高三数学数列模型及其应用2
高三数学等比数列2
3.如果 a n bn 是项数相同的等比数列,那 么 a n bn 也是等比数列.
结论:如果 a b 是项数相同的等 比数列,那么 a n bn 也是等比数列.
n n
bn 的公比为 证明:设数列a n 的公比为p, q,那么数列 a n bn 的第n项与第n+1项分 n 1 n n 别为 a1p n 1 b1q n 1 与 a1p b1q ,即 a1b1 (pq) n 与 a1b1 (pq) .
因为 它是一个与n无关的常数,所以是一个以pq 为公比的等比数列.
a n 1 b n 1 a1b1 (pq) n pq, n 1 a n bn a1b1 (pq)
特别地,如果是a 等比数列ቤተ መጻሕፍቲ ባይዱc是不等 于0的常数,那么数列 c a 也是等比数列.
n
n
探究
对于例4中的等比数列 a n 与 bn ,数
1.定义法:
an1 q(是与n无关的数或式子 , 且q 0 ) an
2.中项法:
an1 an1 an ( 0)
2
三个数a,b,c成等比数列
2 ac b
五、等比数列的性质
1、若m, n, p, q N , 且m n p q,
则a m a n a p a q
an , 若a1 a2 a3 7, 4.已知等比数列
a1 a2 a3 8, 求an.
a1 1, q 2或a1 4, q
1 2
课后作业
P60 习题 2.4 A 组 第 3、 7、 8题
选做: P59 探究 选做: P75 第1,2,4题
高三数学考点-数列求和及应用
6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
高三数学数列模型及其应用2
2016届新课标高三数学(文)一轮复习习题 §6.4数列求和、数列的综合应用 2年模拟
§ 6。
4 数列求和、数列的综合应用A 组 2014-2015年模拟·基础题组限时:35分钟1。
(2014河南安阳二模,6)已知数列{a n }中,a n =—4n+5,等比数列{b n }的公比q 满足q=a n —a n —1(n≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A.1-4n B 。
4n —1 C.1-4n3 D.4n-132。
(2014辽宁五校协作体联考,15)已知数列{a n }满足a n =1+2+3+…+nn,则数列{1a n a n+1}的前n 项和为 。
3.(2014广东揭阳3月模拟,13)对于每一个正整数n,设曲线y=x n+1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99= 。
4。
(2015河北石家庄调研)在数列{a n }中,已知a 1=14,a n+1a n=14,b n +2=3lo g 14a n (n∈N *). (1)求数列{a n }的通项公式; (2)求证:数列{b n }是等差数列;(3)设数列{c n }满足c n =a n +b n ,求{c n }的前n 项和S n .5.(2014广东湛江二模,19)已知等差数列{a n}的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{b n}的b2,b3,b4。
(1)求数列{a n}和{b n}的通项公式;(2)设数列{c n}对任意正整数n均有c1b1+c2b2+…+c nb n=a n+1成立,求c1+c2+…+c2 014的值。
B组2014—2015年模拟·提升题组限时:50分钟1.(2015长春外国语学校期中)若数列{a n}满足1a n+1—pa n=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A。
高三数学 等差数列、等比数列 (2)
这样就可以运用解法1和解法2的方法了(下解略).
解法3:由 an+1=4an+3
an+2=4an+1+3
②
①得
②-①得:an+2-an+1=4(an+1-an).则数列{an+1-an}是 首项为a2 -a1 =(4 a1+3)-a1= 3 a1+3=9,公比 为4的等比数列.
所以, an-an-1=9×4n-2 所以,an=(an-an-1)+ (an-1-an-2)+ …+(a2-a1)+a1 =9×4n-2+ 9×4n-3 +…+ 9×40+2
例4.已知数列an, a1
1 2
, an
3an1
3n1, 求an.
解:两边同除以3n得:
an 3n
an1 3n1
1 3
,即
:
an 3n
an1 3n1
1. 3
an 3n
是以
a1 3
1 为首项,
6
公差为
1 的等差数列 . 3
an 1 (n 1)( 1) 1 1 n.即
3n 6
3 23
an
1 3n 2
n 3n1.
例5.已知数列an, a1 3, an 4an1 5 3n , 求an.
解法1:两边同除以3n得:
an 3n
4 3
an1 3n1
5.
令 an 3n
An ,则得An
4 3
An1 5.(以下用例3的方法解)
又令An
k
4 3
( An1
k ),则An
4 3
An1
an
4an1
数列的递推关系课件 高三数学二轮复习
an+
an+lg p,令bn=lg an,则bn+1=qbn+lg p,同上得bn,再求an.
高考专题辅导与测试·数学
9.已知正项数列{an}满足a1=2,an+1= ,则an=
答案:2
21−
.
(n∈N*)
1
两边取以2为底的对数得log2an+1= log2an,∴数
2
解析:将an+1=
P27页
高考专题辅导与测试·数学
3
(3)已知数列{an}满足a1=1,an+1=
,则a7=
2 +3
. P27页
1
答案:(3)
5
3
1
1
2
1
解析:(3)易知an≠0,由an+1=
,得
= + ,所以
2 +3
+1 3
是首
2
1
1
2 2��+1
项为1,公差为 的等差数列,所以 = +(n-1)× =
-an-1),所以{an+1-an}是首项为a2-a1,公比为p的等比数列,
先求an+1-an,再求an.
高考专题辅导与测试·数学
n·2n
(2)数列{an}满足an+1=2an+2+1 ,且a1=2,则an=———。
高考专题辅导与测试·数学
2.形如an+1=pan+q(n)(p≠1)的递归式,等号两边同除以pn+1,
1
+3=2( +3), +3=2,故{ +3}是以2为首项,2为公比
+1
1
1
1
n-1
的等比数列,于是 +3=2·
2 ,可得bn= ,n∈N*.
2 −3
2019年高三数学第二章数列的极限知识点总结word版本 (2页)
2019年高三数学第二章数列的极限知识点总结word版本
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
高三数学第二章数列的极限知识点总结
极限,是指无限趋近于一个固定的数值。
以下是数学网为大家整理的高三数学第二章数列的极限知识点,希望可以解决您所遇到的相关问题,加油,数学网一直陪伴您。
1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;
2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;
3、渐近线,(垂直、水平或斜渐近线);
4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.
下面我们重点讲一下数列极限的典型方法.
重要题型及点拨
1.求数列极限
求数列极限可以归纳为以下三种形式.
★抽象数列求极限
这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证.
★求具体数列的极限,可以参考以下几种方法:
a.利用单调有界必收敛准则求数列极限.
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值.
b.利用函数极限求数列极限。
数列 (2)
高考总复习.文科数学
变式探究 4.求和S=sin 89° 4.求和S=sin21°+sin22°+sin23°+…+sin289°= 求和 .
答案:89/2 答案:
高考总复习.文科数学
已知数列{a 的前n项和S 满足: 1/2(n (n≥ 已知数列{an}的前n项和Sn与an满足:an,Sn,Sn-1/2(n≥2) 成等比数列, =1,求数列{a 的前n项和S 成等比数列,且a1=1,求数列{an}的前n项和Sn. 解析:由题意, =an( 解析:由题意,得Sn2=an(Sn-1/2), (n≥2), 2), ∵an=Sn-Sn-1(n≥2), ∴Sn2=(Sn-Sn-1)(Sn-1/2) ⇒ 1/2(Sn-1-Sn)=SnSn-1, 1/2) 1/2(S ∴(1/Sn)-(1/Sn-1)=2 (1/S (1/S 1/S +(n-1)2=2n-1(n≥2), ⇒ 1/Sn=1/S1+(n-1)2=2n-1(n≥2), ∴Sn=1/(2n-1)(n≥2). n=1/(2n- (n≥ 1/(2n 当n=1时,该式也适合. n=1时 该式也适合. ∴Sn=1/(2n-1). n=1/(2n- 1/(2n 点评:本题的常规方法是先求通项公式,然后求和, 点评:本题的常规方法是先求通项公式,然后求和,但逆向思 维,直接求出数列{an}的前n项和Sn的递推公式,是一种最佳解 直接求出数列{a 的前n项和S 的递推公式, 法.
1 1 1 1 1 1 1 1 1 1 1 1 = [(1− ) + ( − ) + ( − ) +⋯+ ( − ) +( − ) +( − )] 2 3 2 4 3 5 n − 2 n n −1 n +1 n n + 2 1 1 1 1 3 2n + 3 = (1+ − − )= − . 2 2 n +1 n + 2 4 2(n +1)(n + 2)
高三数学数列知识点总结归纳
高三数学数列知识点总结归纳数列作为数学中的重要概念,在高中数学中占据着重要的地位。
掌握数列的相关知识点是高三学生成功应对数学考试的关键。
本文将对高三数学数列知识点进行总结归纳,帮助同学们更好地理解和应用数列知识。
一、等差数列等差数列是高中数学中最常见的数列类型之一。
等差数列的特点是,数列中每两个相邻的数之间的差都相等,这个差被称为公差。
1.通项公式等差数列的通项公式为:an = a1 + (n-1)d,其中an表示第n个数,a1表示首项,d表示公差。
2.前n项和公式等差数列的前n项和公式为:Sn = [n/2] * (a1 + an),其中Sn表示前n项和,[]表示取整函数。
二、等比数列等比数列是另一种常见的数列类型。
等比数列的特点是,数列中每两个相邻的数之间的比值都相等,这个比值被称为公比。
1.通项公式等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。
2.前n项和公式等比数列的前n项和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中Sn表示前n项和。
三、数列的性质与判断除了上述常见的等差数列和等比数列,数列还有一些重要的性质,学生们需要掌握如下内容:1.递推公式数列的递推公式是指通过前一项或多项来求得下一项的公式。
对于等差数列和等比数列而言,递推公式分别为an = an-1 + d和an = an-1 * r。
2.数列的有界性数列的有界性是指数列中的数是否有上界或下界。
有界数列是指存在上界或下界的数列,无界数列是指没有上界或下界的数列。
3.数列的单调性数列的单调性是指数列中的数的排列顺序是否单调递增或单调递减。
如果数列中的数依次递增,则称该数列是递增数列;如果数列中的数依次递减,则称该数列是递减数列。
四、数列的应用数列在实际问题中有广泛的应用,以下是其中一些常见的应用场景:1.复利问题等比数列可应用于复利问题中,比如银行存款利息的计算等。
第2部分 专题2 第2讲数列求和及其综合应用-2021届高三高考数学二轮复习课件
最小值;若不存在,请说明理由.
【解析】 (1)当n=1时,a1=S1,由S1=1-12a1,得a1=23. 当n≥2时,Sn=1-12an,Sn-1=1-21an-1, 所以an=Sn-Sn-1=1-12an-1-12an-1=12an-1-21an, 所以an=13an-1,所以{an}是以32为首项,31为公比的等比数列, 所以Sn=2311--1313n=1-13n.
(3)(2020·湖南师大附中第二次月考)在公差大于0的等差数列{an} 中,2a7-a13=1,且a1,a3-1,a6+5成等比数列,则数列{(-1)n-1an} 的前21项和为__2_1__.
【解析】 (1)设等差数列{an}的公差为d, ∵a9=12a12+6,a2=4,∴12=a1+5d,又a1+d=4, 解得a1=d=2,∴Sn=2n+nn- 2 1×2=n(n+1). ∴S1n=nn1+1=1n-n+1 1. 则数列S1n的前10项和=1-12+12-13+…+110-111=1-111=1110.
(2)存在. 由(1)可知,bn=-log3(1-Sn+1) =-log31-1-13n+1=-log313n+1 =n+1, 所以bnb1n+1=n+11n+2=n+1 1-n+1 2,
(2)设bn=n·2n+n, 所以Tn=b1+b2+b3+…+bn=(2+2×22+3×23+…+n·2n)+(1+2 +3+…+n), 令T=2+2×22+3×23+…+n·2n, 则2T=22+2×23+3×24+…+n·2n+1, 两式相减,得 -T=2+22+23+…+2n-n·2n+1=211--22n-n·2n+1,
【解析】 (1)由题意,aa12+a3=a4=a1a94,=8,
解得a1=1,a4=8或a1=8,a4=1; 而等比数列{an}递增,所以a1=1,a4=8,
高三数学数列在日常生活中的应用
• [例1] 某人有七位朋友.第一位朋友每天 晚上都去他家看他,第二位朋友每隔一个 晚上到他家去,第三位朋友每隔两个晚上 去他家串门,第四位朋友每隔三个晚上去 他家做客,依次类推,直至第七位朋友每 隔六个晚上在他家出现.这七位朋友昨晚 在主人家中碰面,他们还会同一个晚上在 主人家中碰面吗?
• 解析:第一位朋友每天晚上在主人家;第 二位朋友以后在主人家的天数为第: 2,4,6,8,„,这些数构成以2为首项,公差 为2的等差数列,通项公式为:an=2n;第 三位朋友以后在主人家的天数为第: 3,6,9,„,这些数构成以3为首项,公差 为3的等差数列,通项公式为:an=3n;第 四、五、六、七位朋友晚上在主人家的天 数构成以4、5、6、7为首项,公差为4、5、 6、7的等差数列,通项公式分别为an=4n, an=5n,an=6n,an=7n;他们要在同一 晚上出现,这个数应为这七个数列的公共
• (4)分期付款模型 • a为贷款总额,r为月利率,b为月等额本息 还款数,n为贷款月数,则⑫________.
• 三、数列综合应用题的解题步骤 • (1)⑬________——弄清题意,分析涉及哪些 数学内容,在每个数学内容中,各是什么 问题. • (2)⑭________——把整个大题分解成几个小 题或几个“步骤”,每个小题或每个小“步 骤”分别是数列问题、函数问题、解析几 何问题、不等式问题等. • (3)⑮________——分别求解这些小题或这些 小“步骤”,从而得到整个问题的解答.
• 解析:设每年应付款x元,那么到最后一次 付款时(即购房十年后),第一年付款及所生 利息之和为x×1.0759元,第二年付款及所生 利息之和为x×1.0758元,„,第九年付款及 其所生利息之和为x×1.075元,第十年付款 为x元,而所购房余款的现价及其利息之和 为[1000×92-(28800+14400)]×1.07510= 48800×1.07510(元).因此有x(1+1.075+ 1.0752+„+1.0759)=48800×1.07510(元), 所以x=48800×1.07510× ≈48800×2.061×0.071≈7141(元).
高三数学微积分与数列的应用与解题技巧总结
高三数学微积分与数列的应用与解题技巧总结微积分和数列是高中数学中的重要内容,也是高考数学考试中常见的题型。
它们在实际生活中有着广泛的应用,掌握了解题技巧可以帮助我们更好地解决实际问题。
本文将总结高三数学中微积分与数列的应用以及解题技巧。
一、微积分的应用微积分是研究极限、导数和积分的数学分支,它在科学、工程和经济等领域中有着广泛的应用。
下面将从极限、导数和积分三个方面总结微积分的应用。
1. 极限的应用极限是微积分的基础,它在数列、函数和数学模型等方面都有着重要的应用。
例如,在物理学中,速度可以看作是位移对时间的极限;在生物学中,种群数量的变化可以通过极限来进行模拟和预测。
掌握极限的概念和计算方法,可以帮助我们更好地理解和应用各种数学模型。
2. 导数的应用导数是微积分中的重要概念,它表示函数在某一点的变化率。
导数在各个学科领域都有广泛的应用。
例如,在物理学中,速度和加速度可以通过位置函数的导数求得;在经济学中,成本函数和收益函数的导数可以帮助我们分析生产和销售策略。
熟练掌握导数的计算和应用方法,可以帮助我们更好地解决实际问题。
3. 积分的应用积分是微积分中的另一个重要概念,它表示函数在区间上的累积效果。
积分在几何学、物理学和经济学等领域都有着广泛的应用。
例如,在几何学中,可以通过积分计算曲线与坐标轴所围成的面积;在物理学中,可以通过积分计算物体的质量和能量;在经济学中,可以通过积分计算生产和消费的总量。
掌握积分的计算和应用方法,可以帮助我们更好地解决实际问题。
二、数列的应用与解题技巧数列是高中数学中的重要内容,也是高考数学考试中常见的题型。
下面将总结数列的应用与解题技巧。
1. 等差数列的应用与解题技巧等差数列是数列中的一种特殊形式,它的公差恒定。
在实际生活中,等差数列常常出现在财务管理、工程规划和人口统计等方面。
解决等差数列相关问题的关键是找到数列的通项公式,然后利用该公式进行计算。
如果无法直接找到通项公式,可以通过计算前几项的差值来推测数列形式,并进行验证。
高三数学等差和等比数列的运用2
/word?w=%E6%AD%A3%E5%AE%97%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%09%E3%80%903118900%E3 E5%88%88%E7%A0%8DXlP9 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%E5%B9%B3%E5%8F%B0%E4%BA%8C%E7%BB%B4%E 81%09%E3%80%903118900%E3%80%91%E5%B7%A2%E7%A8%BCLHxL /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BE%AE%E4%BF%A1%E7%BE%A4%E5%B9%B3%E5%8F%B0%09%E3%80%903118900%E3% E6%A1%88%E7%BE%8E8e80 /word?w=%E9%9D%A0%E8%B0%B1%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%9E%E5%8A%9B%E5%BE%AE%E4%BF%A1%E7%BE%A4%E B3%E5%8F%B0%09%E3%80%903118900%E3%80%91%E6%8F%BD%E8%BE%8611Nx /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E7%A8%B3%E5%AE%9A%E5%B9%B3%E5%8F%B0%E7%BE%A4%09 80%903118900%E3%80%91%E7%A0%8D%E5%88%86lj1Z /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E7%BE%A4%E6%8A%95%E6%B3%A8%E4%BF%A1%E8%AA%89%E5%B9%B3%E5%8F%B0%09 80%903118900%E3%80%91%E6%B6%A1%E6%B3%8A7nX7 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E4%BF%A1%E8%AA%89%E6%8A%95%E6%B3%A8%E5%B9%B3%E5 B0%E7%BE%A4%09%E3%80%903118900%E3%80%91%E5%80%8D%E6%B1%B2TnBn /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%AD%A3%E8%A7%84%E9%9D%A0%E8%B0%B1%E6%8A%95%E6%B3%A8%E5%B9%B3%E5 B0%E7%BE%A4%09%E3%80%903118900%E3%80%91%E6%85%B0%E6%99%959NRr /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7APP%E7%BE%A4%09%E3%80%903118900%E3%80%91% AA%E6%AF%99ZhbZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%98%E6%96%B9%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903 E3%80%91%E4%BC%BA%E5%8F%82d1T5 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6V%E4%BF%A1%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903118900%E3 91%E5%99%AC%E9%9D%A0FZ91 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E5%AE%9E%E5%8A%9B%E5%B9%B3%E5%8F%B0%E7 A4%09%E3%80%903118900%E3%80%91%E5%9E%82%E5%86%88Z3nd /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E4%BF%A1%E8%AA%89%E6%AD%A3%E8%A7%84%E5%B9%B3%E5%8F%B0%E7%BE%A4%09 80%903118900%E3%80%91%E7%84%95%E8%B5%B551bf /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%BD%A9%E7%A5%A8%E5%B9%B3%E5%8F%B0%E7%BE%A4%E4%BB%A3%E7%90%86%09 80%903118900%E3%80%91%E8%87%AA%E5%BA%951Tp3 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%9C%80%E4%BF%A1%E8%AA%89%E6%8A%95%E6%B3%A8%E5%B9%B3%E5%8F%B0%E7% A4%09%E3%80%903118900%E3%80%91%E6%B7%98%E6%B1%A0n979 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E6%8A%95%E6%B3%A8%E4%BF%A1%E8%AA%89%E5%A4%A7%E5%B9%B3%E5%8F%B0%E7 A4%09%E3%80%903118900%E3%80%91%E5%BD%93%E6%99%8Cx3ND /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E7%B2%BE%E5%87%86%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09%E3%80%903 E3%80%91%E5%9A%8E%E6%BB%9EB3NN /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E4%BB%A3%E7%90%86%E7%BE%A4%09%E3%80%903 E3%80%91%E9%9F%A7%E5%A0%821Dt9 /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6app%E5%85%AC%E4%BC%97%E5%8F%B7%E5%B9%B3%E5%8F%B0%E%E3%80%91%E7%BA%A0%E6%8B%B15hjZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%98%E6%96%B9%E5%85%AC%E4%BC%97%E5%8F%B7app%E7%BE%A4%09%E3%80% 903118900%E3%80%91%E7%B0%87%E4%BB%8E3BVZ /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%B9%B3%E5%8F%B0%E7%BE%A4%09%E3%80%903118900%E3% E6%99%BA%E9%83%9D9T1T /word?w=%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%AE%9E%E5%8A%9B%E7%BE%A4%E5%85%AC%E4%BC%97%E5%8F%B7%09%E3%80%90 E3%80%91%E5%BC%9B%E6%8A%96PNLJ /word?w=%E5%8F%AF%E9%9D%A0%E7%9A%84%E6%9E%81%E9%80%9F%E8%B5%9B%E8%BD%A6%E5%85%AC%E4%BC%97%E5%8F%B7%E7%BE%A4%09 80%903118900%E3%80%91%E5%84%87%E6%B5%871nXL
高三数学数列的综合应用知识精讲
高三数学数列的综合应用【本讲主要内容】数列的综合应用等差数列与等比数列的综合问题,数列与其他数学知识的综合问题,数列在实际问题中的应用。
【知识掌握】 【知识点精析】1. 等差数列与等比数列的综合问题,主要是运用它们的性质、通项公式、前n 项和公式将已知条件转化为数学式子(方程或不等式等)。
2. 在解决数列与其他数学知识的综合问题中,应该注意思维的角度和解题途径的选择,从“数列是特殊的函数”的角度出发,运用运动变化的观点,将问题变形转换,要分清所给问题中的数列是哪种类型,与其他数学知识的关系如何,以达到解决问题的目的。
3. 用数列解决实际应用性问题,主要有增长率问题,存贷款的利息问题,几何模型中的问题等等。
要把实际应用题转化为某种数列的模型,要分清是等差数列还是等比数列,还是有递推关系的数列,分清所涉及的量是数列中的项n a ,还是各项和n S ,有时还要注意数清项数,以使问题准确解决。
【解题方法指导】例1. (2005年全国卷三)在等差数列}{n a 中,公差d ≠0,2a 是1a 与4a 的等比中项,已知数列 ,,,,,,n k k k a a a a a 2131成等比数列,求数列}{n k 的通项n k 。
解题思路分析:这是一道等差数列与等比数列的综合问题,只需依题设条件,按已知的公式列式即可。
解:依题意得41221)1(a a a d n a a n ⋅=-+=,)3()(1121d a a d a +=+∴,整理得d a d 12= 10a d d =∴≠, ,得nd a n =所以,由已知得 ,,,,,,d k d k d k d d n 213是等比数列 由d ≠0,所以数列1,3,21k k ,,…,n k ,…也是等比数列 首项为1,公比为q=3,由此得91=k等比数列{n k }的首项91=k ,公比q=3,所以)21(33911 ,,==⨯=+-n k n n n即得到数列{n k }的通项*)(31N n k n n ∈=+例2. (2005年上海卷)假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米,那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?解题思路分析:这是一道实际应用题,依题意,先分析出中低价房面积逐年增长后,每年的面积数成等差数列,首项为250(万平方米),公差为50(万平方米);而每年新建住房面积逐年增长后,每年的面积数成等比数列,首项是400(万平方米),公比为(1+8%),然后再依据题中条件列式,而第(1)问中,指的是中低价房的累计面积,所以应为数列的前n 项和;而第(2)问中,指的是该年建造的住房面积,应为数列的第n 项。
高三数学数列综合应用试题答案及解析
高三数学数列综合应用试题答案及解析1.某企业为加大对新产品的推销力度,决定从今年起每年投入100万元进行广告宣传,以增加新产品的销售收入.已知今年的销售收入为250万元,经市场调查,预测第n年与第n-1年销售收入an 与an-1(单位:万元)满足关系式:a n=a n-1+-100.(1)设今年为第1年,求第n年的销售收入an;(2)依上述预测,该企业前几年的销售收入总和Sn最大.【答案】(1)an=500--100(n-1)(2)前5年【解析】解:(1)由题意可知an -an-1=-100(n≥2),an-1-a n-2=-100,…a 3-a2=-100,a 2-a1=-100,a1=250=.以上各式相加得,an=500(++…+)-100(n-1)=500·-100(n-1)=500--100(n-1).(2)要求销售收入总和Sn的最大值,即求年销售收入大于零的所有年销售收入的和.∵an=500--100(n-1),∴要使an≥0,即500--100(n-1)≥0,也就是+≤1.令bn=+,则bn -bn-1=+--=-,显然,当n≥3时,bn >bn-1,而b5<1,b6>1,∴a5>0,a6<0.∴该企业前5年的销售收入总和最大.2.设数列{an }的前n项和Sn满足=3n-2.(1)求数列{an}的通项公式;(2)设bn =,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.【答案】(1)an=6n-5(n∈N*)(2)10【解析】解:(1)由=3n-2,得Sn=3n2-2n.当n≥2时,an =Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×1-2=6-5=1.所以an=6n-5(n∈N*).(2)由(1)得bn=== (-),故Tn= [(1-)+(-)+…+(-)]= (1-).因此,使得(1-)< (n∈N*)成立的m必须满足≤,即m≥10,故满足要求的最小正整数m为10.3.(14分)(2011•广东)设b>0,数列{an}满足a1=b,an=(n≥2)(1)求数列{an}的通项公式;(2)证明:对于一切正整数n,2an≤b n+1+1.【答案】(1)(2)见解析【解析】(1)由题设形式可以看出,题设中给出了关于数列an的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即an=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即an=,∴数列{an}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,an =,要证对于一切正整数n,2an≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2an≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.4.已知数列,,2,,…,则2在这个数列中的项数为()A.6B.7C.19D.11【答案】B【解析】设,,,,…形成的数列为{an },被开方数形成的数列为{bn},从形式上讲,每一项都有二次根号,被开方数为2,5,8,11…,易归纳出数列{bn }的一个通项公式为bn=3n-1,所以an=,2==,解得n=7,所以2是这个数列的第7项.5.已知数列,对任意的,当时,;当时,,那么该数列中的第10个2是该数列的第项.【答案】39366()【解析】由题意,,,由此可得,,故第10个2应该是,即第项.【考点】数列的通项公式与数列的项.6.一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:;为数表中第行的第个数.(1)求第2行和第3行的通项公式和;(2)证明:数表中除最后2行外每一行的数都依次成等差数列;(3)求关于()的表达式.【答案】(1),;(2)证明见解析,;(3).【解析】(1)根据定义,,因此,;(2)由于第行的数依赖于第的数,因此我们可用数学归纳法证明;(3)设第行的公差为,,而,从而,即,于是有,由此可求得数列是公差为1的等差数列,而,由等差数列通项公式得,从而有.试题解析:(1).(4分)(2)由已知,第一行是等差数列,假设第行是以为公差的等差数列,则由(常数) 知第行的数也依次成等差数列,且其公差为.综上可得,数表中除最后2行以外每一行都成等差数列. (9分) (3)由于,所以, (11分) 所以, 由得, (13分) 于是,即, (15分)又因为,所以,数列是以2为首项,1为公差的等差数列, 所以,,所以(). (18分)【考点】(1)等差数列的通项公式;(2)等差数列的判定;(3)由递推公式求通项公式.7. 已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f(x)=x 2+2x 的图象上,且在点P n (n ,S n )处的切线的斜率为k n . (1)求数列{a n }的通项公式;(2)若b n =2k n a n ,求数列{b n }的前n 项和T n . 【答案】(1)a n =2n +1(2)T n =·4n +2-【解析】(1)∵点P n (n ,S n )在函数f(x)=x 2+2x 的图象上,∴S n =n 2+2n(n ∈N *),当n≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1. (2)由f(x)=x 2+2x ,求导得f′(x)=2x +2. ∵在点P n (n ,S n )处的切线的斜率为k n , ∴k n =2n +2,∴b n =2k n a n =4·(2n +1)·4n , ∴T n =4×3×4+4×5×42+4×7×43+…+4×(2n +1)×4n ,用错位相减法可求得T n =·4n +2-.8. 已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n +1,则{a n }的通项公式为__________. 【答案】a n =【解析】由log 2(1+S n )=n +1,得S n =2n +1-1. n =1时,a 1=S 1=3.n≥2时,a n =S n -S n -1=2n . 当n =1时a 1=3不符合上式,∴a n =9. 已知S n 是数列{a n }的前n 项和,且a n =S n -1+2(n ≥2),a 1=2. (1)求数列{a n }的通项公式. (2)设b n =,T n =b n +1+b n +2+…+b 2n ,是否存在最大的正整数k ,使得对于任意的正整数n ,有T n >恒成立?若存在,求出k 的值;若不存在,说明理由.【答案】(1)2n (2)存在【解析】(1)由已知a n =S n -1+2, ① 得a n +1=S n +2. ②②-①,得a n +1-a n =S n -S n -1(n ≥2), ∴a n +1=2a n (n ≥2).又a 1=2,∴a 2=a 1+2=4=2a 1, ∴a n +1=2a n (n =1,2,3,…),∴数列{a n }是一个以2为首项,2为公比的等比数列, ∴a n =2·2n -1=2n ,n ∈N *. (2)b n ===,∴T n =b n +1+b n +2+…+b 2n =++…+,T n +1=b n +2+b n +3+…+b 2(n +1)=++…+++. ∴T n +1-T n =+-==.∵n 是正整数,∴T n +1-T n >0,即T n +1>T n .∴数列{T n }是一个单调递增数列.又T 1=b 2=,∴T n ≥T 1=, 要使T n >恒成立,则>,即k <6.又k 是正整数,故存在最大正整数k =5使T n >恒成立. 10. 若,则___________ .【答案】【解析】由,可得,所以.【考点】代数式的处理11. 数列的首项为,为等差数列且 .若则,,则( )A .0B .3C .8D .11【答案】B 【解析】由为等差数列且,,则,所以,故,累加得,所以.【考点】1、等差数列的通项公式;2、累加法.12. 已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,. (1)分别求数列,的通项公式,; (2)设数列的前项和为,求的表达式,并求的最小值. 【答案】(1),;(2),.【解析】(1)首先设出公差和公比,根据已知条件及等比数列和等差数列的性质,列方程组解方程组,求得公差和公比,写出各自的通项公式;(2)因为取偶数和奇数时,数列的项数会有变化,所以对分取偶数和奇数两种情况进行讨论,根据等差数列和等比数列的前项和公式,求出的表达式,根据前后两项的变化确定的单调性,求得每种情况下的最小值,比较一下,取两个最小值中的较小者. 试题解析:(1)设数列的公差是,的公比为,由已知得,解得,所以; 2分又,解得或(舍去),所以; .4分(2)当为偶数时,,当为奇数时. .10分当为偶数时,,所以先减后增,当时,,所以;当时,,所以;所以当为偶数时,最小值是. 12分当为奇数时,,所以先减后增,当时,,所以,当时,,所以,所以当为奇数时,最小值是.比较一下这两种情况下的的最小值,可知的最小值是. .14分【考点】1、等差数列与等比数列的前项和公式;2、数列与函数单调性的综合应用;3、数列与求函数最值的综合运用;4、数列的函数特性.13.已知二次函数的图象经过坐标原点,其导函数为,数列的前项和为,点均在函数的图像上.(1)求的解析式;(2)求数列的通项公式;(3)设,是数列的前n项和,求使得对所有都成立的最小正整数.【答案】(1)(2)(3)10【解析】(1)利用导函数及待定系数法求解;(2)利用与的关系求通项公式,要注意对进行讨论;(3)数列求和的方法由数列的通项公式决定.常用的方法有:公式求和法、倒序相加法、错位相减法、裂项相消法、分组转化法等。
函数方程专题之函数与数列(2)-沪教版(上海)高中数学2019-2020学年高三数学二轮复习教案(教
沪教版(上海)高中数学2019-2020学年度高三数学二轮复习函数方程专题之 函数与数列②教学目标 1.理解并能知道数列是一个定义域在N *上的函数;2.掌握好等差数列的相关函数性质. 知识梳理 1.数列的定义:数列可以看作以正整数集(或它的有限子集)为定义域的函数()n a f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值;2.等差数列的通项公式:11(1)()n a a n d dn a d n N *=+-=+-∈,不难看出: 当0d =,则等差数列为一个常数列;当0d ≠,则等差数列的通项公式可以看作是一个一次函数.3.等差数列的前n 项和公式:2111()(1)()()2222n n n a a n n d d S a n d n a n n N *+-==+=+-∈. 当0d =,则等差数列前n 项和为一次函数(10a ≠);当0d ≠,则等差数列前n 项和为过原点的二次函数,开口方向由d 的符号决定. 典例精讲 例1.(★★)设数列{}n a 的通项公式是1413--=n n a n ,则该数列中最最大的项是第__________项,最小的项是第__________项.解:1314141314131141414n a n n n ===---, 由函数图象可知:最大的项是第4项,最小的项是第3项.例2.(★★★)已知数列2n a n kn =-为递增数列,则k 的取值范围是__________.解:结合函数图象可知:对称轴3(,)22k n =∈-∞,则3k <. 例3.(★★★)已知数列{}n a 满足1116,2n n a a a n +=-=,则n a n的最小值为__________. 解:由题意得:216n a n n =-+,16121617n a n n n∴=+-≥-=, 当且仅当16n n =,即4n =时等号成立.课堂检测1.(★★★)公差为d ,各项均为正整数的等差数列中,若11,51n a a ==,则n d +的最小值为__________. 解:150(1)1n a a n d d n =+-⇒=-,则505011250111n d n n n n +=+=-++≥+--, 但n N *∈,∴能成立,所以根据分析得:当115n d =⎧⎨=⎩或610n d =⎧⎨=⎩时,原式有最小值16. 2.(★★★)已知数列{}n a 的通项公式为9(1)()10n n a n =+,是否存在自然数m ,使对于一切n N *∈,n m a a ≤恒成立?若存在,求出m 的值;若不存在,说明理由.解:本题只要求出数列n a 的最大值即可,所以根据1198n n n n a a n a a n -+≥≤⎧⎧⇒⎨⎨≥≥⎩⎩,所以8m =或9m =时满足题意.3.(★★★)已知等差数列{}n a 中,120032004200320040,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大自然数n 是__________.解:由题意得:2003140054005200414007400720032004140064006000000000a a a S a a a S a a a a S >+>>⎧⎧⎧⎪⎪⎪<⇒+<⇒<⎨⎨⎨⎪⎪⎪+>+>>⎩⎩⎩,所以4006n =. 4.(★★★★)已知函数121()(0),,4x f x m x x R m =>∈+,当121x x +=时,121()()2f x f x +=. (1) 求()f x 的解析式;(2) 数列{}n a ,若121(0)()()()()n n n a f f f f f n n n n -=+++++,求n a ; (3) 对任意的自然数n N *∈,11n n n n a a a a ++<恒成立,求正实数a 的取值范围.解:(1)令1212x x ==,则有111222m m +=++,得2m =.1()42x f x =+; (2)0121()()()()()n n n a f f f f f n n n n n-=+++++ ① 1210()()()()()n n n n a f f f f f n n n n n--=+++++ ② 1(1)()4n a n n N *=+∈; (3)由于11n n n n a a a a ++<对任意的自然数n N *∈成立, 又0a >,即111a n >++,对一切n N *∈都成立, 而1331,122a n +≤∴>+. 回顾总结1.数列可以看作是_______________的一个函数2.等差数列的通项公式可以看作_______________.3.等差数列的前n 项和公式可以看作_______________.以正整数集(或它的有限子集)为定义域;一次函数;经过原点的二次函数.。
分布列高三知识点
分布列高三知识点第一点:数列与函数数列是指按照一定规律排列的一组数值,常见的数列有等差数列和等比数列。
在高三数学中,数列被广泛应用于函数的研究和分析。
数列可以看作是函数在自然数集上的取值,而函数是以自变量和因变量之间的关系表示的规律。
通过研究数列,可以深入理解函数的性质和变化规律。
第二点:等差数列与等比数列的性质和应用等差数列是指数列中相邻两项之差保持不变的数列,等差数列的通项公式为An=A1+(n-1)d,其中An表示第n项,A1表示首项,d表示公差。
等差数列的性质包括公差d的求解、前n项和的计算以及特殊等差数列的应用等。
类似地,等比数列是指数列中相邻两项之比保持不变的数列,等比数列的通项公式为An=A1*r^(n-1),其中An表示第n项,A1表示首项,r表示公比。
等比数列也有特定的性质和应用,如求和公式、求解指数方程等。
第三点:数列极限的概念和计算方法在数列中,当数列中的项随着项数的增加而趋于无穷大或无穷小时,我们可以称该数列具有极限。
数列的极限可以理解为数列趋于某个固定值或趋于无穷的过程。
计算数列的极限时,可以运用数列极限的性质,如等差数列与等比数列的极限等。
第四点:数列与数学归纳法数列与数学归纳法是高三数学中常用的证明方法。
通过数学归纳法,我们可以证明数列的某些性质在整个数列范围内都成立。
数学归纳法的基本思想是:当证明某个性质在第一个数值成立时,假设它在第k个数值成立,通过推理证明它在第k+1个数值也成立,从而推断该性质在所有自然数上成立。
第五点:递推数列及其应用递推数列是一种特殊的数列,它的每一项都由前一项确定。
递推数列的通项公式可以通过观察递推关系和数列的前几项进行求解。
递推数列在高三数学中有广泛的应用,如斐波那契数列、简单利息和复利计算等都可以用递推数列的思想来解决。
第六点:数列的应用数列在高三数学中还有许多其他的应用,如排队问题、贝尔数与柏杨三角形、舍利数等。
通过了解和应用不同类型的数列,可以提高解决实际问题的能力和数学思维能力。
高三数学二轮复习:专题二 数列
(2)若数列an+bn是首项为 1,公比为 2 的等比数列,求数列{bn}的前 n 项和. 解 因为数列{an+bn}是首项为1,公比为2的等比数列, 所以an+bn=2n-1, 因为an=2n-1,所以bn=2n-1-(2n-1). 设数列{bn}的前n项和为Sn, 则Sn=(1+2+4+…+2n-1)-[1+3+5+…+(2n-1)] =11--22n-n1+22n-1=2n-1-n2, 所以数列{bn}的前n项和为2n-1-n2(n∈N*).
热点一 等差数列、等比数列的运算
1.通项公式 等差数列:an=a1+(n-1)d; 等比数列:an=a1·qn-1. 2.求和公式 等差数列:Sn=na1+ 2 an=na1+nn2-1d; 等比数列:Sn=a111--qqn=a11--aqnq(q≠1).
3.性质 若m+n=p+q, 在等差数列中am+an=ap+aq; 在等比数列中am·an=ap·aq.
板块三 专题突破 核心考点
专题二 数 列
第1讲 等差数列与等比数列
[考情考向分析]
1.等差、等比数列基本量和性质的考查是高考热点,经常以小 题形式出现. 2.数列求和及数列与函数、不等式的综合问题是高考考查的重 点,考查分析问题、解决问题的综合能力.
内容索引
热点分类突破 真题押题精练
热点分类突破
押题依据 解析 答案
2.在等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则
{an}的公比等于
A.3
B.2或3
√C.2
D.6
押题依据 等差数列、等比数列的综合问题可反映知识运用的综合性和 灵活性,是高考出题的重点.
押题依据 解析 答案
3.已知各项都为正数的等比数列{an}满足 a7=a6+2a5,存在两项 am,an 使得 am·an=4a1,则m1 +4n的最小值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菜花开,春正盛,放蜂人不失时机地追逐着花期;嘤嗡声中,更唤醒怀有乡愁和乡情的追梦人,欣赏油菜花铺开画卷的同时,感悟油菜花那生于灿烂、死于寂静的生命之道。
犹记一年菜花黄。那年我高中毕业,去了上海吴淞江畔的农村插队,了解到每到春季,江南农村都有观赏油菜花、领略春光的民间习俗。我插队劳动的乡村,是唐宋时期的青龙镇,耕读传家成为传 统。早在宋朝米芾任青龙镇监时,曾举行过人才考试的选拔赛,吸引了不少有抱负的青年人。米芾选拔人才别出心裁,要以画达意,出的题目是“黄花如散金”。应考者都想当然以为黄花是菊花。一个 考生画了篱笆,地上满是黄色菊花。另有考生画了花架,上面堆满一盆盆菊花。有的则画一座山,山坡上开遍黄色的野菊花……一位来自吴淞江畔的农村考生的画上,远处几间农舍,近处一片农田,有 阡陌相通,一位农妇挑着一对粪桶担,站立在田岸上,周围全是金黄色的油菜花,全画简洁明快,黄花意象跃然而出。最后这幅画脱颖而出。因为,米芾出题所取,是晋朝吴淞江畔文人张翰“黄花遍地 开”的诗意,这里的黄花特指油菜花,而非菊花。那些四体不勤的考生,往往只会想到菊花,而不知能够“当家”、富于“烟火气”、制