平行线等分线段定理、三角形中位线定、理梯形中位线定理

平行线等分线段定理、三角形中位线定、理梯形中位线定理
平行线等分线段定理、三角形中位线定、理梯形中位线定理

平行线等分线段定理、三角形中位线定、理梯形中位线定理

————————————————————————————————作者:————————————————————————————————日期:

27.命题、证明及平行线的判定定理(提高)知识讲解

命题、证明及平行线的判定定理(提高)知识讲解 【学习目标】 1.了解定义、命题的含义,会区分命题的条件(题设)和结论; 2.体会检验数学结论的常用方法:实验验证、举出反例、推理; 4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式; 5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】 要点一、定义与命题 1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义. 要点诠释: (1)定义实际上就是一种规定. (2)定义的条件和结论互换后的命题仍是真命题. 2.命题:判断一件事情的句子叫做命题. 真命题:正确的命题叫做真命题. 假命题:不正确的命题叫做假命题. 要点诠释: (1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论. (2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立. 要点二、证明的必要性 要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理.推理的过程叫做证明. 要点三、公理与定理 1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理. 2.定理:通过推理得到证实的真命题叫做定理. 要点诠释: 证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程. 要点四、平行公理及平行线的判定定理 1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释: (1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质. (2)公理中“有”说明存在;“只有”说明唯一. (3)“平行公理的推论”也叫平行线的传递性. 2.平行线的判定定理

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

(八年级数学教案)平行线等分线段定理

平行线等分线段定理 八年级数学教案 教学建议 1.平行线等分线段定理 定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等. 注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成. 定理的作用:可以用来证明同一直线上的线段相等;可以等分线段. 2.平行线等分线段定理的推论 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰. 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。 记忆方法:“中点”+“平行”得“中点”. 推论的用途:(1)平分已知线段;(2)证明线段的倍分. 重难点分析

本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础. 本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意. 教法建议 平行线等分线段定理的引入 生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑: ①从生活实例引入,如刻度尺、作业本、栅栏、等等; ②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论. 教学设计示例 一、教学目标 1. 使学生掌握平行线等分线段定理及推论.

2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力. 3. 通过定理的变式图形,进一步提高学生分析问题和解决问题的能力. 4. 通过本节学习,体会图形语言和符号语言的和谐美 ●二、教法设计 学生观察发现、讨论研究,教师引导分析 ●三、重点、难点 1.教学重点:平行线等分线段定理 2.教学难点:平行线等分线段定理 ●四、课时安排 l课时 ●五、教具学具 计算机、投影仪、胶片、常用画图工具 ●六、师生互动活动设计 教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

七年级下册平行线的判定定理习题精选

七年级下册第五章 相交线与平行线的判定定理及应用 1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这 种关系的两个角,互为_____________. 2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两 边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________. 3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______. 垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________. 4.直线外一点到这条直线的垂线段的长度,叫做________________________. 5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个 角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________. 6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关 系只有________与_________两种. 7.平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平 行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________. ⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成: ________________________________________.

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三角形一边的平行线判定定理

第三讲:三角形一边的平行线判定定理 一、知识要点: 1、三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。 数学表达: 如图,直线DE 截△ABC 得两边AB 、AC , 若① AD AE DB EC =,②AD AE AB AC =,③BD EC AB AC = 中之一为已知条件,则DE ∥BC 2、三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 数学表达: 若点D 、E 分别在射线AB 、AC 上,如图(1)或分别在他们的方向延长线上如图(2),且具备上述条件①、②、③之一,则D E ∥BC. 牛刀小试: 1、如图,△ABC 中,点D 、E 分别在边AB 、AC 上。判断在下列条件下能否推出D E ∥BC,为什么? (1) 2 3 AD DB =,AE=2,AC=3 (2)25AD AB =,25DE BC = (3)23AD DB =,53 AC CE = 2、△ABC 中,直线DE 交AB 于点D ,交AC 于点E ,那么能推出D E ∥BC 的条件是() A 、 AB 3=AD 2,EC 1=AE 2B 、AD 2=AB 3,DE 2 =BC 3 C 、 AD 2=DB 3,CE 2=AE 3D 、AD 3=AB 4,AE 3 =EC 4 二、典型例题 例1、如图EF ∥BC ,3 1 =AC AF ,BF=4,FD=2,求证:EF ∥ AD AD E D C B A

EF BC 例2、如图所示,M 为AB 的中点,EF ∥AB,连接EM 、FM ,分别交AF 、BE 于点C 、D ,连接CD 。 求证:CD ∥AB. 分析:判定两直线平行的方法一般有四种:(1)通过“三线八角”的相等或互补判定两直线平行;(2)通过三角形、梯形中位线定理判定两直线平行;(3)通过平行四边形的判定间接证平行;(4)通过比例线段证平行。 本题运用第(4)种方法,因为它包含了比例线段的几种基本图形。 例3、如图,已知MB ∥ND ,PA PD PB ?=2,求证: NB ∥MA M N ABDP 例4、作图题:已知线段a 、b 、c 求作线段x ,使a :b =c :x 扩展训练: 例5、如图△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,DEFG 为平行四边形,连BG 、CF 且分别延长交于H ,连AH ,求证:AH ∥DG A DE BC GF H A DE H GF B 三、课堂练习 一、选择题: 1、 如图在ΔABC 中,DE 与AB 、AC 交于D 、E ,由以下比例式能判定DE//BC 的是 () O F E D C B A

2015年北师大版平行线分线段成比例定理讲义及习题练习

平行线分线段成比例定理讲义与习题练习 问题:一组等距离的平行线截直线a 所得的线段相等吗?,那么在直线b 上所截的线段有什么关系呢? 总结:一组等距离的平行线在直线a 所截得的线段相等,那么在直线b 上所截得的线段也相等. 如果一组平行线在一条直线上截得的线段相等, 那么这组平行线在其他直线上截得的线段也相等。 ∵直线a // b // c ,AB = BC ∴A'B' = B'C'。 平行线分线段成比例定理: 1.三条平行直线L 1//L 2//L 3截直线AE 上的线段AC 、CE 长度之间(除相等外)存在着什么关系呢?同样截直线BF 上的线段BD 、DF 长度之间存在着什么关系呢? 板书:由L 1//L 2//L 3可得: 32=CE AC ;32=DF BD 所以:3 2 ==DF BD CE AC 2.平行线分线段成比例定理: 三条平行线截两条直线,所得的对应线段的比相等。 观察上图我们容易发现下面结论成立. 1.应用定理,等分线段 (1)已知线段AB ,你能它三等分吗?依据是什么? 已知:线段AB (如图7)。 如图7 求作:线段AB 的三等分点。 选择题:(1)如右图,已知L 1//L 2//L 3,下列比例式中错误 的是:( ) A . DF BD CE AC = B.BF BD AE AC = C. BF DF AE CE = D.AC BD BF AE = (2)如右图,已知L 1//L 2//L 3,下列比例式中成立 的是:( ) A B L 1 C D L 2 E F L 3 A B L 1 C D L 2 A B L 1 C D L 2 E F L 3 A B L 1 C D L 2 E F L 3 c b a C B A A'B'C' A B

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

初数学平行线分线段成比例定理

初数学平行线分线段成比例定理

初二数学 【教学进度】 几何第二册第五章§5.2 [教学内容] 平行线分线段成比例定理 [重点难点剖析] 一、主要知识点 1.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 2.三角形一边平行线的性质定理(即平行线分线段成比例定理的推论):平行于 三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。 3.三角形一边的平行线的判定定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 4.三角形一边的平行线的性质定理2(即课本例6):平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 二、重点剖析 1.平行线分线段成比例定理,是研究相似的最重和最基本的理论,同时,它也是直接证明线段成比例的最重要方法之一。 定理的基本图形

∵l 1∥l 2∥l 3 ∴EF BC DE AB DE AB = == 应。 ② 为了强调对应和记忆,可以使用一些简单形象化语言记忆上面所列三组比例式: EF DE BC AB = , 可以说成“上比下等于上比下” DF DE AC AB = , 可以说成“上比全等于上比全” DF EF AC BC = , 可以说成“下比全等于下比全”等 L L L 图1-(1) C F A B E D F C 图1-(2)3 E D 12B A F 3 L C 图1-(3) 2L L 1B E A 图1-(4) F L 3 C L 2L 1B D A 3 L 2L L 1(D)(E)

高中数学第一讲相似三角形的判定及有关性质一平行线等分线段定理教材梳理素材新人教A版4-1!

一平行线等分线段定理 庖丁巧解牛 知识·巧学 一、平行线等分线段定理 1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么这组平行线在其他直线上截得的线段也相等.用符号语言表述是:已知a∥b∥c,直线m、n分别与a、b、c 交于点A、B、C和A′、B′、C′(如图1-1-2),如果AB=BC,那么A′B′=B′C′. 图1-1-2 图1-1-3 2.对于定理的证明,如图1-1-3所示,分m∥n和m不平行于n两种情况证明.当m∥n时,直接运用平行四边形加以证明;当m不平行于n时,利用辅助线构造相似三角形,进而得到关系式. 3.定理的条件是a、b、c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它们必须与已知的平行线a、b、c相交,即被平行线a、b、c所截.平行线的条数还可以更多. 方法点拨定理图形的变式:对于3条平行线截两条直线的图形,要注意以下变化(如图1-1-4):如果已知l1∥l2∥l3,AB=BC,那么根据定理就可以直接得到其他直线上的线段相等.也就是说,直线DE的位置变化不影响定理的结论. 图1-1-4 4.定理的作用:利用本定理可将一线段分成n等分,也可以证明线段相等或转移线段的位置. 图1-1-5 误区警示平行线等分线段定理的逆命题是:如果一组直线截另一组直线成相等的线段,那么这组直线平行.这一命题是错误的,如图1-1-5. 二、平行线等分线段定理的推论 1.平行线等分线段定理的推论有两个,其中一个是经过三角形一边的中点,与另一边平行的直线必平分第三边;另一个是经过梯形一腰的中点,与底边平行的直线必平分另一腰. 2.两个推论的证明如下: 推论1:如图1-1-6(1),在△ACC′中,AB=BC,BB′∥CC′,交AC′于B′点,求证:B′是AC′的中点. 证明:如图1-1-6(2),过A作BB′与CC′的平行线,∵a∥b∥c,AB=BC,

(完整版)初数学平行线分线段成比例定理

初二数学 【教学进度】 几何第二册第五章 §5.2 [教学内容] 平行线分线段成比例定理 [重点难点剖析] 一、主要知识点 1.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 2.三角形一边平行线的性质定理(即平行线分线段成比例定理的推论):平行于 三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。 3.三角形一边的平行线的判定定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 4.三角形一边的平行线的性质定理2(即课本例6):平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 二、重点剖析 1.平行线分线段成比例定理,是研究相似的最重和最基本的理论,同时,它也是直接证明线段成比 EF BC = , 可以说成“上比下等于上比下” DF DE AC AB = , 可以说成“上比全等于上比全” DF EF AC BC = , 可以说成“下比全等于下比全”等 2.三角形一边平行线的性质定理1(即平行线分线段比例定理的推论) 基本图形

又∵ 43=EC AE ∴ 73=AC AE ∴7 3 =DC EG 极 EG=3X , DC=7X (X>0),则 ∵ 32=DC BD ∴ DB=x x DC 3 14 73232=?= ∴9 14 3314==x x EG BD

例3 分析 BC//FE 证明:∵则例4 分别连结E ,DB 首先观察证明:∵点评 (1(3)最后只须证明这两条边上对应线段成比例即可 例5 如图9,,,,C B A '''分别在△ABC 的三边BC 、AC 、AB 或其延长线上,且C C B B A A '''//// 求证:C C B B A A '='+'111 分析 所证结论中出现的三条线段的倒数,解决此类问题, 一般情况下,要将其转化为线段比的形式。 证明:∵A A C C ''// ∴ BA C B A A C C '='' ∵B B C C ''// ∴B B C C ='' ∴1='+'='+'=''+''AB C A C B AB C A BA C B B B C C A A C C ∴B B A A '+'11

平行线等分线段定理练习及答案

【金版学案】2015-2016学年高中数学1.1平行线等分线段定理练习 新人教A版选修4-1 1.平行线等分线段定理:如果一组________在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等. 2.推论1:经过三角形一边的中点与另一边平行的直线必________第三边. 3.推论2:经过梯形一腰的中点,且与底边平行的直线________另一腰. 4.如图所示,D、E、F分别△ABC三边的中点,则与△DEF全等的三角形有________个. 预习导学 1.平行线 2.平分 3.平分 4.3 ?一层练习 1.下列用平行线等分线段的图形中,错误的是( ) 1.C 2.如图所示,l1∥l2∥l3,直线AB与l1、l2、l3相交于点A、E、B,直线CD与l1、l2、l3相交于点C、E、D,AE=EB,则有( )

A .AE =CE B .BE =DE C .CE =DE D .C E >DE 2.C 3.如图所示,AB ∥CD ∥EF ,且AO =OD =DF ,BC =6,则BE 为( ) A .9 B .10 C .11 D .12 3.A 4.如图所示,已知a ∥b ∥c ,直线m 、n 分别与直线a 、b 、c 交于点A 、B 、C 和点A ′、 B ′、 C ′,如果AB =BC =1,A ′B ′=32 ,则B ′C ′=________. 4.32 5.如上图所示,AB =AC ,AD ⊥BC 于点D ,点M 是AD 的中点,CM 交AB 于点P ,

DN ∥CP .若AB =6 cm ,则AP =________;若PM =1 cm ,则PC =________. 5.2 cm 4 cm ?二层练习 6.AD 是△ABC 的高,DC =1 3 BD ,M ,N 在AB 上,且AM =MN =NB ,ME ⊥BC 于 E ,N F ⊥BC 于F ,则FC =( ) A.23BC B.23BD C.34BC D.34BD 6.C 7.在梯形ABCD 中,点M 、N 分别是腰AB 与腰CD 的中点,且AD =2,BC =4,则 MN 等于( ) A .2.5 B .3 C .3.5 D .不确定 7.B 8.顺次连接梯形各边中点的连线所围成的四边形是________. 8.平行四边形 9.梯形中位线长10 cm ,一条对角线将中位线分成的两部分之差是3 cm ,则该梯形中的较大的底是________cm. 9.13 10.如图,F 是AB 的中点,FG ∥BC ,EG ∥CD ,则AG =________,AE =________. 10.GC ED ?三层练习

《平行线的性质定理》教案

《平行线的性质定理》教案 学习目标 1、理解和总结证明的一般步骤、格式和方法. 2、探索平行线的性质定理的证明,培养学生的观察、分析和进行简单的逻辑推理能力. 3、结合图形用符号语言来表示平行线的三条性质的条件和结论. 教学重难点 平行线的性质公理及定理. 教学过程 【温故知新】 (一)、知识链接:(两条直线平行的判定定理) 1、同位角相等,两直线平行 2、内错角相等,两直线平行 3、同旁内角互补,两直线平行 4.下列不能使两直线平行的是( ) A.内错角相等 B.同旁内角互补 C.对顶角相等 D.同位角相等 (二)、导学释疑: 证明:已知:如图所示,直线a∥b,直线c和直线a、b相交. 求证:∠2=∠3. 平行线的性质1定理:两直线平行,同位角相等. 【合作探究】 探究一、已知:如图所示,直线a∥b,直线c和直线a、b相交. 求证:∠1=∠2. 平行线的性质2定理:两直线平行,内错角相等. 探究二、两直线平行,同旁内角互补

(1)根据这一定理的文字叙述,你能作出相关图形吗? (2)你能根据所作的图形写出已知、求证吗? (3)你能说说证明的思路吗?并试着写出证明过程. 平行线的性质3定理:两直线平行,同旁内角互补. 【做一做】 已知:如图所示,直线a∥b,a∥c,∠1,∠2,∠3是直线a,b,c被直线d截出的同位角. 求证:b∥c. 定理:平行于同一条直线的两条直线平行. 【总结提升】 总结规律:根据本节课的学习,你能说说命题证明的一般步骤吗? (1)根据题意画出图形;(若已给出图形,则可省略) (2)根据题设和结论,结合图形,写出已知和求证; (3)经过分析,找出已知退出求证的途径,写出证明过程; (4)检查证明过程是否正确完善. 【当堂检测】 完成课本50页随堂练习.

《三角形中位线定理》

课题:三角形中位线定理 科目:数学教学对象:八年级课时:§18.1平行四边形第4课时提供者:大城县第四中学毕宝清 一、教学目标 1.知识与技能: 理解三角形中位线的概念;探索并掌握三角形中位线定理;能正确应用三角形中位线定理解决问题。 2.过程与方法: 经历探索三角形中位线定理的过程,感受数学转化思想。 3.情感态度与价值观: 培养学生大胆猜想、合理论证、归纳结论的科学精神。 二、教学重点、难点 1.重点:探究三角形中位线定理并应用,应用三角形中位线定理解决有关问题。2.难点:三角形中位线定理的证明。 三、教具准备 多媒体、三角形纸片 四、教学过程 教 学 环 节 教学内容师生活动设计意图 一、情境设置 导入新课蚕丝吐尽春未老,烛泪成灰秋更稠。 春播桃李三千圃,秋来硕果满神州。 为感恩教师,七年级六班召开主题 班会,班长要求每个同学把手中的 三角形原料裁成四面完全相同的彩 旗装扮教室,应该怎么裁剪呢? 教师引 导学生观察 图片,思考问 题后出示课 题. 教育学生懂得感 恩,从学生的生活实际 出发,创设情境,提出 问题,激发学生强烈的 好奇心和求知欲.

环 节 教学内容师生活动设计意图 二、 动手操作 观察发现探究一:三角形中位线的概念 活动一:请同学们按要求画图: (1)画一个任意的△ABC; (2)取AB、AC的中点D、E; (3)连接DE 三角形中位线定义: 连接三角形两边中点的线段叫做三 角形的中位线。 问题1:一个三角形有几条中位线? 请学生画出三角形中所有中位线。 问题2:三角形的中位线和三角形 的中线有何异同? 教师引 导学生在练 习本上作图, 实践操作后 分析线段DE 的特征,独立 思考并总结 归纳出三角 形中位线的 定义. 教师 用红笔标出 定义的关键 词:“线段中 点”、“线段” 让学生在作图过 程中充分感知三角形 中位线并加深印象。 通过学生实践操 作把握概念的本质,有 利于学生今后更加准 确运用。 三、 探究性质定理 深化认知探究二:三角形的中位线定理 问题3:如图,DE是△ABC的中位 线,DE与BC有什么 关系? 通过拼图活动 寻求辅助线做法。 (1)把三角形 纸片沿中位线DE裁开。 (2)变换△ADE的位置,想办 法去构造一条线段等于2DE, (3)画出变换后的图形,并把 △ADE移动后的对应的位置用虚线 画出来。 (4)请仔细观察哪条线段是 DE的2倍。 (5)我们只要证明哪两条线 段相等就可以。 (6)辅助线做法该怎么写? (7)请构思并书写证明过程。 教师引导 学生从2个 方面探究两 条线段之间 的关系。 学生独立 思考寻求方 法探究结论, 小组讨论交 流并根据探 究结果猜想 三角形的中 位线定理。 教师板书证 明过程,并用 展台展示其 他证明方法。 调动已有知识经 验,结合学生实践操作 感知思考、交流合作探 究三角形中位线的定 理。 通过学生亲自拼 图操作,进一步探究辅 助线做法,并为定理的 证明作好准备工作 经历这个探究的 过程让学生意识到讨 论、合作是学生完成学 习任务的一种手段,而 交流则促进学生智慧 成果共享。

第二讲:三角形一边的平行线性质定理解析

第二讲:三角形一边的平行线性质定理 一、知识要点: 1复习、同高(或等高)的两个三角形的面积之比等于对应底边的比, (2) (1) D C B A D C B A 如图(1): ABD ADC S BD S DC = 如图(2):若A D ∥BC,则 ADC ABC S AD S BC = 2、三角形一边的平行线性质定理:平行于三角形一边的直线截其它两边所在的直线,截得的对应线段成比例。 如图(1),若D E ∥BC ,则 AD AE DB EC =或AD AE AB AC =或DB CE AB AC = 1 ==特殊地:EC AE DB AD , 如图(2),若D E ∥BC ,则 AB AC AE AD =或AB AC EB DC =或EA DA EB DC = E D E (2) (1) C B A D C B A 3、三角形一边的平行线性质定理推论:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例。 如图(1)已知:△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,则 AD DE AE AB BC AC == ; 如图(2)已知:△ABC 中,点D 、E 分别在CA 、BA 的延长线上,且DE ∥BC ,则 AB BC AC AE DE AD == .

小试牛刀: 选择题 1、在“平行于三角形一边的直线截其它两边,所得的对应线段成比例”定理证明中,所用的思想方法是( ) A 、先证明特殊情况成立,再证得一般情况成立 B 、利用平行线性质 C 、利用三角形全等 D 、把线段的比转化为面积的比,再把面积比转化成线段的比 一、填空题 1、 如图,△ABC 中,DE ∥BC ,AD=4BD,则AE=_______EC 2、 已知:D 、E 分别是△ABC 的边AB 、AC 上的点,且DE ∥BC ,AE=6,AD=3,AB=5,则 AC=____________ 3、 已知:△ABC 中,DE ∥BC ,DE 分别是边AB 、AC 上的点,若AD:AB=2:9,EC-AE=5 厘米,则AC=_______厘米。 4、 如图,已知:AC ∥BD ,AB 与CD 交于点O 。若AC:BD=2:3,AO=1.2,则AB=___________. 5、 如图,点D 、E 分别在△ABC 边AB 、AC 上,且DE ∥BC ,若AD:BD=3:4,BE 和CD 相交于点O ,则EO:OB=____________。 第1题 E D C B A 第4题 O D C B A O E D C B A 二、典型例题: 例1、 如图所示,D E ∥AB,EF ∥BC ,AF=5厘米,FB=3厘米,CD=2厘米。求BD 。 F E D C B A

(完整版)人教版八年级下三角形中位线定理

知识点回顾(笔记) 证一证 如图,在△ABC 中,点D,E 分别是AB,AC 边的中点. 1 .2 DE BC DE BC =求证:∥, 证法1:证明:延长DE 到F ,使EF=DE .连接AF 、CF 、DC . ∵AE=EC ,DE=EF , ∴四边形ADCF 是_______________. ∴CF ∥AD ,CF=AD , ∴CF_____BD ,CF_____BD , ∴四边形BCFD 是____________ ∴DF_____BC ,DF_______BC , 12 DE DF =又∵, ∴DE_____BC ,DE=______BC. 证法2:证明:延长DE 到F ,使EF=DE .连接FC . ∵∠AED=∠CEF ,AE=CE , ∴△ADE_____△CFE .(全等) ∴∠ADE=∠_____,AD=_______, ∴CF______AD,∴BD______CF. ∴四边形BCFD 是___________________. ∴DF_______BC. 12DE DF =又∵, ∴DE_____BC ,DE=______BC.

类型1 三角形中位线的定理及运用 例1如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,求AC的长. 例2 如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数. 类型2中位线辅助线的构造 例3如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE. 例4. 如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求 证:CD= CE。

平行线等分线段定理

篇一:1平行线等分线段定理 平行线等分线段定理 【知识点精析】 1.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。理解这个定理要注意的是:(1)必须有一组平行线存在,平行线至少有三条;(2)在某一条直线上截得的线段相等。满足上述两个条件,才能保证这组平行线在其他直线上截得的线段相等. 2.平行线等分线段定理的几个基本图形 平行线等分线段定理的几个基本图形如图所示,若已知l1∥l2∥l3,ab = bc,根据定理可直接得到a1b1 = b1c1.即被平行线组所截的两条直线的相对位置,不影响定理的结论. 3.定理的两个推论 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰. 推论 2 经过三角形一边的中点与另一边平行直线必平分第三边. 4.应用平行线等分线段定理,可以等分任意一条线段. 【例题】 1.如图,直线l1∥l2∥l3,ab = bc.求证:a1b1 = b1c1. a1 l1 b1 l2 l3 2.已知:线段ab.求作:线段ab的五等分点. a b 3.如图,直角梯形abcd中,ad∥bc,ab⊥bc,m是cd的中点.求证:ma = mb. 4.如图,在△abc中,ad是bc边上的中线,m是ad的中点,bm的延长线交ac于n.求证:an = 1cn. 2 思考题:如图,梯形abcd中,ad∥bc,dc⊥bc,∠b = 60°,ab = bc,e为ab的中点.求证:△ecd为等边三角形.

【练习与作业】 一、填空题 1.△abc中,∠c = 90°,d为ab的中点,de⊥bc交bc于e,则ceeb. 2.已知三条直线 ab∥cd∥ef,它们之间的距离分别是2cm,作一直线mn分别与三条平行线交于30°角,且与 ab、cd、ef分别交于m、n、p,则mn = cm,np = cm. 3.如图,f是ab 的中点,fg∥bc,eg∥cd,则ag = ae = 4.如图,l1∥l2 ∥l3∥l4∥l5,a1b1 = b1c1 = c1d1 = d1e1,则a2b2 = = = ,a2c2 = = . 5.直角梯形abcd 中,ad ∥bc,∠a = 90°,ef是ab的垂直平分线交ab于e,cd于f,则df = . 6.如图,已知ab ∥cd∥ef,af、be交于o,若ao = od = df,be = 10cm,则bo = . 7.如图,已知ad ∥ef∥bc,e是ab中点,则dg = h是f是中点. 8.如图,已知ce 是△abc的中线,cd = 若cd = 5cm,则af = cm. 9.如图,在ad两 旁作ab∥cd,a1、a2为ab的两个三等分点,c1、c2为cd的两个三等分点,连a1c、a2c1、 bc2,则把ad分成四条线段的长度(填相等或不相等). 第3题第4题第6题第7题 第8题第9题 1ad,ef∥bd,eg ∥ac,若ef = 10cm,则bg = cm,2 二、选择题 10.下列用平行线 等分线段的图形中,错误的是() c d a b 11.右图,ab∥cd∥ef,且ao = od = df,oe = 6,则be =() a.9 b.10 c.11 d.12 12.ad是△abc的 高,dc = bc于f,则fc = () a.1bd,m,n在ab

相关文档
最新文档