高三数学数列模型及其应用2

合集下载

高考数学专题03数列求和问题(第二篇)(解析版)

高考数学专题03数列求和问题(第二篇)(解析版)

⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。

高三数学等比数列2

高三数学等比数列2
2、a1 .a n a 2 .a n1 a 3 .a n 2 ...
3.如果 a n bn 是项数相同的等比数列,那 么 a n bn 也是等比数列.
结论:如果 a b 是项数相同的等 比数列,那么 a n bn 也是等比数列.
n n
bn 的公比为 证明:设数列a n 的公比为p, q,那么数列 a n bn 的第n项与第n+1项分 n 1 n n 别为 a1p n 1 b1q n 1 与 a1p b1q ,即 a1b1 (pq) n 与 a1b1 (pq) .
因为 它是一个与n无关的常数,所以是一个以pq 为公比的等比数列.
a n 1 b n 1 a1b1 (pq) n pq, n 1 a n bn a1b1 (pq)
特别地,如果是a 等比数列ቤተ መጻሕፍቲ ባይዱc是不等 于0的常数,那么数列 c a 也是等比数列.
n
n
探究
对于例4中的等比数列 a n 与 bn ,数
1.定义法:
an1 q(是与n无关的数或式子 , 且q 0 ) an
2.中项法:
an1 an1 an ( 0)
2
三个数a,b,c成等比数列
2 ac b
五、等比数列的性质
1、若m, n, p, q N , 且m n p q,
则a m a n a p a q
an , 若a1 a2 a3 7, 4.已知等比数列
a1 a2 a3 8, 求an.
a1 1, q 2或a1 4, q
1 2
课后作业
P60 习题 2.4 A 组 第 3、 7、 8题
选做: P59 探究 选做: P75 第1,2,4题

高三数学考点-数列求和及应用

高三数学考点-数列求和及应用

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1

S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是高中数学中的一个重要知识点,对于高三学生来说,熟练掌握数列的概念、性质和应用是至关重要的。

为了帮助同学们更好地复习和总结数列知识,下面将对高三数学数列知识点进行归纳总结,希望对同学们的学习有所帮助。

一、基础概念数列是按照一定的规律排列成的一列数,通常用字母a、b、c 等表示。

其中,a1为数列的第一个数,an为数列的第n个数,n为自然数。

二、等差数列1. 定义:等差数列是指数列中的相邻两项之差为常数,该常数称为公差,通常用字母d表示。

2. 求通项公式:设等差数列的首项为a1,公差为d,则第n项an可表示为an=a1+(n-1)d。

3. 求和公式:等差数列的前n项和Sn可表示为Sn=(a1+an)×n/2 或 Sn=n/2×[2a1+(n-1)d]。

三、等比数列1. 定义:等比数列是指数列中的相邻两项之比为常数,该常数称为公比,通常用字母q表示。

2. 求通项公式:设等比数列的首项为a1,公比为q,则第n项an可表示为an=a1×q^(n-1)。

3. 求和公式:等比数列的前n项和Sn可表示为Sn=a1×[1-q^n]/(1-q)。

四、等差数列与等比数列的比较1. 差别:等差数列的相邻两项之差为常数,等比数列的相邻两项之比为常数。

2. 公式:等差数列的通项公式中含有公差d,等比数列的通项公式中含有公比q。

3. 求和:等差数列的求和公式中含有首项a1、末项an和项数n,等比数列的求和公式中同样含有首项a1和项数n,但末项an与公比q有关。

五、数列的应用1. 等差数列的应用:等差数列常应用于描述一些增长或减少的情况,如成绩的变化、人口的增长等。

2. 等比数列的应用:等比数列常应用于描述指数增长或指数衰减的情况,如病毒传播、存款利息等。

六、数列的性质1. 递推关系:数列的递推关系是指通过前一项与公式计算得出后一项的关系。

2. 递归公式:数列的递归公式是指通过前一项与前两项计算得出后一项的关系。

高三数学数列模型及其应用2

高三数学数列模型及其应用2
[单选]选择承重钢结构钢材的钢种时,()不是主要考虑的因素。A.结构工作温度B.荷载性质C.钢材造价D.建筑的防火等级 [多选]注册会计师应从被审计单位内部和外部了解被审计单位及其环境。下列各项因素中,涉及被审计单位外部因素的有()。A、了解被审计单位的相关行业状况B、了解被审计单位的目标、战略以及可能导致重大错报风险的相关经营风险C、了解被审计单位财务业绩的衡量和评价D、了解被审计 部控制 [单选]当前大多数国家的养老保险体系有三个支柱,即基本养老保险、企业年金和()组成。A.商业养老保险B.年金养老保险C.基金养老保险D.个人储蓄型养老保险 [单选]前置胎盘最主要的症状是()A.多在妊娠早期出现阴道间断性出血B.妊娠晚期无痛性反复阴道出血C.完全性前置胎盘通常出血不多D.出血量与前置胎盘类型无关E.常易造成胎膜早破 [单选]下列选项中,不属于设备防静电措施的是()。A.管线的法兰联接的接触电阻在5欧姆以下B.静电接地要完好其电阻值不大于100欧姆C.液体进料采用插底管D.用绝缘材料做流体输送管道 [问答题,简答题]铵油炸药的主要成分是什么,含量多少?其主要性能如何? [单选,A1型题]容易产生"走油"现象的药材是()A.丁香B.白芷C.桃仁D.肉桂E.厚朴 [单选]认知重建法是二十世纪五六十年代在美国兴起的一种心理辅导方法,以下不是其主要代表人物的是:()。A.艾里斯B.贝克C.麦肯鲍姆D.斯金纳 [问答题,论述题]简述下循环水井作业步骤。 [单选]前列腺素来源于().A.垂体前叶B.垂体后叶C.下丘脑D.生殖器官E.前列腺 [单选,A2型题,A1/A2型题]急性前壁心肌梗死最常见的心律失常为()A.室性过早搏动B.房室传导阻滞C.心房颤动D.房性过早搏动E.室上性心动过速 [多选]关于报检员的义务和责任,以下表述正确的有()。A.办理报检业务须出示《报检员证》B.准确、详

高三数学 等差数列、等比数列 (2)

高三数学 等差数列、等比数列 (2)

这样就可以运用解法1和解法2的方法了(下解略).
解法3:由 an+1=4an+3
an+2=4an+1+3

①得
②-①得:an+2-an+1=4(an+1-an).则数列{an+1-an}是 首项为a2 -a1 =(4 a1+3)-a1= 3 a1+3=9,公比 为4的等比数列.
所以, an-an-1=9×4n-2 所以,an=(an-an-1)+ (an-1-an-2)+ …+(a2-a1)+a1 =9×4n-2+ 9×4n-3 +…+ 9×40+2
例4.已知数列an, a1
1 2
, an
3an1
3n1, 求an.
解:两边同除以3n得:
an 3n
an1 3n1
1 3
,即
:
an 3n
an1 3n1
1. 3
an 3n
是以
a1 3
1 为首项,
6
公差为
1 的等差数列 . 3
an 1 (n 1)( 1) 1 1 n.即
3n 6
3 23
an
1 3n 2
n 3n1.
例5.已知数列an, a1 3, an 4an1 5 3n , 求an.
解法1:两边同除以3n得:
an 3n
4 3
an1 3n1
5.
令 an 3n
An ,则得An
4 3
An1 5.(以下用例3的方法解)
又令An
k
4 3
( An1
k ),则An
4 3
An1
an
4an1

专题2第2讲数列求和及其综合应用-2021届高三高考数学二轮复习课件

专题2第2讲数列求和及其综合应用-2021届高三高考数学二轮复习课件

【解析】 (1)由(n+2)a2n+1-(n+1)a2n+anan+1=0, 可得[(n+2)an+1-(n+1)an]×(an+1+an)=0 又因为an>0,所以aan+n 1=nn+ +12.
又a1=1,则an=aan-n 1·aann- -12·…·aa21·a1 =n+n 1·n-n 1·…·32·1=n+2 1.故选B.
q(p≠0,1,q≠0),第一个使用累加的方法、第二个使用累积的方法、第
三个可以使用待定系数法化为等比数列(设an+1+λ=p(an+λ),展开比较
系数得出λ).
(3)周期数列,通过验证或者推理得出数列的周期性后得出其通项公
式.
1.(2019·洛阳三模)在数列{an}中,a1=2,an+1=an+ln
● (文科)
年份 卷别 Ⅰ卷
2020 Ⅱ卷 Ⅲ卷
题号 16 14 17
考查角度 数列的递推公式的应用,以及数列的 并项求和
等差数列的前n项和 等比数列通项公式基本量的计算,以 及等差数列求和公式的19 Ⅱ卷 Ⅲ卷
题号 14,18
18 6,14
考查角度 等比数列求和;等差数列的通项公式 以及求和 等比数列的通项公式、等差数列的求 和 等比数列的通项公式,等差数列的通 项公式以及求和
第二部分
专题篇•素养提升()
专题二 数列(文理)
第2讲 数列求和及其综合应用(文理)
1 解题策略 • 明方向 2 考点分类 • 析重点 3 易错清零 • 免失误 4 真题回放 • 悟高考 5 预测演练 • 巧押题
● 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消 等方法求数列的前n项和,难度中等偏下.
【解析】 (1)由题意,设an=a1qn-1(q>0),

高三数学总复习优秀ppt课件(第34讲)数列的综合应用(41页)

高三数学总复习优秀ppt课件(第34讲)数列的综合应用(41页)

思路 1:设这四个数分别为 x,y,m,n.
解四元二次 方程组
x m 2 y, 2 y n m , x n 16, y m 12.
不经济!
思路分析
例1 有四个数,其中前三个数成等差数列,后三 个数成等比数列,且第一个数与第四个数的和是 16, 第二个数与第三个数的和为 12,求这四个数.
基本公式:等差、等比数列有关公式.
破解难点:构建数学模型解数列应用性问题.
问题研究
如何构建适当的数列模型解决实际应用问题?
经典例题3
例 3 某种细菌在培养过程中,每 20 分钟分裂一次 (一 个分裂成二个) ,经过 3 小时这种细菌由一个可繁殖 成多少个?
思路分析
例 3 某种细菌在培养过程中,每 20 分钟分裂一次 (一 个分裂成二个) ,经过 3 小时这种细菌由一个可繁殖 成多少个?
经典例题1
例1 有四个数,其中前三个数成等差数列,后三 个数成等比数列,且第一个数与第四个数的和是 16, 第二个数与第三个数的和为 12,求这四个数.
思路分析
例1 有四个数,其中前三个数成等差数列,后三 个数成等比数列,且第一个数与第四个数的和是 16, 第二个数与第三个数的和为 12,求这四个数.
思路 1:共繁殖 9 次, a9 a1 q8 256 个.
哪个正 确?
a1 (1 q 9 ) 29 1 511个. 思路 2:共繁殖 9 次, S9 1 q 2 1 a1 (1 q10 ) 210 1 1023个. 思路 3:共繁殖 9 次, S10 1 q 2 1
思路 2:设前三个数分别为 a-d,a,a+d.
则第四个数为 16-(a-d).列出方程组

高三数学知识点之数列

高三数学知识点之数列

高三数学知识点之数列数列是数学中常见的概念,也是高三数学中的重点内容之一。

在本文中,我将介绍数列的定义、分类和常见性质,帮助读者更好地理解和应用数列知识。

一、数列的定义数列是由一系列按照一定规律排列的数字组成的序列。

通常用${a_1}$, ${a_2}$, ${a_3}$, ... 表示数列的元素,其中 ${a_1}$ 表示第一个元素,${a_2}$ 表示第二个元素,依此类推。

数列可以有无限个元素,也可以只有有限个元素。

二、数列的分类1.等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之差为常数 $d$,则有以下关系:${a_2}$ - ${a_1}$ = ${a_3}$ - ${a_2}$ = $d$例如,2, 5, 8, 11, ... 就是一个公差为3的等差数列。

2.等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为${a_1}$, ${a_2}$, ${a_3}$, ...,相邻两项之比为常数 $q$,则有以下关系:${a_2}$ / ${a_1}$ = ${a_3}$ / ${a_2}$ = $q$例如,1, 2, 4, 8, ... 就是一个公比为2的等比数列。

3.递推数列递推数列是指数列中的每一项都可以通过前一项计算得到的数列。

设数列为 ${a_1}$, ${a_2}$, ${a_3}$, ...,且满足以下递推关系:${a_{n+1}}$ = $f({a_n})$其中 $f(x)$ 表示一个确定的函数。

递推数列可以是等差数列或等比数列,也可以是其他类型的数列。

三、数列的常见性质1.通项公式对于某些特定的数列,可以通过确定的方法得到数列的通项公式,即通过序号 $n$ 直接计算第 $n$ 项 ${a_n}$ 的公式。

通项公式的推导可以通过观察数列的规律、利用递推关系或解递推方程等方法得到。

2.前 n 项和前 n 项和是指数列前 n 项的和,通常用 $S_n$ 表示。

高三数学等差和等比数列的运用2

高三数学等差和等比数列的运用2
灾害时期,人民生活十分困难,上海儿童福利院的孤儿们缺衣少食,难以生活下去。周总理与蒙古自治区乌兰夫主席商量,决定让部分孤儿转移到内蒙古大草原 生活,作为“国家孩子”由内蒙牧民领养。就这样,大约三千孤儿由上海乘火车来到了内蒙古草原生活。
剧中主要展示了鲁小忠(蒙古名朝鲁)、鲁小鱼(蒙古名通嘎拉嘎)、毕若水(谢若水)、阿藤花(黄小仙)等人从童年到成年后的人生故事和命运。蒙古牧民哈图及保育员乌兰其其格、向阳红公 社苏书记、教师满都拉等,领养了这几个孩子,给他们父爱母爱,抚育他们成人,故事十分感人。

最近在网上观看了电视剧《国家孩子》,我很受感动,觉得这是一部不可多得的好剧。剧中很多人物给我留下了深刻的印象,像保育员乌兰其其格姑娘、马倌哈图大叔、小学教师满都拉校长、公社 书记苏登全、民兵连长徐世铎等,还有来自上海的孤儿鲁小忠、鲁小鱼兄妹以及毕若水、黄小仙等。内蒙古大草原牧民们淳朴、善良、美好的人性感染了我。特别是保育员乌兰其其格姑娘,就像开在草 原上的一朵最美丽、最纯洁、最朴实的花,只有这块纯净的土地才能开出这样的花朵。体育赌场

1960年春天,自然灾害使内地生活十分艰难,内蒙向阳红公社苏书记与保育员乌兰一行,根据中央的指示乘火车来到上海福利院完成收养孤儿的交接手续。鲁小忠、鲁小鱼母亲死得早,可不幸的是 父亲昨天在生产中掉进火炉里被烧死了,使他们成了孤儿,被收进了福利院,正赶上内蒙牧民来领养,但是,小忠却想留在上海,不愿去内蒙,内心十分抵触,小鱼因父亲死了受刺激,导致暂时性失语。 在乌兰阿姨的劝说下,小忠他们还是来到了内蒙古大草原。

高三数学数列求和2 优质课件

高三数学数列求和2 优质课件

∵ n≥2,n 1≥1)
作业: 《全案》
速度训练:
P77
训练
5
1. 设 Sn 1234 (1)n1n , 则
S4m S2m1 S2m3( m N* )的值为(B)
(A)0 (B)3 (C)4 (D)随 m 的变化而变化
2.已知
S
1
1 22

1 32

…+
1 n2
系数是 Cn21 =
n(n 1) 2
.

1
an

2
n(n 1)
=
2 n

2 n 1

lim(
n
1
a1

1
a2

=2
1 ) lim(2 2 )
an
n
n 1
返回
例 3 分析: 第⑴小问直接翻译即可. 第⑵小问弄清 f (n) 的意义,然后检验 即可. 第⑶小问关键是求出 P1Pn 2 ? , 然后分析和的结果
xn
nxn nxn1 1 x
1
1 n xn nxn1 1 x
1 1 n xn nxn1
∴当 x 1时, Sn
1 x2
当 x 1时, Sn 1 2 3 4
;
n n1 n
2
返回
例 1.求和:
⑵113

1 35

…+
(2n
常需要求数列的和,而这些求和往往采 用特殊方法.
例 1 求和:
⑴1 2x 3x2 4x3 nxn1.

1 1 3

1 35

…+
(2n

高三数学数列模型及其应用2

高三数学数列模型及其应用2
无论多么艰难、多么劳休无止了不起的事业。但是她几年如一日,默默无闻地照顾父母、孝敬父母的这种美德是值得称颂的;她所做的点点滴滴 是感人至深的!
繁重的家务,使她隆起的背更高了,弯曲的腰更弯了。后背那块硬疙瘩像一座小山峰,尖尖的、重重地压在她的身上。她自己除了身体残疾外,还有许多病,胆结石、颈椎病、腰椎病、手脚麻 木……熬药就占去了她大半时间,两个药锅,父亲一个,她一个,满屋子弥漫着浓浓的草药味。nba如何买球
有一次,我上去正赶上老父亲拉了一裤兜,就赶快上前为他擦洗干净,并换上了干净的内裤。可是没过两分钟,他又拉了,这下我这火就上来了,没好气地说:“刚给你擦洗完,又拉了!烦不烦人 啊!”这时正在外屋忙活的五妹跑过来接过我手中的活,一边为父亲擦洗,一边对我说:“要耐心,不能发火的,咱爹心里啥都清楚,他听了会不好受的。”我心里想自己赶上这么一次、两次都烦,而 五妹天天如此也不烦,她是怎么过来的呢?想到这里便对父亲说:“小五真伟大!”老父亲含糊不清地说:“伟大…得很……”说着口水便流了出来。看到父亲这个样子,看到五妹这么辛苦,两行热泪已 涌出我的眼眶……

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳

高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。

掌握数列的相关知识点是高三学生成功应对数学考试的关键。

本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。

一、等差数列等差数列是高中数学中最常见的数列类型之一。

等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。

1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。

二、等比数列等比数列是另一种常见的数列类型。

等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。

1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。

三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。

对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。

2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。

有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。

3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。

如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。

四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。

2017届高三数学(理)高考二轮复习课件 第1部分 专题3 第2讲 数列的综合应用

2017届高三数学(理)高考二轮复习课件 第1部分 专题3 第2讲 数列的综合应用

考点二
考点三
第二讲 数列的综合应用
课前自主诊断
课堂对点补短
限时规范训练
上页
下页
考点一
(4)待定系数法:形如 an+1=pan+q(其中 p,q 均为常数,pq(p-
考点一
1)≠0),先用待定系数法把原递推公式转化为 an+1-t=p(an-t), 其中 t= q ,再转化为等比数列求解. 1-p
考点二
课前自主诊断
课堂对点补短
限时规范训练
上页
下页
考点一
试题
通解
优解
考点一
n n n 1 - an+1-1= a+ -1= (a -1),令 bn=an-1, n+2 n n+2 n+2 n
考点二
考点三
n-1 b2 b3 b4 b5 bn 1 2 3 bn 则 × × × ×„× = × × ×„× ,从而得到 b1 b2 b3 b4 b1 bn-1 3 4 5 n+1 2 1 2 1 = ,又 b1=a1-1=- ,得 bn= b1=- , 2 nn+1 nn+1 nn+1 1 所以 an=1- ,选 C. nn+1
2
考点二
考点三
+e2 n.
第二讲 数列的综合应用
课前自主诊断
课堂对点补短
限时规范训练
上页
下页
考点三
试题
解析
(1)由已知 Sn+1=qSn+1,得 Sn+2=qSn+1+1, 两式相减得到 an+2=qan+1,n≥1.
考点一
又由 S2=qS1+1 得到 a2=qa1, 故 an+1=qan 对所有 n≥1 都成立. 所以,数列{an}是首项为 1,公比为 q 的等比数列. 从而 an=qn 1.

高三数学等差和等比数列的运用2

高三数学等差和等比数列的运用2

/word?w=%E6%AD%A3%E5%AE%97%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%09%E3%80%903118900%E3 E5%88%88%E7%A0%8DXlP9 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%E5%B9%B3%E5%8F%B0%E4%BA%8C%E7%BB%B4%E 81%09%E3%80%903118900%E3%80%91%E5%B7%A2%E7%A8%BCLHxL /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%E5%B9%B3%E5%8F%B0%09%E3%80%903118900%E3% E6%A1%88%E7%BE%8E8e80 /word?w=%E9%9D%A0%E8%B0%B1%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%9E%E5%8A%9B%E5%BE%AE%E4%BF%A1%E7%BE%A4%E B3%E5%8F%B0%09%E3%80%903118900%E3%80%91%E6%8F%BD%E8%BE%8611Nx /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E7%A8%B3%E5%AE%9A%E5%B9%B3%E5%8F%B0%E7%BE%A4%09 80%903118900%E3%80%91%E7%A0%8D%E5%88%86lj1Z /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E7%BE%A4%E6%8A%95%E6%B3%A8%E4%BF%A1%E8%AA%89%E5%B9%B3%E5%8F%B0%09 80%903118900%E3%80%91%E6%B6%A1%E6%B3%8A7nX7 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E4%BF%A1%E8%AA%89%E6%8A%95%E6%B3%A8%E5%B9%B3%E5 B0%E7%BE%A4%09%E3%80%903118900%E3%80%91%E5%80%8D%E6%B1%B2TnBn /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E9%9D%A0%E8%B0%B1%E6%8A%95%E6%B3%A8%E5%B9%B3%E5 B0%E7%BE%A4%09%E3%80%903118900%E3%80%91%E6%85%B0%E6%99%959NRr /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7APP%E7%BE%A4%09%E3%80%903118900%E3%80%91% AA%E6%AF%99ZhbZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%98%E6%96%B9%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903 E3%80%91%E4%BC%BA%E5%8F%82d1T5 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6V%E4%BF%A1%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903118900%E3 91%E5%99%AC%E9%9D%A0FZ91 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E5%AE%9E%E5%8A%9B%E5%B9%B3%E5%8F%B0%E7 A4%09%E3%80%903118900%E3%80%91%E5%9E%82%E5%86%88Z3nd /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E4%BF%A1%E8%AA%89%E6%AD%A3%E8%A7%84%E5%B9%B3%E5%8F%B0%E7%BE%A4%09 80%903118900%E3%80%91%E7%84%95%E8%B5%B551bf /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BD%A9%E7%A5%A8%E5%B9%B3%E5%8F%B0%E7%BE%A4%E4%BB%A3%E7%90%86%09 80%903118900%E3%80%91%E8%87%AA%E5%BA%951Tp3 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%9C%80%E4%BF%A1%E8%AA%89%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0%E7% A4%09%E3%80%903118900%E3%80%91%E6%B7%98%E6%B1%A0n979 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%8A%95%E6%B3%A8%E4%BF%A1%E8%AA%89%E5%A4%A7%E5%B9%B3%E5%8F%B0%E7 A4%09%E3%80%903118900%E3%80%91%E5%BD%93%E6%99%8Cx3ND /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E7%B2%BE%E5%87%86%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903 E3%80%91%E5%9A%8E%E6%BB%9EB3NN /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E4%BB%A3%E7%90%86%E7%BE%A4%09%E3%80%903 E3%80%91%E9%9F%A7%E5%A0%821Dt9 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6app%E5%85%AC%E4%BC%97%E5%8F%B7%E5%B9%B3%E5%8F%B0%E%E3%80%91%E7%BA%A0%E6%8B%B15hjZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%98%E6%96%B9%E5%85%AC%E4%BC%97%E5%8F%B7app%E7%BE%A4%09%E3%80% 903118900%E3%80%91%E7%B0%87%E4%BB%8E3BVZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%B9%B3%E5%8F%B0%E7%BE%A4%09%E3%80%903118900%E3% E6%99%BA%E9%83%9D9T1T /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%9E%E5%8A%9B%E7%BE%A4%E5%85%AC%E4%BC%97%E5%8F%B7%09%E3%80%90 E3%80%91%E5%BC%9B%E6%8A%96PNLJ /word?w=%E5%8F%AF%E9%9D%A0%E7%9A%84%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09 80%903118900%E3%80%91%E5%84%87%E6%B5%871nXL

高三数学数列知识点复习 等差数列二教案 新人教A版

高三数学数列知识点复习 等差数列二教案 新人教A版

高三数学数列知识点复习 等差数列二教案 新人教A 版——热点考点题型探析一、复习目标:1、理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;2、理解等差中项的概念,掌握等差数列的性质并能灵活运用。

二、重难点:理解等差数列的概念,掌握等差数列的通项公式、前n 项和公式并能解决实际问题;理解等差中项的概念,掌握等差数列的性质,灵活运用等差数列的性质解题.会求等差数列的公差、求项、求值、求和、求n S 最值等通常运用等差数列的有关公式及其性质. 三、教学方法:讲练结合,探析归纳,强化运用。

四、教学过程 (一)、热点考点题型探析考点1等差数列的通项与前n 项和 题型1已知等差数列的某些项,求某项【例1】已知{}n a 为等差数列,20,86015==a a ,则=75a 【解题思路】可以考虑基本量法,或利用等差数列的性质【解析】方法1: 154,156420598141160115==⇒⎩⎨⎧=+==+=d a d a a d a a ∴2415474156474175=⨯+=+=d a a 方法2:1544582015601560=-=--=a a d ,∴241541520)6075(6075=⨯+=-+=d a a 方法3: {}n a 为等差数列,∴7560453015,,,,a a a a a 也成等差数列,设其公差为1d ,则15a 为首项,60a 为第4项. ∴438203111560=⇒+=⇒+=d d d a a ∴2442016075=+=+=d a a【反思归纳】给项求项问题,先考虑利用等差数列的性质,再考虑基本量法. 题型2已知前n 项和n S 及其某项,求项数.【例2】⑴已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; ⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .【解题思路】⑴利用等差数列的通项公式d n a a n )1(1-+=求出1a 及d ,代入n S 可求项数n ;⑵利用等差数列的前4项和及后4项和求出n a a +1,代入n S 可求项数n . 【解析】⑴设等差数列的首项为1a ,公差为d ,则3,186893111-==⇒⎩⎨⎧-=+=+d a d a d a∴7,663)1(231821==⇒=--=n n n n n S n ⑵ 124,363214321=+++=+++---n n n n a a a a a a a a3423121---+=+=+=+n n n n a a a a a a a a ∴40160)(411=+⇒=+n n a a a a∴39780207802)(1=⇒=⇒=+=n n a a n S n n 【反思归纳】解决等差数列的问题时,通常考虑两种方法:⑴基本量法;⑵利用等差数列的性质.题型3求等差数列的前n 项和【例3】已知n S 为等差数列{}n a 的前n 项和,212n n S n -=。

高三数学二轮复习:专题二 数列

高三数学二轮复习:专题二 数列
解答
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tt能取款吗 பைடு நூலகம்
[填空题]SF6的缺点是它的电气性能受电场均匀程度()和()影响特别大。 [问答题,简答题]因多种因素影响,致使铸造成不稳定的制造工艺过程。它易于产生哪些缺陷? [单选]下列情况下()更容易产生绕射。A.波长大于障碍物尺寸B.波长等于障碍物尺寸C.波长小于障碍物尺寸D.波长远大于障碍物尺寸 [填空题]从技术角度来说,互联网是一个由()、()和()组成的综合体系。 [单选]道路旅客运输经营者应当持《道路运输经营许可证》依法向()办理有关登记手续。A、工商行政管理机关B、安全监督管理部门C、公安机关交通管理部门 [单选]关于肺功能检查应用范围下列哪项是错的()A.确定肺功能障碍的程度B.判定肺功能障碍的类型C.可以发现肺部较小的病变D.可用以判断某些药物的疗效E.可以区别心源性和肺源性呼吸困难 [单选]下列哪一项检查是盆腔检查中最重要、最常用的方法()A.三合诊B.直肠-腹部诊C.双合诊D.腹部B超E.腹透 [单选,A1型题]乳腺癌出现表面皮肤凹陷的机制是()A.癌细胞堵塞乳房皮下淋巴管B.癌肿侵入乳腺管使其收缩C.癌细胞浸润大片皮肤D.癌肿侵犯Cooper韧带使其收缩E.以上都不是 [名词解释]岩石地球化学异常 [单选,A2型题,A1/A2型题]心脏停搏复苏中除应补足血容量外,还应适当补充()A.维生素B1B.维生素CC.辅酶A与ATPD.细胞色素CE.5%碳酸氢钠 [单选]当飞机重量增加时,诱导阻力和寄生阻力之间的关系如何变化?()A.寄生阻力的增加要比诱导阻力多B.诱导阻力的增加要比寄生阻力多C.诱导阻力和寄生阻力增加相同 [单选]最常见的鼻咽部良性肿瘤是()A.纤维瘤B.血管瘤C.脂肪瘤D.鼻咽纤维血管瘤E.乳头状瘤 [单选]民航VHF发射机调制失真在调制度为90%,调制频率为1KHz时为()。A.&le;5%B.&le;3%C.&le;10% [单选]《治安管理处罚条例》属于()。A.宪法B.法律C.行政法规D.地方性法规 [单选,A4型题,A3/A4型题]男,70岁.受凉后发热,伴胸痛2天,T38.5℃。近2个月来,常有干咳,少量白色泡沫痰,无咯血及痰中带血。体格检查,左下肺呼吸音减弱,心音正常。胸片:左下肺叶见直径3cm的块影,分叶状,边缘毛糙。首先考虑诊断是()A.肺癌B.肺脓肿C.肺结核D.肺炎E.肺 [单选]患者男,45岁,阵发性心房颤动2年,1个月发作2次,症状明显,有夜间阵发性睡眠呼吸困难,目前的抗心律失常药物治疗选择()A.口服阿替洛尔B.口服索他洛尔C.口服华法林D.口服胺碘酮E.口服普罗帕酮 [名词解释]首尾垂线 [单选]将信托分为民事信托和商事信托的依据是()。A.信托利益归属的不同B.受托人身份的不同C.信托设立目的的不同D.委托人人数的不同 [判断题]液体气化的方法有蒸发和沸腾。()A.正确B.错误 [填空题]()的利用和人工取火是原始时代的又一个伟大的技术创造. [单选,A2型题,A1/A2型题]患者女,38岁,工人。一周前无明显诱因开始出现少食,睡眠差,与人讲话小声,把家里的电话线、电脑线均拔掉,说有人监听。近2天,突然站在阳台上叫骂,自言自语说不害怕。对医生的问话以唱代说。不时捂住耳朵、跺脚、哭泣。经住院治疗一周后基本恢复正常出 [单选,A2型题,A1/A2型题]下列先天性胆总管囊肿的临床特点中,正确的是()A.诊断小儿先天性胆总管囊肿,首选的检查方法是IVPB.先天性胆总管囊肿的3个典型症状为腹痛、黄疸、呕吐C.胆总管囊肿的最主要病因是胆道发育不良和病毒感染D.先天性胆总管囊肿切除应在2岁以下儿童施行E.治疗 [单选]以下有关混凝土的碳化说法错误的是()。A.混凝土的碳化会减弱对钢筋的保护作用B.混凝土的碳化会增加混凝土的收缩C.混凝土的碳化会引起混凝土的微细裂缝D.混凝土的碳化有弊无利 [单选]外阴鳞状上皮增生的主要组织病理变化是()A.表皮层角化不全B.表皮层角化过度C.表皮层角化过度或角化不全D.表皮层角质栓塞E.棘层细胞规则增厚 [多选]气割所用的可燃气体主要是()。A.乙炔B.液化石油气C.氧气D.氢气 [单选,A2型题,A1/A2型题]质量保证的要素中,通常不包堑()。A.患者检测的管理和评估B.质量控制和室间质评的评估C.检测结果的比较及与患者临床信息的关系D.实验室人员的评估及外部投诉的调查E.实验室的成本管理及成本一效益分析 [单选]证据审查的主体是()。A、行政主体B、行政相对人C、行政程序参加人D、行政主体或行政程序参加人 [单选]为预防Rh阴性妇女发生致敏,下列哪些情况不适合预防性应用抗D球蛋白()A.第1次分娩Rh阳性婴儿后,于72小时内应用B.Rh(-)女婴出生时即应用C.流产(自然或人工流产)后D.在羊膜腔穿刺后E.产前出血、宫外孕、妊娠期高血压疾病 [判断题]在金融机构开立个人存款账户的,金融机构应当要求其出示本人身份证件,进行核对,并登记其身份证件上的姓名和号码。()A.正确B.错误 [单选]电波幅值大小与方向变化一次所用的时间称为()。A.频率B.周期C.速度D.波长 [单选]海图图式“Si”表示该区地质为()。A.沙B.泥C.淤泥D.岩石 [单选,A2型题,A1/A2型题]结核菌素试验假阴性应排除().A.重症结核病B.重度营养不良C.接种BCG后4~8周D.急性传染病后E.使用激素后 [单选]稀溶液依数性的核心性质是()。A.溶液的沸点升高B.溶液的凝固点降低C.溶液具有渗透压D.溶液的蒸气压下降 [问答题,简答题]什么是调制,调制方式的种类? [单选]某五金公司保存有大量五金产品档案,根据五金产品档案的特点,适宜的分类方法是()。A.项目分类法B.型号分类法C.专业分类法D.时间分类法 [单选]5岁小儿,下列何者不正常()A.体重20kgB.身长105cmC.乳牙20颗D.腕部骨化中心6个E.上部量与下部量相等 [单选]关于以下毒性弥漫性甲状腺肿合并周期性麻痹的描写正确的是()A.大量钾离子从尿中排出B.大量钾离子从肠道排出C.大量出汗,钾离子从皮肤丧失D.血中钾离子向细胞内转移E.甲亢高代谢,而钾的摄入不足 [单选]锁骨骨折可发生的合并损伤是()A.颈2、3神经根损伤B.胸锁乳突肌损伤C.副神经损伤D.膈神经损伤E.臂丛神经损伤 [单选]辑合女西装前片里布的胸省、腋下省并烫向()。A.摆缝B.前C.随意D.A、B、C都对 [单选,A2型题,A1/A2型题]危重病人,突然头额冷汗大出,四肢厥冷,属于()A.亡阴B.亡阳C.阳虚D.阴虚E.以上均非
相关文档
最新文档