新课标人教A版数学必修1教案完整版
高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案
第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。
人教a版数学必修1教案6篇
人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。
教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。
教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。
问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
要想确定一个等差数列,只要知道它的首项a1和公差d。
已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。
师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。
(第一次类比)类似的,我们提出这样一个问题。
问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。
(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。
而这个数列就是我们今天要研究的等比数列了。
)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做公比。
师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。
人教课标A版数学必修一1.1.1集合的含义与表示教案
1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。
[教案精品]新课标高中数学人教A版必修一全册教案1.1.1集合的含义与表示
通过讨
A ,记作 a A ,读作“ a 不属于 A ”. 4.集合的元素的基本性质; ( 1)确定性: 集合的元素必须是确定
的.不能确定的对象不能构成集合. ( 2)互异性: 集合的元素一定是互异
的.相同的几个对象归于同一个集合时只 能算作一个元素.
的点的全体构成的集合.
“不属于”关系.
3.元素与集合的关系:
教学环节
教学内容
集合通常用英语大写字母
A 、 B 、 C,
表示,它们的元素通常用英语小写字母
a、
b、 c, 表示.
如果 a是集合 A 的元素,就说 a 属于 A ,
师生互动
设计意图
念 深化
记作 a∈A ,读作“ a属于 A ”. 教师提问: “我们班中高个子
题.
然后,依据元素个数的多少将
通过观 察实例, 发 现集合的 元素个数 具有不同 的类别, 从 而使学生
5.空集: 不含任何元素的集合,
集合分类. 记作
感受到有
让学生指出 ? 哪 些 是 无 限 集、空集存
6.集合的分类: 按所含元素的个数分
为有限集和无限集.
( 3 )平行四边形的全体构成的集
合.
并提问:① 你能指出各个集合的元素 吗?② 各个集合的元素与集合之间
引入 集合 是什么关系?③ 例( 2 )中数 0, –2
语言 描述 是这个集合的元素吗 ?
集合. 学生讨论交流,弄清元素与集
( 4 )平面上与一定点 O 的距离等于 r 合之间是从属关系,即“属于”或
.
3 .情感、态度与价值观
( 1)了解集合的含义,体会元素与集合的
新课程人教A版必修1全部教案
第一章集合与函数概念§1.1集合1.1.1集合的含义与表示(第一课时)教学时间:2004年8月26日星期四教学班级:高一(11、12)班教学目标:1.理解集合的含义。
2.了解元素与集合的表示方法及相互关系。
3.熟记有关数集的专用符号。
4.培养学生认识事物的能力。
教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。
复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理x-<的解的集合,到一个定点的距离等于定长的点的集合,到一条线数的集合,不等式73段的两个端点距离相等的点的集合等等)。
(II)讲授新课1.集合含义通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。
说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
问题4:由此上述例中集合的元素分别是什么?由以上四个问题可知,集合元素具有三个特征:(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)若a是集合A中的元素,则称a属于集合A,记作a∈A;若a不是集合A的元素,则称a不属于集合A,记作a∉A。
新课标人教A版数学必修1全套教案
新课标人教A版数学必修1全套教案课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力、函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识、1、了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号、2、理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用、3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力、4、能在具体情境中,了解全集与空集的含义、5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力、6、理解在给定集合中,一个子集的补集的含义,会求给定子集的补集、7、能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用、8、学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法、9、了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象、10、通过具体实例,了解简单的分段函数,并能简单应用、11、结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形、12、学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法、13、通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例、二、编写意图与教学建议1、教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力、教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算、教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学、2、教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念、教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
人教a版高中数学必修一教案
人教a版高中数学必修一教案
课题:函数与导数
教材版本:人教A版高中数学必修一
课时:1课时
教学目标:
1. 掌握函数的概念和性质。
2. 熟练运用导数的定义和性质。
3. 能够解决相关计算和应用问题。
教学重点和难点:
重点:函数的概念和性质、导数的定义和性质。
难点:导数在实际问题中的应用。
教学过程:
一、导入(5分钟)
教师通过提问和讨论引入函数与导数的定义,让学生了解这两个概念在数学中的重要性。
二、学习函数的概念与性质(15分钟)
1. 回顾函数的定义并举例说明。
2. 学习函数的性质:奇偶性、周期性、单调性等。
3. 练习相关题目巩固概念和性质。
三、学习导数的定义与性质(20分钟)
1. 学习导数的定义和符号表示。
2. 探讨导数的性质:可导连续、导数的四则运算规则等。
3. 引导学生做相关计算练习。
四、应用(10分钟)
1. 联系实际问题,让学生练习用导数解决问题。
2. 梳理学习内容,让学生总结函数与导数的重点知识点。
五、作业布置(5分钟)
布置相关练习题目,巩固所学知识。
教学反思:
通过本节课的教学,学生对函数和导数有了更深入的了解,掌握了重要概念和性质。
在未来的学习中,将继续加强练习,提高计算能力和应用能力。
高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案
第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。
人教版高一数学必修一教案(优秀4篇)
人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。
二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
新课标人教A版高中数学必修1教案完整版
第一章 集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
高中数学人教A版(2019新教材) 必修(第一册)全册分章节分课时教学案
第一章集合与函数概念1.1集合1.1.1集合的含义与表示第1课时集合的含义[目标] 1.通过实例,能说出集合的含义,体会元素与集合的“属于”关系;2.记住集合元素的特性以及常用数集;3.会用集合元素的特性解决相关问题.[重点] 用元素与集合的“属于”关系判断元素与集合的关系;用集合元素的特性解答相关问题.[难点] 集合元素特性的应用.知识点一元素与集合的含义[填一填]1.定义(1)元素:一般地,把所研究的对象统称为元素,常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的总体叫做集合(简称为集),常用大写拉丁字母A,B,C,…表示.2.集合相等:指构成两个集合的元素是一样的.3.集合中元素的特性:确定性、互异性和无序性.[答一答]1.以下对象的全体能否构成集合?(1)河北《红对勾》书业的员工;(2)平昌冬奥会速滑比赛中滑得很快的选手;(3)一次函数y=kx+b(k≠0)的图象上的若干个点;(4)不超过2 019的非负数.提示:(1)能构成集合.河北《红对勾》书业的员工是确定的,因此有一个明确的标准,可以确定出来.所以能构成一个集合.(2)“滑得很快”无明确的标准,对于某位选手是否“滑得很快”无法客观地判断,因此,“平昌冬奥会速滑比赛中滑得很快的选手”不能构成一个集合.(3)“若干个点”是模糊的概念,因此与之对应的对象都是不确定的,自然它们不能构成集合,故“一次函数y=kx+b(k≠0)的图象上的若干个点”不能构成一个集合.(4)任给一个实数x,可以明确地判断x是不是“不超过 2 019的非负数”,即“0≤x≤2 019”与“x<0或x>2 019”,两者必居其一,且仅居其一,故“不超过2 019的非负数”能构成一个集合.2.若集合A由0,1与x三个元素组成,则x的取值有限制吗?为什么?提示:有限制,x≠0且x≠1.因为集合中的任意两个元素必须是互异的.知识点二元素与集合的关系[填一填]如果a是集合A中的元素,就说a属于(belong to)集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.[答一答]3.若集合A是由元素1,2,3,4所组成的集合,问1与A,5与A有什么关系?提示:1∈A,5∉A.知识点三常用数集及表示[填一填][答一答]4.常用的数集符号N,N*,N+有什么区别?提示:(1)N为非负整数集(即自然数集),而N*或N+表示正整数集,不同之处就是N 包括元素0,而N*或N+不包括元素0.(2)N*和N+的含义是一样的,初学者往往误记为N*或N+,为避免出错,对于N*和N 可形象地记为“星星(*)在天上,十字架(+)在地下”.+5.用符号“∈”或“∉”填空. (1)1∈N *;(2)-3∉N ;(3)13∈Q ;; (5)-12∈R.类型一 集合的概念[例1] 下列所给的对象能构成集合的是________. (1)所有的正三角形;(2)高一数学必修1课本上的所有难题; (3)比较接近1的正数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点距离等于1的点的集合; (6)参加里约奥运会的年轻运动员. [答案] (1)(4)(5)[解析] (1)能构成集合.其中的元素需满足三条边相等;(2)不能构成集合.因“难题”的标准是模糊的,不确定的,故不能构成集合; (3)不能构成集合.因“比较接近1”的标准不明确,所以元素不确定,故不能构成集合;(4)能构成集合.其中的元素是“16岁以下的学生”;(5)能构成集合.其中的元素是“到坐标原点的距离等于1的点”;(6)不能构成集合.因为“年轻”的标准是模糊的,不确定的,故而不能构成集合.判断元素能否构成集合,关键是集合中元素的确定性,即能否找到一个明确的评判标准来衡量元素是否为集合中的元素,若标准明确则可以构成集合,否则不可以.[变式训练1] 下列对象能组成集合的是( D ) A .3的所有近似值B .某个班级中学习好的所有同学C .2018年全国高考数学试卷中所有难题D.屠呦呦实验室的全体工作人员解析:D中的对象都是确定的,而且是不同的.A中的“近似值”,B中的“学习好”,C中的“难题”标准不明确,不满足确定性,因此A,B,C都不能构成集合.类型二集合中元素的特性命题视角1:集合元素的互异性[例2]已知集合A中含有两个元素a和a2,若1∈A,求实数a的值.[分析]本题中已知集合A中有两个元素且1∈A,根据集合中元素的特点需分a=1或a2=1两种情况,另外还要注意集合中元素的互异性.根据集合中元素的确定性,可以解出字母的所有可能值,再根据集合中元素的互异性对集合中的元素进行检验.另外,利用集合中元素的特性解题时,要注意分类讨论思想的应用.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A有一个元素,∴a≠1.当a=-1时,集合A含有两个元素1,-1,符合互异性.∴a=-1.当一个集合中的元素含字母时,可根据题意结合集合中元素的确定性求出集合中字母的所有取值,再根据集合中元素的互异性进行检验.[变式训练2](1)若集合M中的三个元素是△ABC的三边长,则△ABC一定不是(D)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形(2)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是(C)A.1B.-2C.6D.2解析:(1)集合中任何两个元素不相同.(2)由题意知a2≠4,2-a≠4,a2≠2-a,解得a≠±2,且a≠1.结合选项知C正确.故选C.命题视角2:集合元素的无序性[例3] 集合A 中含有三个元素0,ba ,b ,集合B 中含有三个元素1,a +b ,a ,若A ,B 两个集合相等,求a 2 019+b 2 019的值.[分析] 由两个集合相等,所含元素相同列出a ,b 的关系式,解出a 与b ,再求a 2 019+b 2 019的值.[解] 由两个集合相等易知a ≠0,a ≠1,故a +b =0,且b =1或ba =1.若b =1,由a +b =0得a =-1,经验证,符合题意;若ba =1,则a =b ,结合a +b =0,可知a =b =0,不符合题意.综上知a =-1,b =1. 所以a 2 019+b 2 019=(-1)2 019+12 019=0.两个集合相等,元素相同,因为集合元素无序,所以要进行讨论.同时还需要对集合求值问题代入验证,注意集合中元素的互异性.[变式训练3] 集合A 由1,3,5,7四个元素组成,已知实数a ,b ∈A ,那么ab 的不同值有( B )A .12个B .13个C .16个D .17个解析:a ,b 是集合A 的元素,ab 的值会因a ,b 的顺序不同而不同.a ,b 所取的值按顺序分别为:1,1;3,3;5,5;7,7;1,3;3,1;1,5;5,1;1,7;7,1;3,5;5,3;3,7;7,3;5,7;7,5,其对应的ab 有13个不同的值.类型三 元素与集合的关系[例4] (1)给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N . 其中正确的个数为( ) A .1 B .2 C .3D .4(2)集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.[答案] (1)B (2)0,1,2[解析] (1)12是实数;2是无理数;|-3|=3是自然数;|-3|=3是无理数;0是自然数.故①②正确,③④⑤不正确.(2)由63-x ∈N ,x ∈N 知x ≥0,63-x≥0,且x ≠3,故0≤x <3.又x ∈N ,故x =0,1,2. 当x =0时,63-0=2∈N ,当x =1时,63-1=3∈N ,当x =2时,63-2=6∈N .故集合A 中的元素为0,1,2.判断一个元素是否属于某一集合,就是判断这个元素是否满足该集合元素的条件.若满足,就是“属于”关系;若不满足,就是“不属于”关系.特别注意,符号“∈”与“∉”只表示元素与集合的关系.[变式训练4] 已知不等式3x +2>0的解集为M . (1)试判断元素-1,0与集合M 的关系;(2)若a -1是集合M 中的元素,求a 的取值范围. 解:(1)∵3×(-1)+2=-1<0, ∴-1不是集合M 中的元素,∴-1∉M . 又3×0+2=2>0,∴0是集合M 中的元素,∴0∈M . (2)∵a -1∈M ,∴3(a -1)+2>0. ∴3a >1,∴a >13.1.下列各组对象不能构成集合的是( B ) A .某中学所有身高超过1.8米的大个子 B .约等于0的实数 C .某市全体中学生D .北京大学建校以来的所有毕业生解析:由于“约等于0”没有一个明确的标准,因此B 中对象不能构成集合.2.下列命题中,正确命题的个数是( C )①集合N *中最小的数是1;②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2;④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,a ∉N *,故②错误;若a ∈N *,则a 的最小值是1,同理,b ∈N *,b 的最小值也是1,∴当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合中元素的互异性,知④是错误的.3.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M ,则下列判断正确的是( B )A .0∈MB .-1∈MC .3∉MD .1∈M解析:当a ,b 全为正数时,代数式的值是3;当a ,b 全是负数时,代数式的值是-1;当a ,b 是一正一负时,代数式的值是-1.综上可知B 正确.4.集合A 由元素-1和2构成,集合B 是方程x 2+ax +b =0的解,若A =B ,则a +b =-3.解析:∵A =B ,∴方程x 2+ax +b =0的解是-1或2. ∴a =-1,b =-2,∴a +b =-3.5.已知集合A 由a 2-a +1,|a +1|两个元素构成,若3∈A ,求a 的值. 解:∵3∈A ,∴a 2-a +1=3或|a +1|=3. ①若a 2-a +1=3,则a =2或a =-1.当a =2时,|a +1|=3,此时集合A 中含有两个3,因此应舍去. 当a =-1时,|a +1|=0≠3,满足题意. ②若|a +1|=3,则a =-4或a =2(舍去). 当a =-4时,a 2-a +1=21≠3,满足题意. 综上可知a =-1或a =-4.——本课须掌握的三大问题1.理解集合的概念,关键是抓住集合中元素的三个特性:确定性、互异性和无序性.特别是处理含有参数的集合问题时,一定要注意集合中元素的互异性,即在求出参数的取值或取值范围后,一定要检验集合中元素的互异性.2.关于特定集合N ,N *(N +),Z ,Q ,R 等的意义是约定俗成的,解题时作为已知使用,不必重述它们的意义.3.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果,“∈”与“∉”具有方向性,左边是元素,右边是集合.学习至此,请完成课时作业1第2课时集合的表示[目标] 1.掌握集合的两种表示方法(列举法和描述法);2.能够运用集合的两种表示方法表示一些简单集合.[重点] 集合的两种表示方法及其运用.[难点] 对描述法表示集合的理解.知识点一列举法[填一填]把集合的元素一一列举出来,并用花括号“{__}”括起来表示集合的方法叫做列举法.{}表示“所有”的含义,不能省略,元素之间用“,”隔开,而不能用“、”;书写时不需要考虑元素的顺序.[答一答]1.实数集也可以写成{实数},那么能写成{实数集}或{全体实数}吗?提示:不能,因为花括号“{}”表示“所有、全部”的意思.2.列举法能表示元素个数很少的有限集,那么可以用列举法表示无限集吗?提示:对于所含元素有规律的无限集也可以用列举法表示,如正自然数集可以用列举法表示为{1,2,3,4,5,…}.3.集合{(1,2)}与{(2,1)}是否为相等集合?提示:不是.知识点二 描述法[填一填]1.用集合所含元素的共同特征表示集合的方法称为描述法. 2.具体方法在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[答一答]4.集合{x |x >3}与集合{t |t >3}表示同一个集合吗?提示:虽然两个集合的代表元素的符号(字母)不同,但实质上它们均表示大于3的所有实数,故表示同一个集合.类型一 用列举法表示集合[例1] (1)若集合A ={(1,2),(3,4)},则集合A 中元素的个数是( ) A .1 B .2 C .3D .4(2)用列举法表示下列集合.①不大于10的非负偶数组成的集合; ②方程x 2=x 的所有实数解组成的集合; ③直线y =2x +1与y 轴的交点所组成的集合;④方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解.[答案] (1)B (2)见解析[解析] (1)集合A ={(1,2),(3,4)}中有两个元素(1,2)和(3,4).(2)解:①因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.②方程x 2=x 的解是x =0或x =1,所以方程的解组成的集合为{0,1}.③将x =0代入y =2x +1,得y =1,即交点是(0,1),故两直线的交点组成的集合是{(0,1)}.④解方程组⎩⎪⎨⎪⎧ x +y =1,x -y =-1,得⎩⎪⎨⎪⎧x =0,y =1.∴用列举法表示方程组⎩⎪⎨⎪⎧x +y =1,x -y =-1的解集为{(0,1)}.用列举法表示集合应注意的三点,(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)集合中的元素一定要写全,但不能重复;(3)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.[变式训练1] 用列举法表示下列集合: (1)15的正约数组成的集合; (2)所有正整数组成的集合;(3)直线y =x 与y =2x -1的交点组成的集合. 解:(1){1,3,5,15}.(2)正整数有1,2,3,…,所求集合用列举法表示为{1,2,3,…}.(3)方程组⎩⎪⎨⎪⎧ y =x ,y =2x -1的解是⎩⎪⎨⎪⎧x =1,y =1,所求集合用列举法表示为{(1,1)}.类型二 用描述法表示集合[例2] 用描述法表示下列集合: (1)不等式2x -7<3的解集A ;(2)二次函数y =x 2+1的函数值组成的集合B ; (3)被3除余2的正整数的集合C ;(4)平面直角坐标系内坐标轴上的点组成的集合D .[分析] 先确定集合元素的符号,再把元素的共同特征通过提炼加工后写在竖线后面. [解] (1)解2x -7<3得x <5, 所以A ={x |x <5}.(2)函数值组成的集合就是y 的取值集合,所以B ={y |y =x 2+1,x ∈R }.(3)被3除余2的正整数可以表示为3n +2(n ∈N ),所以集合C ={x |x =3n +2,n ∈N }. (4)平面直角坐标系中坐标轴上的点的共同特征是至少有一个坐标为0, 所以D ={(x ,y )|x ·y =0,x ∈R ,y ∈R }.(1)用描述法表示集合,应先弄清集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序实数对来代表其元素.(2)若描述部分出现元素记号以外的字母时,要对新字母说明其含义或指出其取值范围.[变式训练2] 用描述法表示下列集合: (1)函数y =-x 的图象上所有点组成的集合; (2)方程x 2+22x +121=0的解集;(3)数轴上离原点的距离大于3的点组成的集合;(4)⎩⎨⎧⎭⎬⎫13,12,35,23,57,…. 解:(1){(x ,y )|y =-x ,x ∈R ,y ∈R }. (2){x |x =-11}.(3)数轴上离原点的距离大于3的点组成的集合等于绝对值大于3的实数组成的集合,则数轴上离原点的距离大于3的点组成的集合可表示为{x ∈R ||x |>3}.(4)先统一形式13,24,35,46,57,…,找出规律,集合表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =n n +2,n ∈N *.类型三 两种方法的灵活应用[例3] 用适当的方法表示下列集合:(1)方程组⎩⎪⎨⎪⎧2x -3y =14,3x +2y =8的解组成的集合;(2)1 000以内被3除余2的正整数组成的集合; (3)所有的正方形组成的集合;(4)抛物线y =x 2上的所有点组成的集合.[分析] (1)中的元素个数很少,用列举法表示;(2)是有限集,但个数较多,用描述法;(3)(4)是无限集,用描述法表示.[解] (1)解方程组⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8,得⎩⎪⎨⎪⎧x =4,y =-2,故该集合用列举法可表示为{(4,-2)}.该集合也可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧ 2x -3y =14,3x +2y =8.(2)设集合的代表元素是x ,则该集合用描述法可表示为{x |x =3k +2,k ∈N ,且k ≤332}.(3)集合用描述法表示为{x |x 是正方形}或{正方形}. (4)集合用描述法表示为{(x ,y )|y =x 2}.当集合的元素个数很少(很容易写出全部元素)时,常用列举法表示集合;当集合的元素个数较多(不易写出全部元素)时,常用描述法表示集合.对一些元素有规律的无限集,也可用列举法表示.如正奇数集也可写为{1,3,5,7,9,…}.但值得注意的是,并不是每一个集合都可以用两种方法表示出来.[变式训练3] 用适当的方法表示下列集合: (1)大于2且小于5的有理数组成的集合; (2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴距离相等的点的集合. 解:(1)用描述法表示为{x |2<x <5,且x ∈Q }. (2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |,所以该集合用描述法表示为{(x ,y )||y |=|x |}.1.集合{x ∈N |x <5}的另一种表示方法是( A ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5}D .{1,2,3,4,5}解析:由题x ∈N ,且x <5,∴x 的值为0,1,2,3,4,用列举法表示为{0,1,2,3,4}.2.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( C )A .{x =1,y =1}B .{1}C .{(1,1)}D .{(x ,y )|(1,1)}解析:方程组的解集中元素应是有序数对形式,排除A ,B ,而D 中的条件是点(1,1),不含x ,y ,排除D.3.集合{x |x =a ,a <36,x ∈N },用列举法表示为{0,1,2,3,4,5}. 解析:由a <36,可得a <6,即x <6,又x ∈N ,故x 只能取0,1,2,3,4,5. 4.能被2整除的正整数的集合,用描述法可表示为{x |x =2n ,n ∈N +}. 解析:正整数中所有的偶数均能被2整除. 5.用适当的方法表示下列集合:(1)已知集合P ={x |x =2n,0≤n ≤2,且n ∈N }; (2)能被3整除且大于4小于15的自然数组成的集合; (3)x 2-4的一次因式组成的集合;(4)由方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解所组成的集合.解:(1)用列举法表示为P ={0,2,4}.(2)可用列举法表示为{6,9,12};也可用描述法表示为{x |x =3n ,4<x <15,且n ∈N }. (3)用列举法表示为{x +2,x -2}.(4)可用列举法表示为{(1,2)},也可用描述法表示为{(x ,y )|x =1,y =2}.——本课须掌握的两大问题1.表示集合的要求:(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则. (2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)元素具有怎样的属性.当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.学习至此,请完成课时作业2 学科素养培优精品微课堂 “形似异质”的集合的表示开讲啦 集合的类型有多种形式,可以是数集、点集、图形集或是其他类型的集合,判断它是哪种类型的集合主要根据代表元素的类型来判断.[典例] 有下面三个集合:①A ={x ∈R |y =x 2+1};②B ={y ∈R |y =x 2+1};③C ={(x ,y )|y =x 2+1,x ∈R ,y ∈R }.它们是不是相同集合,为什么?[分析] 分析各集合中代表元素是哪种类型以及对各元素所具有的属性作出判断. [解] 对于集合A ,其代表元素为x ,x 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1中自变量x 的取值范围,因为函数y =x 2+1中自变量x 的取值范围是R ,故A =R ;对于集合B ,其代表元素为y ,y 属于实数,因此它表示数集,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1的函数值y ,故B ={y |y ≥1};对于集合C ,其代表元素为(x ,y ),它表示坐标平面中的点的坐标,又元素所满足的条件为y =x 2+1,它表示函数y =x 2+1图象上的点.综上所述,集合A 、B 、C 是不同的集合.[名师点评] 理解描述法表示的集合,关键是对符号语言所表达的含义要正确理解.认识它时,一要看集合的代表元素是什么,它反映了集合元素的类型,以此确定集合的类型;二要看代表元素所具有的属性,即它要满足什么条件,以此确定集合中元素的组成部分.[对应训练] 判断下列说法是否正确,正确的打“√”,错误的打“×”. (1)整数集Z ={x |x =n +1,n ∈Z }.( √ ) (2){y |y =x 2}≠{x |y =x }.( × )(3)两条直线y =2x 与y =x -1的交点构成集合M ,集合N =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ y =2xy =x -1,则M =N .( √ )(4)M ={(x ,y )|x +y =4,x ,y ∈N *}={(0,4),(1,3),(2,2)}.( × )解析:(1)整数集是个无限集,x =n +1,n ∈Z 能表示任意一个整数,所有的整数也能写成这种形式,故(1)正确.{y |y =x 2}表示通过计算y =x 2得到的所有y 值的集合,也可以理解为二次函数y =x 2图象上所有点的纵坐标的取值集合,即{y |y =x 2}表示非负实数集;{x |y =x }表示满足y =x 的所有x 的取值集合,因此x 可以取任意非负实数,即{x |y =x }表示非负实数集.两者表示的数集完全一样,故(2)错误.集合N 是一个点集,描述集合M 采用的是自然语言,二者含义一样,故(3)正确.集合M 是由满足x +y =4,且x ,y 均为正整数的x ,y 构成的点集,易知M ={(1,3),(2,2),(3,1)},故(4)错误.1.1.2 集合间的基本关系[目标] 1.记住集合间的包含关系,会判断两个简单集合的关系;2.能写出给定集合的子集;3.记住集合相等与空集的含义以及空集与其他集合的关系.[重点] 集合间关系及集合间关系的判断;写出给定集合的子集;空集与其他集合的关系.[难点] 集合间的关系及应用.知识点一子集的有关概念[填一填]1.Venn图通常用平面上封闭曲线的内部代表集合.用Venn图表示集合的优点:形象直观.2.子集(1)自然语言:一般地,对于两个集合A,B,如果集合A的任何一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.(2)符号语言:记作A⊆B(或B⊇A),读作“A含于B”(或“B包含A”).(3)图形语言:用Venn图表示.3.真子集如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的真子集,记作A B(B A).4.集合相等如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A 与集合B中的元素是一样的,因此集合A和集合B相等,记作A=B.[答一答]1.若A⊆B,则A中的元素是B中的元素的一部分,对吗?提示:不对,A中的元素是B的一部分或是B的全部.2.“∈”与“⊆”有什么区别?提示:“∈”表示元素与集合之间的关系,而“⊆”表示集合与集合之间的关系.3.“”与“<”一样吗?提示:不一样,“”表示集合与集合之间的关系;“<”表示两实数间的关系.4.如何判断两个集合是否相等?提示:方法一:根据两个集合中的元素是否完全相同进行判断;方法二:根据集合相等的定义,即是否同时满足A⊆B且B⊆A.知识点二空集[填一填]不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集.[答一答]5.0,{0},∅,{∅}有何区别?提示:知识点三子集、真子集的性质[填一填]由子集、真子集和空集的概念可得:(1)空集是任何集合的子集,即∅⊆A;(2)任何一个集合是它自身的子集,即A⊆A;(3)空集只有一个子集,即它自身;(4)对于集合A,B,C,由A⊆B,B⊆C可得A⊆C;(5)对于集合A,B,C,由A B,B C可得A C.[答一答]6.(1)对于集合A、B、C,如果A⊆B,B⊆C,则A⊆C,若A B,B⊆C呢?(2)若∅A,则A≠∅对吗?提示:(1)A C.(2)对.类型一确定集合的子集、真子集[例1](1)已知集合M满足{1,2}M⊆{1,2,3,4,5},求所有满足条件的集合M.(2)填写下表,并回答问题:12n数及非空真子集的个数呢?[解](1)由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.(2)}的所有子集的个数是212n是2n-1,非空真子集的个数是2n-2.1.有限集子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;,(3)注意两个特殊的集合,即空集和集合本身.2.若集合A中有n个元素,则集合A有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集,该结论可在选择题或填空题中直接使用.[变式训练1]试写出满足条件∅M{0,1,2}的所有集合M.解:因为∅M{0,1,2}.所以M为{0,1,2}的非空真子集.所以M中的元素个数为1或2,当M中只有1个元素时,M可以是{0},{1},{2};当M中有2个元素时,M可以是{0,1},{0,2},{1,2};所以M可以是{0},{1},{2},{0,1},{0,2},{1,2}.类型二集合间关系的判断及应用命题视角1:利用子集的定义判断集合间的关系[例2](1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间最适合的关系是()A.A⊆B B.A⊇BC.A B D.A B[答案](1)C(2)D[解析](1)由已知得集合M={1,2}.由真子集的定义可知M N.(2)因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.判断两集合关系的步骤:(1)先对所给集合进行化简.(2)搞清两集合中元素的组成,也就是弄清楚集合由哪些元素组成,即把集合间关系的判断转化为相应集合元素之间的关系来判断.[变式训练2]指出下列各组集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|x是等边三角形},B={x|x是等腰三角形};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解:(1)集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.(2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.(3)法1:两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.法2:由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.命题视角2:利用Venn图理解集合间的关系[例3]能正确表示集合M={x|0≤x≤2}和集合N={x|x2-x=0}关系的Venn图是下图中的()[答案] B[解析]N={0,1}M.用封闭的曲线的内部表示集合,这种图形称为Venn图,是描述集合关系的图形语言,它可以是圆、矩形、椭圆等.通过图形可直观看出两个集合是否有公共元素,甚至还可以解决集合内元素的个数问题,在后续课的学习中Venn图的图解功能再进一步体会.[变式训练3] 已知集合A ={x |x 2=x ,x ∈R },集合A 与非空集合B 的关系如图所示,则满足条件的集合B 的个数为( B )A .1B .2C .3D .4 解析:∵A ={x |x 2=x ,x ∈R }={0,1},又B A ,且B 为非空集合,∴B 可以为{0}或{1}.故选B.命题视角3:利用数轴理解集合间的关系[例4] 已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.[分析] 解决本题可用数形结合的方法画出数轴来分析. [解] 集合A 在数轴上表示如图.要使A ⊇B ,则集合B 中的元素必须都是A 中的元素, 即B 中元素必须都位于阴影部分内,那么由4x +m <0,即x <-m 4知,-m4≤-2,即m ≥8,故实数m 的取值范围是m ≥8.在数轴上表示集合A 与B 时要注意,端点处都是空心点,所以当-m4=-2时,集合B 为{x |x <-2},仍满足A ⊇B .这种利用子集关系求参数的问题,借助数轴分析时,要验证参数能否取到端点值.[变式训练4] 已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围. 解:(1)若A B ,则集合A 中的元素都在集合B 中,且B 中有不在A 中的元素,则a >2.(2)若B ⊆A ,则集合B 中的元素都在集合A 中,则a ≤2.因为a ≥1,所以1≤a ≤2.1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则有( B )A .A ⊆B B .C ⊆B C .D ⊆CD .A ⊆D解析:正方形是邻边相等的矩形.2.已知集合M ={-1,0,1},N ={y |y =x 2,x ∈M },则( B ) A .MNB .NMC .M =ND .M ,N 的关系不确定解析:由题意,得N ={0,1},故N M .3.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 有5个.解析:∵A{1,2,3},∴A 中至多含有2个元素.∵A 中至少有一个奇数,∴A 可能为{1},{3},{1,2},{1,3},{2,3},共5个.4.已知∅{x |x 2-x +a =0},则实数a 的取值范围是a ≤14.解析:∵∅{x |x 2-x +a =0}.∴{x |x 2-x +a =0}≠∅,即方程x 2-x +a =0有解,∴Δ=1-4a ≥0,∴a ≤14.5.已知集合B ={-1,0,1},若A ⊆B ,试写出所有满足条件的集合A . 解:当A =∅时,满足条件;当A 是单元素集合时,满足条件的集合A 有{-1},{0},{1};当A 是含两个元素的集合时,满足条件的集合A 有{-1,0},{-1,1},{0,1}; 当A 是含三个元素的集合时,满足条件的集合A 为{-1,0,1}.故满足条件的集合A 有∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},{-1,0,1}.——本课须掌握的三大问题1.写出一个集合的所有子集,首先要注意两个特殊子集:∅和自身;其次依次按含有一个元素的子集、含有两个元素的子集、含有三个元素的子集……写出子集.2.空集是任何集合的子集,是任何非空集合的真子集,在解决形如A ⊆B 类问题时, 需分类讨论A =∅与A ≠∅两种情况.3.要证明A =B ,只需要证明A ⊆B 且B ⊆A 成立即可.即可设任意x 0∈A ,证明x 0∈B 从而得出A ⊆B .又设任意y 0∈B ,证明y 0∈A ,从而得到B ⊆A ,进而证明得到A =B .。
新课标人教A版高中数学必修1全册教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)
高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。
根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。
理解力的合成本质上是从等效的角度进行力的替代。
.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
.通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
.培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。
.实验探究力的合成所遵循的法则。
二、难点平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。
体现学生主体性。
实验归纳法的步骤如下。
人教A版高中数学必修1教案完整版
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
【新教材】部编统编版高中数学必修第一册A版全册教案教学设计(含教学计划、章末综合与测试)
【新教材】人教统编版高中数学必修第一册A版全册教案教学设计2019统编人教版高中数学A版必修第一册教学计划高一年级学生的自主学习能力较差,问题很多。
有些学生解方程、解不等式甚至连分数的加减法都不会。
这给教学工作带来了一定的难度,要想在这个基础上把教学搞好,任务很艰巨。
所以特制定如下教学工作计划。
一、指导思想准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。
针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、教学准备1、深入钻研新教材。
以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。
新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。
同时,在整体上,要重视数学应用;重视数学思想方法的渗透。
如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。
学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。
用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、落实课外活动的内容。
组织和加强数学兴趣小组的活动内容。
三、教学内容第一部分:集合与常用逻辑用语1.通过实例,了解集合的含义,体会元素与集合的“属于”关系。
2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
3.理解集合之间包含与相等的含义,能识别给定集合的子集。
新课标人教版A版数学必修1全套教案
人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课型:新授课教学目标:(1)了解集合、元素的概念,体会集合中元素的三个特征;(2)理解元素与集合的“属于”和“不属于”关系;(3)掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x+=的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。
对学生的解答予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a 不是集合A 的元素,就说a 不属于(not belong to )A ,记作:a ∉A例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A4∉A ,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。
3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.4. 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的. 在教学中,一定要循序渐进,从繁到难,逐步渗透这方面的训练.5. 教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,教师要准确把握这方面的要求,防止拨高教学.6. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.7. 教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性.8. 教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.9. 为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生实际,合理地取舍.三. 教学内容及课时安排建议本章教学时间约13 课时。
1.1集合 4 课时函数及其表示 4 课时1.2函数的性质 3 课时1.3实习作业 1 课时复习 1 课时§1.1.1集合的含义与表示一.教学目标:l. 知识与技能(1) 通过实例,了解集合的含义,体会元素与集合的属于关系;(2) 知道常用数集及其专用记号;(3) 了解集合中元素的确定性. 互异性. 无序性;(4) 会用集合语言表示有关数学对象;(5) 培养学生抽象概括的能力.2. 过程与方法(1) 让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2) 让学生归纳整理本节所学知识.3. 情感. 态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点. 难点重点:集合的含义与表示方法. 难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路( 一) 创设情景,揭示课题1 .教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆. 举例和互相交流. 与此同时,教师对学生的活动给予评价.2 . 接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容(二) 研探新知1 .教师利用多媒体设备向学生投影出下面9 个实例:(1) 1 —20 以内的所有质数;(2) 我国古代的四大发明;(3) 所有的安理会常任理事国;(4) 所有的正方形;(5) 海南省在2004年9月之前建成的所有立交桥;(6) 到一个角的两边距离相等的所有的点;(7) 方程x2 -5x • 6 = 0的所有实数根;(8) 不等式X-3 0的所有解;(9) 国兴中学2004年9月入学的高一学生的全体.2 •教师组织学生分组讨论:这9个实例的共同特征是什么?3. 每个小组选出一一位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义•一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素•4. 教师指出:集合常用大写字母A, B, C, D,…表示,元素常用小写字母a,b,c,d…表示.(三)质疑答辩,排难解惑,发展思维1 •教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难•使学生明确集合元素的三大特性,即:确定性•互异性和无序性•只要构成两个集合的元素是一样的,我们就称这两个集合相等•2 •教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价4. 教师提出问题,让学生思考(1) 如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于如果a是集合A的元素,就说a属于集合A,记作a^A.如果a不是集合A的元素,就说a不属于集合A,记作a - A.(2) 如果用A表示“所有的安理会常任理事国”组成的集合,贝忡国.日本与集合A的关系分别是什么?请用数学符号分别表示.(3) 让学生完成教材第6页练习第1题.5. 教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.6 .教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1) 要表示一个集合共有几种方式?(2) 试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3) 如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
(四) 巩固深化,反馈矫正教师投影学习:⑴用自然语言描述集合{1,3,5, 7, 9};(2)用例举法表示集合A ={x • N |^x , 8}(3) 试选择适当的方法表示下列集合:教材第6页练习第2题.(五) 归纳整理,整体认识在师生互动中,让学生了解或体会下例问题:1 •本节课我们学习过哪些知识内容?2 •你认为学习集合有什么意义?3 .选择集合的表示法时应注意些什么?(六)承上启下,留下悬念1 •课后书面作业:第13页习题1.1A组第4题.2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材•§ 1.1.2集合间的基本关系一.教学目标:1 •知识与技能(1) 了解集合之间包含与相等的含义,能识别给定集合的子集。
(2) 理解子集.真子集的概念。
(3) 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义3 •情感.态度与价值观(1) 树立数形结合的思想.(2) 体会类比对发现新结论的作用.二.教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念难点:难点是属于关系与包含关系的区别.三.学法与教学用具1. 学法:让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.2. 学用具:投影仪.四.教学思路(—)创设情景,揭示课题问题I :实数有相等.大小关系,如5=5,5V 7,5> 3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(二) 研探新知投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1) A 二{1,2,3}, B 二{1,2,3,4,5};(2) 设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;(3) 设C二{x|x是两条边相等的三角形}, D二{x|x是等腰三角形};(4) E 二{2,4,6}, F 二{6,4,2}.组织学生充分讨论•交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:①一般地,对于两个集合A, B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:A B (或B二A)读作:A含于B(或B包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。