高一三角函数诱导公式练习题

合集下载

三角函数诱导公式练习题 答案

三角函数诱导公式练习题  答案

三角函数的引诱公式1一.选择题1.假如|cosx|=cos (x+π),则x 的取值聚集是()A .-2π+2kπ≤x≤2π+2kπ B.-2π+2kπ≤x≤2π3+2kπC .2π+2kπ≤x≤2π3+2kπ D.(2k+1)π≤x≤2(k+1)π(以上k∈Z)2.sin (-6π19)的值是()A .21 B .-21 C .23D .-233.下列三角函数:①sin(nπ+3π4);②cos(2nπ+6π);③sin(2nπ+3π);④cos[(2n+1)π-6π];⑤sin[(2n+1)π-3π](n∈Z).个中函数值与sin 3π的值雷同的是()A .①②B .①③④C .②③⑤D .①③⑤ 4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为()A .-36B .36 C .-26 D .265.设A.B.C 是三角形的三个内角,下列关系恒成立的是()A .cos (A+B )=cosCB .sin (A+B )=sinC C .tan (A+B )=tanCD .sin 2B A +=sin 2C6.函数f (x )=cos 3πx (x∈Z)的值域为()A .{-1,-21,0,21,1} B .{-1,-21,21,1}C .{-1,-23,0,23,1} D .{-1,-23,23,1}二.填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________.8.sin21°+sin22°+sin23°+…+sin289°=_________.三.解答题9.求值:sin (-660°)cos420°-tan330°cot(-690°).10.证实:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ. 11.已知cosα=31,cos (α+β)=1,求证:cos (2α+β)=31.12.化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13.求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tanθ.14.求证:(1)sin (2π3-α)=-cosα; (2)cos (2π3+α)=sinα.参考答案1一.选择题1.C 2.A 3.C 4.B 5.B 6.B 二.填空题7.-sinα-cosα 8.289三.解答题 9.43+1.10.证实:左边=θθθθ22sin cos cos sin 2-1-- =-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--,左边=右边,∴原等式成立.11.证实:∵cos(α+β)=1,∴α+β=2kπ.∴cos(2α+β)=cos (α+α+β)=cos (α+2kπ)=cosα=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证实:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tanθ=右边,∴原等式成立.14证实:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cosα.(2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sinα.三角函数的引诱公式2一.选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为() A. 21B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为() A.23 B. 21C. 23±D. —233.化简:)2cos()2sin(21-•-+ππ得()2 C.sin2-cos2 D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中准确的是()A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD.cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于(),A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4)二.填空题: 6.cos(π-x)= 23,x∈(-π,π),则x 的值为.7.tanα=m,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ.8.|sinα|=sin(-π+α),则α的取值规模是. 三.解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos2(65π-x )的值. 11.求下列三角函数值:(1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12.求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5;(2)sin [(2n+1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π 7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:(1)sin 3π7=sin (2π+3π)=sin 3π=23.(2)cos 4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22.注:应用公式(1).公式(2)可以将随意率性角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin 3π4·cos 6π25·tan 4π5=sin (π+3π)·cos(4π+6π)·tan(π+4π)=(-sin 3π)·cos 6π·tan 4π=(-23)·23·1=-43.(2)sin [(2n+1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++--- =θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cosθ-1,∴f(3π)=cos 3π-1=21-1=-21.三角函数公式1. 同角三角函数根本关系式sin2α+cos2α=1 sinαcosα =ta nαtanαcotα=12. 引诱公式 (奇变偶不变,符号看象限)(一)sin(π-α)=sinα sin(π+α)=-sinαcos(π-α)=-cosα cos(π+α)=-cosα tan(π-α)=-tanα tan(π+α)=tanα sin(2π-α)=-sinα sin(2π+α)=sinα cos(2π-α)=cosα cos(2π+α)=cosα tan(2π-α)=-tanα tan(2π+α)=tanα(二) sin(π2 -α)=cosα sin(π2+α)=cosαcos(π2 -α)=sinα cos(π2 +α)=- sinαtan(π2 -α)=cotα tan(π2 +α)=-cotαsin(3π2 -α)=-cosα sin(3π2 +α)=-cosαcos(3π2 -α)=-sinα cos(3π2 +α)=sinαtan(3π2 -α)=cotα tan(3π2+α)=-cotαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα3. 两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin (α+β)=sinαcosβ+cosαsinβ s in (α-β)=sinαcosβ-cosαsinβ tan(α+β)= tanα+tanβ1-tanαtanβtan(α-β)= tanα-tanβ1+tanαtanβ4. 二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2 cos2α-1=1-2 sin2α tan2α=2tanα1-tan2α5. 公式的变形 (1)升幂公式:1+cos2α=2cos2α 1—cos2α=2sin2α (2)降幂公式:cos2α=1+cos2α2 sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)全能公式(用tanα暗示其他三角函数值)sin2α=2tanα1+tan2α cos2α=1-tan2α1+tan2α tan2α=2tanα1-tan2α6. 拔出帮助角公式asinx +bcosx=a2+b2 sin(x+φ) (tanφ= ba )特别地:sinx±cosx= 2 sin(x±π4)7. 熟习情势的变形(若何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx 1-tanα1+tanα 1+tanα1-tanα若A.B 是锐角,A+B =π4,则(1+tanA )(1+tanB)=28. 在三角形中的结论若:A +B +C=π , A+B+C 2 =π2则有tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A2=1。

高一数学三角函数的诱导公式1

高一数学三角函数的诱导公式1
公式三: 公式四:
sin( ) sin cos( ) cos tan( ) tan
sin( ) sin cos( ) cos tan( ) tan
公式一 ~ 四可用下面的话来概括:
2k (k Z ), , 的三角函数值, 等于角的同名函数值,前面加上一个把 看成锐角时原函数值的符号。
练习:求下列三角函数值.
(1)sin405º ; (3)cos(-300 º ); (4)sin210 º; (2)cos390 º;
终边相 cos( 2k ) cos tan( 2k ) tan
(k Z )
公式三:
公式四:
公式一:
公式二:
sin( 2k ) sin sin( ) sin cos( 2k ) cos (k Z ) cos( ) cos tan( ) tan tan( 2k ) tan
公式二:
sin( ) sin cos( ) cos tan( ) tan sin( ) sin cos( ) cos tan( ) tan sin( ) sin cos( ) cos tan( ) tan
例1.利用公式求下列三角函数值: (1) sin210 º ; (2) cos225º ;
16 13 (3) sin(); (4)tan . 3 6 例2.把下列三角函数化为锐角三角函数: 11 17 (1)sin ; (2)sin( ) ; 10 3 (3) cos(51015'); (4) cos( 240 12 ').

三角函数诱导公式练习题-带答案

三角函数诱导公式练习题-带答案

三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

高一三角函数诱导公式练习题(带详解答案)

高一三角函数诱导公式练习题(带详解答案)

三角函数诱导公式1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33 C. 3 D .- 33.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。

三角函数诱导公式练习题非常经典含有--答案

三角函数诱导公式练习题非常经典含有--答案

一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A.-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC . 2π+2k π≤x ≤2π3+2k πD .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z )2.sin (-6π19)的值是( )A . 21 B .-21C .23 D .-233.下列三角函数:①sin (n π+3π4);②cos(2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π];⑤sin [(2n +1)π-3π](n ∈Z ).其中函数值与sinπ的值3相同的是()A.①②B.①③④C.②③⑤D.①③⑤4.若cos(π+α)=-10,5且α∈(-π,0),则tan(2π3+α)2的值为()A.-6B.363C.-6D.2625.设A、B、C是三角形的三个内角,下列关系恒成立的是()A.cos(A+B)=cos C B.sin(A+B)=sin C C.tan (A+B)=tan C D.sin2B A =sin2C 6.函数f(x)=cos3πx(x ∈Z)的值域为()A.{-1,-1,0,21,21} B .{-1,-21,21,1}C .{-1,-23,0,23,1} D .{-1,-23,23,1}二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos(α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α;(2)cos (2π3+α)=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B二、填空题7.-sin α-cos α 8.289三、解答题 9.43+1.10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++, 右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--,左边=右边,∴原等式成立. 11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21 =︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:(1)sin(π3-α)2=sin[π+(π-α)]=-sin(2π-2α)=-cosα.(2)cos(π3+α)=cos[π+2(π+α)]=-cos(2π+α)=sinα.2三角函数的诱导公式2一、选择题:1.已知sin(π+α)=23,则4sin(3π-α)值为()4A.1 B. —21 C.223 D. —232.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( )A. 23 B. 21 C.23±D. —233.化简:)2cos()2sin(21-∙-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sin α=sin βB.sin(α-π2) =sin βC.cos α=cos βD. cos(π2-α) =-cos β5.设tan θ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ),A. 51(4+5) B. 51(4-5)C. 51(4±5) D. 51(5-4)二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 .7.tan α=m ,则=+-+++)c o s(-s i n ()c o s(3s i n (απα)απ)απ .8.|sin α|=sin (-π+α),则α的取值范围是 .三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin3π4·cos6π25·tan4π5;(2)sin[(2n+1)π-3π2].13.设f(θ)=)cos()π(2cos23)2πsin()π2(sin cos2223θθθθθ-+++-++-+,求f(3π)的值.参考答案21.C 2.A 3.C 4.C 5.A6.±65π7.11-+m m8.[(2k-1) π,2kπ]9.原式=)cos(·sin()cos()ns(sinαα)παπα--+--αi=)cos?(sin)cos(sin2αααα--=sin α 10.161111.解:(1)sin 3π7=sin(2π+3π)=sin 3π=23.(2)cos 4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin(-45°)=-sin45°=-2.2注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sinπ4·cos6π25·tan4π5=sin3(π+π)·cos(4π+6π)·tan(π+4π)3=(-sinπ)·cos6π·tan4π=(-323)·23·1=-43.(2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++--- =θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cosθ-1,∴f(3π)=cos3π-1=21-1=-1.2三角函数公式1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanαcosαtanαcotα=12.诱导公式(奇变偶不变,符号看象限)(一)sin(π-α)=sinαsin(π+α)=-sinαcos(π-α)=-cosαcos(π+α)=-cosαtan(π-α)=-tanαtan(π+α)=tanαsin(2π-α)=-sinαsin(2π+α)=sinαcos(2π-α)=cosαcos(2π+α)=cosαtan(2π-α)=-tanαtan(2π+α)=tanα(二)sin(π2-α)=cosαsin(π2+α)=cosαcos(π2-α)=sin αcos(π2+α)=- sin αtan(π2-α)=cot αtan(π2+α)=-cot αsin(3π2-α)=-cos αsin(3π2+α)=-cos αcos(3π2-α)=-sin αcos(3π2+α)=sin αtan(3π2-α)=cot αtan(3π2+α)=-cot αsin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα3.两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin (α+β)=sinαcosβ+cosαsinβsin (α-β)=sinαcosβ-cosαsinβtan(α+β)=tanα+tanβ1-tanαtanβtan(α-β)= tanα-tanβ1+tanαtanβ4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2 cos2α-1=1-2 sin2αtan2α=2tanα1-tan2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2αsin2α=21-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tan αtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)万能公式(用tanα表示其他三角函数值)sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a )特殊地:sinx±cosx= 2sin(x±π4 )7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosxtanx+cotx若A、B是锐角,A+B=π4,则(1+tanA)(1+tanB)=2 8.在三角形中的结论若:A+B+C=π,A+B+C2=π2则有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tan C2+tanC2tanA2=1。

诱导公式练习题答案

诱导公式练习题答案

诱导公式练习题答案诱导公式是三角函数中常用的公式,主要用于将正弦、余弦等三角函数的角转换为锐角,从而简化计算。

以下是一些诱导公式的练习题及其答案。

# 练习题1:求 \(\sin(90^\circ - x)\) 的值。

答案:根据诱导公式,我们知道 \(\sin(90^\circ - x) = \cos(x)\)。

# 练习题2:计算 \(\cos(180^\circ - x)\)。

答案:根据诱导公式,\(\cos(180^\circ - x) = -\cos(x)\)。

# 练习题3:给出 \(\tan(270^\circ - x)\) 的表达式。

答案:\(\tan(270^\circ - x) = -\cot(x)\)。

# 练习题4:求 \(\sin(360^\circ - x)\) 的值。

答案:\(\sin(360^\circ - x) = -\sin(x)\)。

# 练习题5:计算 \(\cos(90^\circ + x)\)。

答案:\(\cos(90^\circ + x) = -\sin(x)\)。

# 练习题6:给出 \(\tan(180^\circ + x)\) 的表达式。

答案:\(\tan(180^\circ + x) = \tan(x)\)。

# 练习题7:求 \(\sin(270^\circ + x)\) 的值。

答案:\(\sin(270^\circ + x) = -\cos(x)\)。

# 练习题8:计算 \(\cos(360^\circ + x)\)。

答案:\(\cos(360^\circ + x) = \cos(x)\)。

这些练习题涵盖了诱导公式的基本应用,通过这些练习,学生可以更好地理解和掌握诱导公式,提高解决三角函数问题的能力。

高中数学-三角函数诱导公式练习题与答案

高中数学-三角函数诱导公式练习题与答案

三角函数定义及诱导公式练习题1.代数式 sin120 cos210 的值为( )A. 34B. 343 C.2D. 142.tan120 () A .33B.33C . 3D . 33.已知角 α 的终边经过点 (3a ,-4a)(a<0),则 sin α+cos α 等于( ) A. 1 5 B. 7 5C . 1 -D .- 57 5 4.已知扇形的面积为 2cm 2, 扇形圆心角 θ的弧度数是 4, 则扇形的周长为( ) (A)2cm(B)4cm (C)6cm(D)8cm5.已知3 cos()sin() 2 2 f ( ),则cos( ) tan() 25 f ( ) 的值为()3A .1 2B .-1 2C .32D . -326.已知 tan( )3 4 ,且3 ( , ) 2 2,则sin( ) 2( )A 、 4 5B 、 4 5C 、3 5D 、3 57.若角 的终边过点 (sin30 , cos30 ) ,则sin _______.8.已知(0, ) 2,cos 4 5,则sin( )_____________.9.已知 tan=3,则24sin3sin cos 24cossin cos.试卷第 1 页,总 2 页10.(14 分)已知tanα=,求证:(1) sin a cos asin a cos a=-;(2)sin2α+sinαcosα=.11.已知tan 2.(1)求3s insin 2coscos的值;cos()cos()sin(232)(2)求的值;sin(3)sin()cos()(3)若是第三象限角,求cos的值.12.已知sin( α-3π) =2cos( α-4π) ,求 5 2si(n-)+co(s -)的值. 32sin sin--(-) 2试卷第 2 页,总 2 页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

参考答案1.B【解析】o试题分析:180 ,故2o . 1203考点:弧度制与角度的相互转化. 2.A.【解析】试题分析:由诱导公式以可得,sin120 °cos210°=sin60 °×(-cos30 °)=-3 2×3 2 = 34, 选A.考点:诱导公式的应用.3.C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值. 由tan120 tan(180 60 ) tan60 3,选C.考点:诱导公式.4.A【解析】试题分析:r 5 5 ,sin 考点:三角函数的定义yr45, c os35,1sin cos . 故选A.55.C22=1 R=1,∴扇【解析】设扇形的半径为R,则错误!未找到引用源。

高一三角函数诱导公式练习题(带详解答案)

高一三角函数诱导公式练习题(带详解答案)

1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33C. 3 D .- 3 3.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝ ⎛⎭⎪⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 8.函数y =-2tan ⎝ ⎛⎭⎪⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12(k ∈Z) [解析] 求此函数的递减区间,也就是求y =2tan ⎝ ⎛⎭⎪⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝ ⎛⎭⎪⎫k π3-π4,k π3+π12,k ∈Z.。

高一三角函数诱导公式

高一三角函数诱导公式

1.3 三角函数的诱导公式(1)公式二:公式三:公式四:απαπα±-+,,2k 的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简化成“函数名不变,符号看象限”的口诀【典型例题】例1.求下列三角函数值(1)0240cos ; (2)π35sin; (3))322sin(π-; (4))1320cos(0-.例2.sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.例3.已知31)cos(=+x π,求下列函数值: (1) )2cos(x -π; (2) )cos(x -π.达标检测1. 求值: )35tan()623cos(449sin 2πππ---+的值为______.2. )217sin(3)643(tan )637tan(242πππ-+-+--的值为______. 3. 已知3sin()5a π+=,那么sin(2)a π-的的值为______. 4.在ABC ∆中,若cos A =,则s i n ()_A π-=若sin A =,则c o s (2)_A π-=.1.3三角函数的诱导公式(2)(1)公式五:ααπcos )2sin(=-, ααπsin )2cos(=-. (2)公式六:ααπcos )2sin(=+, .απ±2的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α 看成锐角时原函数值的符号.简化成“函数名改变,符号看象限”的口诀。

把α看成锐角,函数名奇变偶不变,符号看象限。

【典型例题】例1.证明:(1)ααπcos 23sin -=⎪⎭⎫ ⎝⎛- ; (2) ααπsin 23cos -=⎪⎭⎫ ⎝⎛-.例2.求下列三角函数值(1)⎪⎭⎫⎝⎛-βπ25sin ; (2))27cos(απ- ; (3) π65sin (用两种方法计算).例3.化简: )23cos()23sin()cos()2cos()sin(απαπαπαπαπ+-++-.例4. 已知,212sin -=⎪⎭⎫⎝⎛+απ计算:(1)()απ-2cos ;(2)()πα7tan -.【达标检测】1.化简: )29sin()sin()3sin()cos()211cos()2cos()cos()2sin(απαπαπαπαπαπαπαπ+-----++-=__________. 2.计算:⎪⎭⎫ ⎝⎛-++425tan 325cos 625sin πππ=_________.3.已知(),21sin -=+απ计算:(1)⎪⎭⎫ ⎝⎛-23cos πα= ________;(2)⎪⎭⎫ ⎝⎛-απ2tan =______.能力训练1 11sin(2)cos()cos()cos()229cos()sin(3)sin()sin()2πππαπαααππαπαπαα-++-----+2 ()()()()0000261sin .171sin 99sin .1071sin --+- 3 ()()αππααππα--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-2cos .2sin .25sin 2cos 4 ()()()ααα-+--sin 360tan cos 02 5已知0sin 75=,求00cos15,cos165. 6 已知:,212sin 计算-=⎪⎭⎫ ⎝⎛+απ(1)();2cos απ- (2)()πα7tan - 7 ()()0000660cos .330sin 750cos .420sin --+8 ⎪⎭⎫ ⎝⎛-++425tan 325cos 625sin πππ 9化简:790cos 250sin 430cos 290sin 21++10已知1cos()2πα+=-,322παπ ,则sin(2)πα-的值是( ). (A )23 (B) 21 (C)-23 (D)±23。

(完整版)高中数学-三角函数诱导公式练习题与答案

(完整版)高中数学-三角函数诱导公式练习题与答案

三角函数定义及诱导公式练习题代数式sin 120o cos21C °的值为(A.6 .已知 tan( ) 4 A 、4B5A. B. C. D.2. tan120 A.、.3.■■ 3贝U sin a+ cos a 等于()7 5a 的终边经过点 B.753. A.154. 已知扇形的面积为2cm,扇形圆心角B 的弧度数是4,则扇形的周长为( 已知角 (3a ,— 4a)(a <0), C . -15D .(A)2cm(B)4cm (C)6cm (D)8cm5 .已知f ()cos(— 2 cos(3 )si n()2,则 f( )tan()25§ )的值为(3“),则sin( ?)10. (14分)已知tan a =—,求证: /八 sin a cosa ⑴ 二_ _ ;sin a cosa(2)sin 2 a+ sin a COS a = - .11 .已知 tan 2.(1)求 3sin 一2CO 二的值; sin coscos( )cos( )sin()⑵求品盘窗勺的值;(3)若 是第三象限角,求cos 的值. 312.已知 sin ( a — 3n ) = 2cos( a — 4n ),求 si (2si n— — si n(—二)+ 5cos (2 —3-的值. )f(25 )=cos 325 325 =cos- 3 = cos 8 1 —=cos —= 3 3 2参考答案1. B【解析】 试题分析:180°,故1200 -.3考点:弧度制与角度的相互转化•2. A.【解析】试题分析:由诱导公式以可得,sin 120 ° cos210° =sin60 ° x (-cos30 ° )=- ^ x2十3,选A.考点:诱导公式的应用. 3. C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120 tan(18060 ) tan 603,选 C.考点:诱导公式• 4. A【解析】 试题分析:r 55 , sin —-, cos -, sin cos r 55考点:三角函数的定义 5. C【解析】设扇形的半径为R,则错误!未找到引用源。

三角函数诱导公式练习题附答案

三角函数诱导公式练习题附答案

三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、)12、已知,则的值是(A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()3A 、2mB 、±2mC 、D 、14、设 a=sin (sin20080),b=sin (cos20080),c=cos (sin20080),d=cos (cos20080),则 a ,b , c ,d 的大小关系是() A 、a <b <c <d B 、b <a <d <c C 、c <d <b <a D 、d <c <a <b△15、在ABC 中,①sin (A+B )+sinC ;②cos (B+C )+cosA ;③tan tan ;④,其中恒为定值的是( ) A 、②③ B 、①② C 、②④D 、③④16、已知 tan28°=a ,则 sin2008°=()A 、B 、C 、D 、17、设,则 值是( )A 、﹣1B 、1C 、D 、18、已知 f (x )=asin (πx+α)+bcos (πx+β)+4(a ,b ,α,β 为非零实数),f (2007)=5, 则 f (2008)=( )A 、3B 、5C 、1D 、不能确定19、给定函数①y=xcos (+x ),②y=1+sin 2(π+x ),③y=cos (cos ( +x ))中,偶函数的个数是( )A 、3B 、2C 、1D 、020 、 设角的值等于()A 、B 、﹣C 、D 、﹣21、在程序框图中,输入 f 0(x )=cosx ,则输出的是 f 4(x )=﹣csx ()A 、﹣sinxB 、sinxC 、cosxD 、﹣cosx二、填空题(共 9 小题)22、若(﹣4, )是角终边上一点,则 Z 的值为.△23、 ABC 的三个内角为 A 、B 、C ,当 A 为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)=.30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

三角函数诱导公式练习题附答案

三角函数诱导公式练习题附答案

三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

(完整版)三角函数诱导公式练习题附答案

(完整版)三角函数诱导公式练习题附答案

三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)= .30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

高中数学 三角函数诱导公式(带答案)

高中数学 三角函数诱导公式(带答案)

习题精炼一、选择题1、下列各式不正确的是 ( )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)=.3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312.3、0.4、0三、解答题1、7.2、25.3、22)41(=g , 5312()1,()s i n ()1,6233g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得2242()2(1)2f x x x x x =-=-+=22112()24x --+,当22x =时,max 1.f =。

三角函数 诱导公式专项练习(含答案)

三角函数 诱导公式专项练习(含答案)

三角函数诱导公式专项练习(含答案) 三角函数诱导公式专项练一、单选题1.sin(-600°)的值为()A。

-√3/2B。

-1C。

1D。

√3/22.cos(11π/3)的值为()A。

-√3/2B。

-13/2C。

√2D。

23.已知sin(30°+α)=√3/2,则cos(60°-α)的值为A。

1/2B。

-1/2C。

√3/2D。

-√3/24.已知cos(π/3+α)=-5/2,且α∈(2π/5,π),则XXX(α-π)=()A。

-34/4B。

-3C。

4D。

35.已知sin(π-α)=-2/√3,且α∈(-2,0),则tan(2π-α)的值为A。

2√5/5B。

-2√5/2√5C。

±5D。

√5/26.已知cos(π/4-α)=√2/2,则sin(α+π/4)=()A。

-3B。

1C。

√2D。

√14/47.已知sinα=3/5,2<α<π/2,则sin(2-α)=()A。

3/5B。

-3/5C。

4/5D。

-4/58.已知tanx=-12/5π,x∈(π/2,π),则cos(-x+3π/2)=()A。

5/13B。

-5/12C。

13D。

-12/139.如果cos(π+A)=-1,那么sin(π/2+A)=A。

-1/2B。

2C。

1D。

-110.已知cos(π/2-α)-3cosα/(sinα-cos(π+α))=2,则tanα=()A。

12/5B。

-3C。

1/2D。

-511.化简cos480°的值是()A。

1B。

-1C。

√3/2D。

-√3/212.cos(-585°)的值是()A。

√2/2B。

√3/2C。

-√3/2D。

-√2/213.已知角α的终边经过点P(-5,-12),则sin(3π/2+α)的值等于()A。

-5B。

-12/13C。

13D。

12/1314.已知cos(π+α)=2/3,则tanα=()A。

√55/2B。

2√5/52.已知cosα=2/5,-2/5<α<0,则tan(α+α)cos(-α)tanα的值为()答案:D解析:由cosα=2/5可得sinα=-√(21)/5,代入公式可得tan(α+α)cos(-α)tanα=-1/√3=-√3/3,故选D。

高一三角函数公式及诱导公式习题(附答案)

高一三角函数公式及诱导公式习题(附答案)

三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。

(完整)高一三角函数诱导公式练习题精选.docx

(完整)高一三角函数诱导公式练习题精选.docx

一、选择题1.如果 |cosx|=cos ( x+π),则 x 的取值集合是( )A .- π+2k π≤x ≤π+2k πB .- π +2k π≤x ≤3π+2k π22 2 2C . π +2k π≤x ≤3π+2k π D .( 2k+1) π≤x ≤2(k+1) π(以上 k ∈ Z )2 2 2. sin (- 19 π)的值是( )6A .1B .-1C .3D .- 322 223.下列三角函数:4 ππ π ) π-π]; ①sin ( n π+);② cos ( 2n π+ );③ sin ( 2n π+ );④ cos [( 2n+16 363⑤ s in [( 2n+1) π- π]( n ∈ Z ).3 其中函数值与 sin π的值相同的是( )3 A .①② B .①③④C .②③⑤D .①③⑤4.若 cos ( π+α) =-10 ,且 α∈(- π ,0),则 tan ( 3 π+α)的值为( )522A .-6B .633C .-6D .6225.设 A 、 B 、C 是三角形的三个内角,下列关系恒成立的是()A . cos ( A+B )=cosC B . sin ( A+B ) =sinC C . tan ( A+B ) =tanCD . sinAB=sinC226.函数 f (x ) =cosπx( x ∈ Z )的值域为()3A . { - 1,- 1, 0, 1, 1}B . { - 1,- 1, 1, 1}2222C . { - 1,-3,0,3, 1}D . { - 1,-3 , 3, 1}2222π+α )=3,则 sin(3π-α)值为(7.已知 sin( )4241 B. —1 3 3 A.C.D. —22228.化 :1 2sin(2) ?cos( 2) 得()A.sin2+cos2B.cos2-sin2C.sin2-cos2D. ±(cos2-sin2)9.已知 α和 β的 关于 x 称, 下列各式中正确的是()A.sin α =sin βB. sin( 2β- α ) =sinC.cos α =cos βD. cos( 2-α ) =-cos β二、填空10. tan α =m , sin(α 3 ) cos(π α).sin( α)- cos(π α)11. |sin α |=sin (- +α), α的取 范 是.12.若 α是第三象限角,1 2 sin(π) cos(π ) =_________ .222213. sin 1°+sin 2°+sin 3° +⋯ +sin89°=_________ .14. tan1 tan 2 tan 3tan 89.15. 若 sin3 cos0 ,cos 2sin 的.2 cos3 sin16. cos( 945 ).17.化 sin 2sin 2sin 2 sin 2cos 2 cos 2.三、解答18.求 : sin (- 660 °)cos420 °- tan330 cot °(- 690 °).19. 明:2 sin(π) cos1tan(9 π ) 1 .1 2 sin 2tan(π )120.已知 cos α=1, cos ( α+β) =1,求 : cos ( 2α+β) = 1.3321. 已知 sin() 1,求 sin(2 )cot() cos的 .2422. 已知 sin. 求 cos 和 tan 的 .523. 已知 sin()1 ,求 tan(2) tan1 2sin 2900 cos430024. 化 :. (sin 2500cos7900 ) 225.sin 2 () cos() cot(2 )化 :tan() cos3( ).26.求证: tan(2 π) sin( 2 π) cos(6 π) =tanθ.cos(π) sin(5 π)tan cotsin cos27. 求证:cscsec2 cos3sin2 (2 π)sin( π) 3π28.设 f (θ) =2cos2 (π2,求 f()的值 .2)cos( )3三角函数公式1.同角三角函数基本关系式sin2α+ cos2α =1sinαcosα =tanαtanα cotα =12.诱导公式(奇变偶不变,符号看象限)(一)sin(π-α )= sinαsin( π +α) =-sin αcos(π-α )= -cosαcos(π +α )= -cosαtan(π-α )=-tanαtan(π +α )= tanαsin(2π-α )=-sin αsin(2π +α )= sinαcos(2π-α )= cosαcos(2π +α) = cosαtan(2π-α )= -tanαtan(2π +α) =tanα(二)ππsin(-α )= cosαsin( 2+α)=cosα2ππcos( 2-α )= sinαcos( 2+α )= - sin αππtan( 2-α ) =cotαtan( 2 +α )= -cotα3π3πsin( 2-α )=-cosαsin( 2+α )= -cosα3π3πcos( 2-α )= -sinαcos( 2+α) =sinα3π3πtan( 2-α )= cotαtan( 2+α )= -cotαsin(-α )=- sinαcos(-α )=cosαtan(-α )= -tanα3.两角和与差的三角函数cos(α +β )=cosα cosβ- sinα sinβcos(α-β )=cosα cosβ+ sinα sinβsin (α +β )=sin α cosβ+ cosα sinβsin (α-β )=sinα cosβ- cosα sinβtanα +tanβtan(α +β )=1- tanα tanβtan(α-β )=tanα- tanβ1+ tanα tanβ4.二倍角公式sin2α =2sin α cosαcos2α =cos2α- sin2α= 2 cos2α- 1= 1- 2 sin2α2tanαtan2α=1-tan2α5.公式的变形(1)升幂公式: 1+ cos2α= 2cos 2α 1— cos2α= 2sin 2α(2) 降幂公式: cos 2 α=1+ cos2α sin 2α= 1- cos2α2 2 ( 3) 正切公式变形: tan α +tan β= tan(α +β)(1- tan α tan β) tan α- tan β= tan(α-β ) ( 1+ tan α tan β )(4)万能公式(用 tan α表示其他三角函数值)2tan α1- tan 2α2tan αsin2α= 1+tan 2α cos2α= 1+tan 2αtan2α= 1- tan 2 α6. 插入辅助角公式asinx + bcosx= a 2+b2bsin(x+ φ ) (tan φ = a)特殊地: sinx ± cosx = 2sin(x ± π)47. 在三角形中的结论若: A +B +C=π , A+B+Cπ= 2 则有2tanA + tanB + tanC=tanAtanBtanCABBCCAtan 2 tan 2 + tan 2 tan 2 + tan 2 tan 2 = 1。

(完整版)三角函数诱导公式专项练习(含答案)

(完整版)三角函数诱导公式专项练习(含答案)

三角函数 诱导公式专项练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.sin (−600∘)=( ) A . −√32 B . −12C . 12D .√322.cos 11π3的值为( ) A . −√32B . −12 C .√32D . 123.已知sin(30°+α)=√32,则cos (60°–α)的值为A . 12 B . −12 C .√32 D . –√324.已知 cos (π2+α)=−35,且 α∈(π2,π),则tan (α−π)=( ) A . −34 B . −43 C . 34 D . 435.已知sin(π-α)=-23,且α∈(-π2,0),则tan(2π-α)的值为( )A .2√55B . -2√55C . ±2√55 D .√526.已知cos(π4−α)=√24,则sin(α+π4)=( )A . −34B . 14C . √24D .√1447.已知sinα=35,π2<α<3π2,则sin(7π2−α)=( ) A . 35B . −35C . 45D . −458.已知 tanx =−125, x ∈(π2,π),则cos⁡(−x +3π2)=( )A .513B . -513C .1213D . -12139.如果cos(π+A)=−12,那么sin(π2+A)= A . -12 B . 12 C . 1 D . -1 10.已知cos(π2−α)−3cosαsinα−cos (π+α)=2,则tanα=( ) A . 15 B . −23 C . 12 D . −5 11.化简cos480∘的值是( )A.12B.−12C.√32D.−√3212.cos(−585°)的值是()A.√22B.√32C.−√32D.−√2213.已知角α的终边经过点P(−5,−12),则sin(3π2+α)的值等于()A.−513B.−1213C.513D.121314.已知cos(π+α)=23,则tanα=()A.√52B.2√55C.±√52D.±2√5515.已知cosα=15,−π2<α<0,则cos(π2+α)tan(α+π)cos(−α)tanα的值为()A.2√6B.−2√6C.−√612D.√61216.已知sinα=13,α∈(π2,π)则cos(−α)=()A.13B.−13C.2√23D.−2√2317.已知sin(π+α)=45,且α是第四象限角,则cos(α−2π)的值是( )A.−35B.35C.±35D.4518.已知sin=,则cos=( ) A.B.C.-D.-19.已知cos α=k,k∈R,α∈,则sin(π+α)=( ) A.-B.C.±D.-k20.=( )A.sin 2-cos 2B.sin 2+cos 2C.±(sin 2-cos 2)D.cos 2-sin 221.sin585∘的值为A.√22B.−√22C.√32D.−√3222.sin(−1020°)=()A.12B.−12C.√32D.−√3223.若α∈(0,π),sin(π−α)+cosα=√23,则sinα−cosα的值为( )A .√23B . −√23C . 43 D . −4324.已知α∈(π2,π)且sin (π+α)=−35,则tan α=( ) A . −34B . 43C . 34D . −4325.已知sin (π2+θ)+3cos (π−θ)=sin (−θ),则sinθcosθ+cos 2θ=( )A . 15B . 25C . 35 D .√5526.若sinθ−cosθ=43,且θ∈(34π,π),则sin(π−θ)−cos(π−θ)=( ) A . −√23B .√23C . −43D . 4327.已知sin (π2+θ)+3cos (π−θ)=sin (−θ),则sinθcosθ+cos 2θ=( ) A . 15 B . 25 C . 35 D . √5528.已知sin(2015π2+α)=13,则cos(π−2α)的值为( )A . 13 B . -13 C . 79 D . −79 29.若α∈(0,π),sin(π−α)+cosα=√23,则sinα−cosα的值为( )A .√23B . −√23C . 43 D . −4330.已知a =tan (−π6),b =cos (−23π4),c =sin25π3,则a,b,c 的大小关系是( )A . b >a >cB . a >b >cC . c >b >aD . a >c >b 31.cos7500= A .√32B . 12C . −√32D . −1232.sin (−236π)的值等于( )A .√32B . −12 C . 12 D . −√3233.sin300°+tan600°+cos (−210°)的值的( ) A . −√3 B . 0 C . −12+√32D . 12+√3234.已知α∈(π2,3π2),tan(α−π)=−34,则sinα+cosα等于( ). A . ±15 B . −15 C . 15 D . −75 35.已知sin1100=a ,则cos200的值为( )A . aB . −aC . √1−a 2D . −√1−a 2 36.点A (cos2018∘,tan2018∘)在直角坐标平面上位于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 37.如果sin (π−α)=13,那么sin (π+α)−cos (π2−α)等于( ) A . −23B . 23C .2√23 D . −2√2338.已知角α的终边过点(a,−2),若tan (π+α)=3,则实数a = A . 6 B . −23C . −6D . 2339.cos (2π+α)tan (π+α)sin (π−α)cos (π2−α)cos (−α)=A . 1B . −1C . tan αD . −tan α 40.已知sin (−α)=−√53,则cos (π2+α)的值为( )A . √53B . −√53C . 23 D . −23参考答案1.D【解析】【分析】直接运用诱导公式,转化为特殊角的三角函数值求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的诱导公式1一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( ) A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z )2.sin (-6π19)的值是( ) A .21 B .-21 C .23 D .-23 3.下列三角函数: ①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin 3π的值相同的是( ) A .①② B .①③④C .②③⑤D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36C .-26D .265.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( ) A .cos (A +B )=cos C B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2B A +=sin 2C6.函数f (x )=cos 3πx(x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos (α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α; (2)cos (2π3+α)=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边, ∴原等式成立.14证明:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cos α. (2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sin α.三角函数的诱导公式2一、选择题: 1.已知sin(4π+α)=23,则sin(43π-α)值为( )A.21 B. —21C. 23D. —232.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( ) A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4)二、填空题: 6.cos(π-x)=23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin (-π+α),则α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值: (1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:(1)sin 3π7=sin (2π+3π)=sin 3π=23.(2)cos4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22. 注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin 3π4·cos 6π25·tan 4π5=sin (π+3π)·cos (4π+6π)·tan (π+4π) =(-sin3π)·cos 6π·tan 4π=(-23)·23·1=-43.(2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++ =θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++- =θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f (3π)=cos 3π-1=21-1=-21.三角函数公式1. 同角三角函数基本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α (二) sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ) (4)万能公式(用tanα表示其他三角函数值)sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=π4,则(1+tanA)(1+tanB)=28.在三角形中的结论若:A+B+C=π, A+B+C2=π2则有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1。

相关文档
最新文档