应强度为B 。

直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。

螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示。

如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则
A .ε=πfl 2
B ,且a 点电势低于b 点电势
B .ε=2πfl 2B ,且a 点电势低于b 点电势
C .ε=πfl 2B ,且a 点电势高于b 点电势
D .ε=2πfl 2B ,且a 点电势高于b 点电势 该题考查了右手定则的应用,实质是导体棒切
割磁感线方向的判断。

3、(08,山东,22)两根足够长的光滑导轨竖直放置,间
距为L ,底端接阻值为R 的电阻。

将质量为m 的金属棒悬挂
在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在
平面与磁感应强度为B 的匀强磁场垂直,如图所示。

除电阻R
外其余电阻不计。

现将金属棒从弹簧原长位置由静止释放.则
B
A .释放瞬间金属棒的加速度等于重力加速度g
B .金属棒向下运动时,流过电阻R 的电流方向为a →b
C .金属棒的速度为v 时.所受的安培力大小为22B L v F R
= D .电阻R 上产生的总热量等于金属棒重力势能的减少
该题考查了右手定则,能量守恒定律,牛顿第二定律得瞬时性。

二、导体棒切割磁感线与函数、能量、恒定电流和图像的综合问题
4、(07,上海,23)如图a .所示,光滑的平行长直金属导轨置于水平面内,间距为L 、导轨左端接有阻值为R 的电阻,质量为m 的导体棒垂直跨接在导轨上。

导轨和导体棒的电阻均不计,且接触良好。

在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B 。

开始时,导体棒静止于磁场区域的右端,当磁场以速度v 1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f 的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。

(1)求导体棒所达到的恒定速度v 2;
(2)为使导体棒能随磁场运动,阻力最大不能超过多少
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做的功和
电路中消耗的电功率各为多大
(4)若t =0时磁场由静止开始水平向右做匀加速直线运动,经
过较短时间后,导体棒也做匀加速直线运动,其v -t 关系如图。

所示,已知在时刻t 导体棒的瞬时速度大小为v t ,求导体棒做匀
加速直线运动时的加速度大小。

解:(1)由导体棒切割磁感线得:E =B L (v 1-v 2)
由闭合电路的欧姆定律得:I =E /R
由安培力的表达式得:F =BI L =B 2L 2(v 1-v 2)R
, 由平衡条件得速度恒定时有:B 2L 2(v 1-v 2)R =f ,解得:v 2=v 1-fR B 2L
2 , (2)要使导体棒能在磁场中运动,即安培力要大于阻力,即B 2L 2(v 1-v 2)R
〉f , 即f m =B 2L 2v 1R
, (3)P 导体棒=F v 2=f ⎝ ⎛⎭
⎪⎫v 1-fR B 2L 2 ,P 电路=E 2/R =B 2L 2(v 1-v 2)2R =f 2
R B 2L 2 , (4)因为B 2L 2(v 1-v 2)R
-f =ma ,导体棒要做匀加速运动,必有v 1-v 2为常数,
设为v ,a =v t +v t ,则B 2L 2(at -v t )R
-f =ma , 可解得:a =B 2L 2 v t +fR B 2L 2t -mR。

5、(09,上海,24)如图,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l ,左侧接一阻值为R 的电阻。

区域cdef 内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s 。

一质量为m ,电阻为r 的金属棒MN 置于导轨上,与导轨垂直且接触良好,受到F =+(N )(v 为金属棒运动速度)的水平力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大。

(已知l =1m ,m =1kg ,R =,r =,
s =1m ) (1)分析并说明该金属棒在磁场中做何种运动;
(2)求磁感应强度B 的大小;
(3)若撤去外力后棒的速度v 随位移x 的变化规律满足v
=v 0-B 2l 2m (R +r ) x ,且棒在运动到ef 处时恰好静止,则外力F 作用的时间为多少 (4)若在棒未出磁场区域时撤去外力,画出棒在整个运动过程中速度随位移的变化所对应的各种可能的图线。

【解析】
(1)金属棒做匀加速运动,R 两端电压U
I v ,U 随时间均匀增大,即v 随时间均匀
增大,加速度为恒量, (2)F -B 2l 2v R +r =ma ,以F =+代入得(-B 2l 2
R +r
)v +=a ,a 与v 无关,所以a =0.4m/s 2,(-B 2l 2
R +r
)=0,得B =, (3)x 1=12 at 2,v 0=B 2l 2m (R +r ) x 2=at ,x 1+x 2=s ,所以12 at 2+m (R +r )B 2l 2
at =s ,得:+-1=0,t =1s ,
(4)可能图线如上: 该题较长,而且题中的问题与语言的理解需要多读几次,导体棒和磁场都在运动,这里的速度应该是导体棒和磁场的相对速度,而且图像信息的处理,函数关系的应用,几何关系的应用等等各种关系导致此题要求较高,难度较大。

M c f
⨯ ⨯ ⨯ R B ⨯ F ⨯ ⨯ l ⨯ ⨯ ⨯ N d s e
v /ms -1 v /ms -1 v /ms -1 v /ms -1
0.9
0.4 0.4 0.4 0.4
0 0.2 0.5 1 x /m 0 0.5 1 x /m 0 0.5 1 x /m 0 0.5 1 x /m。

相关文档
最新文档