第二章 散剂和颗粒剂

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章散剂和颗粒剂

【大纲解读】

粉体的大小不可能均匀一致,而是存在着粒度分布的问题,分布不均会导致制剂的分剂量不准、可压性变化以及粒子密度变化等问题。因此,研究粒度分布同样具有重要的意义。

常用频率分布表示各个粒径相对应的粒子占全体粒子群中的百分比。现代计算机的应用则为测量带来方便。频率分布可用方块图来表示,可以非常直观的看出粒子大小的分布情况,如图2~1所示。

(2)粉体粒径的测定方法

①显微镜法(定方向径):显微镜法是将粒子放在显微镜下,根据投影像测得粒径的方法。光学显微镜可以测定0.5~100μm级粒径。测定时应注意避免粒子问的重叠,以免产生测定的误差,同时测定的粒子的数目应该具有统计学意义,一般需测定200~500个粒子。

②库尔特记数法(体积等价径):库尔特记数法是在测定管中装入电解质溶液,将粒子群混悬在电解质溶液中,测定管壁上有一细孔,孔电极间有一定电压,当粒子通过细孔时,由于电阻发生改变使电流变化并记录于记录器上,最后可将电信号换算成粒径。可以用该方法求得粒度分布。本法可以用于测定混悬剂、乳剂、脂质体、粉末药物等的粒径分布。

③沉降法(有效径):沉降法是根据Stock’s方程求出粒子的粒径,适用于100μm以下的粒径的测定,常用Andrcasen吸管法。

④筛分法(筛分径):筛分法是使用最早、应用最广的粒径测定方法。它是将筛按孔径大小顺序上下排列,将一定量粉体样品置于最上层,在一定的震动频率下振动一定时间,称量各个筛号上的、粉体重量,求得各筛号上不同粒径的百分数。常用测定范围在45μm以上。

测定粒子大小时要注意的有关问题是:对粒子大小进行分析前对样品的合理选择和处理是得出正确结论的基础。在选取样品时,由于粉体因储存条件的变化或转移可能导致粒子的分布不均,因此有必要采用一定的方法取样。为使取样具有代表性,应当有适当的取样量。

最佳选择题

有关粉体粒径测定的不正确表述是

A.用显微镜法测定时,一般需测定200~500个粒子

B.沉降法适用于100μm以下粒子的测定

C.筛分法常用于45μm以上粒子的测定

D.《中国药典》中的九号筛的孔径大于一号筛的孔径

E.工业筛用每一英寸长度上的筛孔数目表示

[答疑编号501202020101:针对该题提问]

『正确答案』D

2.粉体的比表面积

比表面积是表征粉体中粒子粗细以及固体吸附能力的一种量度。粒子的表面积不仅包括粒子的外表面积,

还包括由裂缝和孔隙形成的内部表面积。

直接测定粉体比表面积的常用方法有气体吸附法。在常压下,一般气体吸附法用于粒度在2~75μm范围内固体样品的测定,而在减压条件下可以用于更小粒子的测定,例如小于0.1μm的粒子。

3.粉体的孔隙率

孔隙率是粉体中总空隙所占有的比率。总空隙包括粉体内空隙和粉体间空隙。粉体的充填体积(V1)为粉体的真体积(Vt)、粉体内空隙体积(V间)、粉体间空隙体积(V间)之和。

4.粉体的密度粉体密度具有不同的含意,它可用三种方式来表示:

①真密度:粉体质量M除以不包括颗粒内外空隙的体积求得的密度(M/Vt)。

②粒密度:粉体质量M除以包括颗粒内孔隙在内的体积所求得的密度(M/V t+V内)。

③松密度:粉体质量M除以该粉体所占容器的体积求得的密度(M/V,V=V t+V内+V间),亦称堆密度。

最佳选择题

粉体学中,用包括粉粒自身孔隙和粒子间孔隙在内的体积计算的密度称为

A.堆密度

B.粒密度

C.真密度

D.高压密度

E.空密度

[答疑编号501202020102:针对该题提问]

『正确答案』A

5.粉体的流动性

粉体的流动性与多种因素有关,因此粉体的流动性无法用单一的指标来表示。然而粉体的流动性对颗粒剂、胶囊剂、片剂等制剂的重量差异影响较大,是影响产品质量的重要环节。粉体的流动形式有多种,相对应的流动性的评价方法因此也有所不同,在本文中只介绍常用的方法。

(1)休止角

休止角是粉体堆积层的自由斜面与水平面间形成的最大角。常用的测定方法有注入法、排出法、倾斜角法等,如图2~2所示。休止角不仅可以直接测定,而且可以测定粉体层的高度和圆盘半径后计算而得。即tanθ=高度/半径。

休止角:休止角越小,摩擦力越小,流动性越好,一般认为θ≤40o时可以满足生产流动性的需要。应该注意的是,所得休止角的数据可能因测量方法的不同而有所不同,数据重现性差,所以不能把它看作粉体的一个物理常数。

(2)流出速度:

流出速度是将粉体加入漏斗中测定全部粉体流出所需的时间。粒子间的黏着力、摩擦力、范德华力、静电力等作用往往阻碍粒子的自由流动,影响粉体的流动性。

多项选择题

与粉体流动性有关的参数有

A.休止角

B.比表面积

C.内摩擦系数

D.孔隙率

E.流出速度

[答疑编号501202020103:针对该题提问]

『正确答案』AE

(3)改善粉体流动性的措施:

1)通过制粒,可以减少粒子闻的接触点数,降低粒子间的附着力、凝聚力;

2)加入一定量的粗粉,在一定程度上改善流动性;

3)球形粒子的光滑表面,减少了接触点数,从而减少摩擦力,流动性好。因此,可以通过各种方法改进粒子的形状,使之尽量接近于少棱角的规则形状;

4)由于粉体具有吸湿作用,在粒子表面吸附的水分往往增加粒子间黏着力,因此适当干燥有利于减弱粒子间作用力。但是粒子过分干燥,可能会因静电作用使粒子的流动性下降;

5)在粉体中加入1%~2%40μm左右滑石粉、微粉硅胶等助流剂时会在粉体层粒子表面填平粗糙面而形成光滑表面,减少粉体的运动阻力,会大大改善粉体的流动性。但过多的助流剂反而增加阻力。

6.粉体的吸湿性

药物粉末置于湿度较大的空气中时易发生不同程度的吸湿现象以至于出现粉末的流动性下降、固结等现象,甚至会影响到药物的稳定性。水溶性药物和水不溶性药物的吸湿性明显不同。

具有水溶性的药物粉末在相对较低湿度环境时一般吸湿量较小,但当相对湿度提高到某一定值时,吸湿量急剧增加,此时的相对湿度被称作临界相对湿度(critical relative hμmidity,CRH)。该值可以通过作图法求得CRH是水溶性药物的固有特征,是药物吸湿性大小的衡量指标。CRH越小则越易吸湿,反之,则不易吸湿CRH值的测定通常采用饱和溶液法。

特点:

1)几种水溶性药物混合后,其吸湿性有如下特点:“混合物的CRH约等于各药物CRH的乘积,即

CRH AB≈CRH A×CRH B,而与各组分的比例无关”。此即所谓Elder假说,但不适用于有相互作用或有共同离子影响的药物。例如,葡萄糖和抗坏血酸钠的CRH值分别为82%和71%,按上述Elder假说计算,两者混合物的CRH 值为58.3%,而实验测得值为57%,基本相符。

2)水不溶性药物的吸湿性在相对湿度变化时,缓慢发生变化,没有临界点。水不溶性药物的混合物的吸湿性具有加和性。

7.粉体的润湿性

粉体的润湿性对片剂、颗粒剂等对固体制剂的崩解性、溶解性等具有重要意义。粉体的润湿性由接触角表示。接触角最小为0°,最大为180°。

液滴的切线与固体平面间的夹角,即接触角。

接触角越小,则粉体的润湿性越好。

相关文档
最新文档