图论块

合集下载

图论复习题

图论复习题
w(G V ) w(G) , 则称 V 为图G 的一个顶点割集。含有k 个顶点的顶点 割集称为k-顶点割集。 注:(1)割点是1-顶点割集。 (2)完全图没有顶点割集。
连通度: κ (G) = min{| V|| V是 G 的顶点割集} 。 完全图的连通度定义为κ (Kν) =ν − 1 。空图的连通度 定义为0。



v
2
1
证:(a)若 G 不连通,可分为两个顶点数分别为
v1,v2的互不连通子图 G1,G2。
易v知i 1,(i 1,2),v1 v2 v 于是

(G )


v1 2



v2 2


v1(v1 2
1)

v2 (v2 2

1)


(v
1)(v1 2
•确定下列给定图类的点连通度和边连通度.
(Pl ) (Pl ) 1 (Kn ) (Kn ) n 1
(Cn ) (Cn ) 2 (Kl,n ) (Kl,n ) l
• 由定义我们可以确定对于图的任一点和任意一条边, 有下列性质成立
定义为0。
注:(1)对平凡图或不连通图G, (G) 0 。 (2)若图G 是含有割边的连通图,则 (G) 1 。 (3)若 (G) k ,则称G 为k-边连通的。
(4)所有非平凡连通图都是1-边连通的。
(5)使得 E (G) 的边割集 E称为G 的最小边割
集。
(G) 1 (G x) (G) 1 (G xy) (G)
定理3.1 .
证明:先证 (G) (G) 。 若G 不连通,则 (G) (G) 0 。 若G 是完全图,则 (G) (G) 1 。

图论期末考试整理复习资料

图论期末考试整理复习资料

目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。

2.只有一个顶点而无边的图称为平凡图。

3.边集为空的图称为空图。

4.既没有环也没有重边的图称为简单图。

5.其他所有的图都称为复合图。

6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。

7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。

10. 图G 的顶点的最大度。

11. k-正则图: 每个点的度均为 k 的简单图。

例如,完全图和完全偶图Kn,n 均是正则图。

12. 推论1 任意图中,奇点的个数为偶数。

13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。

15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。

16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。

经典图论问题

经典图论问题

5经典图论问题5.1 一笔画问题一笔画算法即是从起点a开始选择关联边(第一这条边不是往回倒,第二这条边在前面延伸路上没有出现过)向前延伸,如果到达终点b,得到a—b迹,判断路上的的边数是否为图的总边数,是就终止,否则选择迹上某个关联边没有用完的顶点v,用同样方式再搜索v—v的闭迹,添加到a—b迹上,即得到a—v---v—b迹,如果这个迹的边数还没有达到总边数,则再选择迹上某个关联边没有用完的顶点。

逐步扩展即可。

二、弗罗莱(Fleury )算法任取v 0∈V(G),令P 0=v 0;设P i =v 0e 1v 1e 2…e i v i 已经行遍,按下面方法从中选取e i+1: (a )e i+1与v i 相关联;(b )除非无别的边可供行遍,否则e i+1不应该为G i =G-{e 1,e 2, …, e i }中的桥(所谓桥是一条删除后使连通图不再连通的边);(c )当(b )不能再进行时,算法停止。

5.2 中国邮递员问题(CPP )规划模型:设ij x 为经过边j i v v 的次数,则得如下模型。

∑∈=Ev v ij ijji x z ϖmin∑∑E∈E∈∈=j i i k v v i v v ki ij V v x x ,E ∈∈≤j i ij v v N x ,1..t s5.3旅行推销员问题(TSP,货郎担问题)(NPC问题)定义:包含图G的所有定点的路(圈)称为哈密顿路(圈),含有哈密顿圈得图称为哈密顿图。

分析:从一个哈密顿圈出发,算法一:(哈密顿圈的充要条件:一包含所有顶点的连通子图,二每个顶点度数为2)象求最小生成树一样,从最小权边加边,顶点度数大于3以及形成小回路的边去掉。

算法二:算法三:示例:设旅行推销员的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01086100111281101565150规划模型:先将一般加权连通图转化成一个等价的加权完全图,设当从i v 到j v 时,1=ij x ,否则,0=ij x ,则得如下模型。

图论及其应用综述

图论及其应用综述

图论综述一、简介图论是数学的一个分支。

它以图为研究对象。

图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。

集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。

通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。

图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。

关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。

目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。

图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。

二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。

其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。

紧接着讲解了最短路算法,定义设G为边赋权图。

u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。

图的代数表示,包括图的邻接矩阵和图的关联矩阵。

最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。

2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。

树是不含圈的无圈图,也是连通的无圈图。

树是图论中应用最为广泛的一类图。

在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。

图论大作业

图论大作业

《图论及其应用》大作业指导老师郝荣霞知行1503 徐鹏宇 152912002.1.9证明:若G是森林且恰有2k个奇点,则在G中有k条边不重的路P1,P2......P K,使得E(G)=E(P1) E(P2) ...... E(P K)。

证明:对奇点数k使用数学归纳法。

①当k=1时,G是森林,且有且只有2个奇点⇒G只能为一颗树,且G的所有奇度顶点为两个1度顶点⇒G是一条路⇒满足题设②假设当k=t时,结论成立。

接下来考虑k=t + 1时的情况。

在G中一个分支中取两个叶子点u与v,令P是连接该两个顶点的唯一路。

由于P上除u,v以外的点均被P经过两次,即G-P后除u,v以外的点奇偶性不变。

⇒则G–P是有2t个奇度顶点的森林⇒由归纳假设知,G–P可以分解为t条边不重合的路之并,即E(G-P)=E(P1) E(P2) ...... E(P t)。

⇒则G可分解为t+1条边不重合的路之并,即E(G)=E(P1) E(P2) ...... E(P t) E(P)。

⇒即证。

2.4.4证明:若e 是K n 的边,则τ(K n -e )=(n-2)n n-3证明:由定理2.9:τ(K n )=n n-2由于τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)现在需要求含有e 的生成树棵树,τ(含有e 的生成树棵树)=)1(21n 1-n 2-n n n )(=2n n-3τ(K n -e )=τ(K n )-τ(含有e 的生成树棵树)=(n-2)n n-33.2.4证明:不是块的连通图至少有两个块,其中每个恰有一个割点。

证明:设G 为不是块的连通图,由于G 连通且不是块⇒G 有割点①当G 只有1个割点v 时,延割点分开,G1,G2内无割点,且连通,由块的定义知⇒G1,G2是块,且分别含一个割点v 。

②当G 含有2个及2个以上割点时,取相距距离最远的两个割点u 和v ,此时分G 为三部分G1,G2,G3。

《图论》第6章-图的着色

《图论》第6章-图的着色
第七页,编辑于星期六:八点 一分。
6.1 色数
[定理6-1-1] k-临界图 G=(V, E), =min{deg(vi)|viV}, 则
k-1。
[证明]反证法:设 G 是一个 k-临界图且 <k-1。又设v0V, deg(v0)= 。由 k-临界图的定义,Gv0 是 (k1)可着色的, 在一种 k1着色方案下,Gv0 的顶点可按照颜色划分 成 V1,V2, …, Vk-1 共 k1块,块 Vi 中的顶点被涂以颜色 ci。由于deg(v0)< k1,v0 至少与其中一块 Vj 不邻接即与 Vj 中的任何顶点不邻接。此时可将 v0 涂以颜色 cj,
12
第十二页,编辑于星期六:八点 一分。
6.1 色数
[五色定理] (1890, Heaword) 任何简单平面图都是 5-可着色的。 [证明]设简单平面图 G=(V, E),对 n=|V| 作归纳。
n 5时容易讨论结论成立。
设 n = k1时,结论成立。 当 n = k 时,由[定理5-1-8]简单平面图 G 至少有一个顶点的度 小于6。故可设 v0V,deg(v0) 5。设 G=Gv0,由归纳假设
何顶点的度不小于 k-1。又 G 为 k 色图,其中至少有 k 个顶点。
9
第九页,编辑于ቤተ መጻሕፍቲ ባይዱ期六:八点 一分。
6.1 色数
[推论2] 对 G=(V, E), =max{deg(vi)|viV},有 (G) +1。
[证明] 设 (G)=k,由推论1,有 vV,使得 deg(v) k-1
又: deg(v) 故: k-1 或 (G)-1 即: (G) +1
图所示。
13
第十三页,编辑于星期六:八点 一分。

图论中的圈与块,无向图的最小环

图论中的圈与块,无向图的最小环

浙江省2006年集训讲义
29
嗅探器(4)
题目要求的点一定是图中的割点,但是图中 的割点不一定题目要求的点。如上图中的蓝 色点,它虽然是图中的割点,但是割掉它之 后却不能使a和b不连通 由于a点肯定不是我们所求的点,所以可以以 a为根开始DFS遍历整张图。 对于生成的DFS树,如果点v是割点,如果以 他为根的子树中存在点b,那么该点是问题所 求的点。
2011-1-28 浙江省2006年集训讲义 17
DFS算法
父子边用黑色标记,返祖边用红色标记 如下图,除掉返祖边之后,我们可以把它看 作一棵DFS树
1 2 3 4 5
6
7
2011-1-28
浙江省2006年集训讲义
18
割点
G是连通图,v∈V(G),G – v 不再连通,则称 v是G的割顶。
2011-1-28
结点个数N≤100000 边数M≤1000000
2011-1-28
浙江省2006年集训讲义
32
关键网线(2)
朴素算法: 枚举每条边,删除它,然后判断是否有独立 出来的连通区域内没有A属性或者没有B属性。 复杂度O(M2) 当然,这个复杂度太大了!
2011-1-28
浙江省2006年集训讲义
33
关键网线(3)
2011-1-28 浙江省2006年集训讲义 15
块及其相关知识
DFS算法 割点 (一般对于无向图而言) 割边 (一般对于无向图而言) 块(一般对于无向图而言) 强连通子图(一般对于有向图而言)
2011-1-28
浙江省2006年集训讲义
16
DFS算法
1973年,Hopcroft和Tarjan设计了一个有效的DFS算法 PROCEDURE DFS(v); begin inc(sign); dfn[v] := sign; //给v按照访问顺序的先后标号为sign for 寻找一个v的相邻节点u if 边uv没有被标记过 then begin 标记边uv; 给边定向v→u; 如果u被标记过,记uv为父子边,否则记uv为返祖边 if u未被标记 then DFS(u); end; end;

图论+第3章+图的连通性

图论+第3章+图的连通性

直观上看,右边的比左边的图连通“程度”
要好。
(点)连通度
图的(点)连通度我们常常省略“点”字称连
通度。 树是具有最小连通度的图。 若κ (G ) ≥ k ,则称G是k-连通的。 若G是平凡图或非连通图,则κ (G ) = 0 。 所有非平凡连通图都是1连通的。
边连通度
边连通度λ (G )=min{ S | S是G的边割集} 完全图的边连通度定义为 λ ( K v ) = v − 1。 空图的边连通度定义为0。 边连通度λ (G ) 有时又记作 κ ′(G ) 。
2-连通图的性质
定理 3.2.4:若G是 p ≥ 3的2-连通图,则G的
任意两条边都在同一个圈上。
证明:(板书)
2-连通图的性质
对于一个无环且无孤立点的图G,下面的条
件是等价的:
(1)图是不可分的; (2)图是2-连通的; (3)过任意两个顶点总有一个圈; (4)过任意两条边总有一个圈。
不可分图
没有割点的非平凡的连通图称为不可分图 (non separable graph)。
定理3.1.5 不可分图的任一边至少在一个圈中。 证明:设e是不可分图G的任意边,e=(x,y),x和y都 不是割点,所以图G-e是连通的,故G-e必有一条(x,y) 道路P。于是P+e就是构成G中的一个圈。
e相连接。于是u和v在G-e中成为连通的。故矛盾。
(2)假设e=(x,y)不是割边,那么G-e和G的分支数
相同。由于G中存在一条(x,y)道路,所以x和y均 在G的同一分支。于是x和y在G-e的同一分支中, 故在G-e中存在一条(x,y)道路P,这样边e就在G的 圈P+e中。
割点定理(1)
定理3.1.2 当且仅当在G中存在与顶点v 不同

图论 第3章

图论 第3章

y
e1
u
v e2
x
y
充分性 设e = uv,若e不是G的割边,则G-e仍连通,从 而在G-e中存在(u, v) 路P,这样P+e便是G中含e的圈,这与 假设“e不在G的任何圈中矛盾”。所以e是G的割边。 推论 设e是连通图G的任意一条边,若e含在G的某圈中, 则G-e仍连通。 定义2 图G = (V, E) 的顶点v 称为割点,如果 E 可划分为 两个非空子集 E1 和 E2,使得G[E1] 和 G[E2] 恰有一个公 共顶点v。 例 图3-2中,点u1, u2, u3和 u4是割点,其余点均不为割点。
V2
v
V1
证明 必要性 因v是G的割点,故G-v至少含两个连通分 支,设V1是其中一个连通分支的顶点集,V2为其余分支 的顶点集。对x∈V1,y∈V2,因在G-v中x与y不连通, 而在G中x与y连通(因 G连通)所以v在每一条 (x, y) 路 上。 充分性 取x∈V1,y∈V2,由假设G中所有 (x, y) 路均 含点v,从而在G-v中不存在从x到y的路,这表明G-v 不连通,所以v是割点。 定义3 没有割点的连通图称为块。若图G的子图B是块 ,且G中没有真包含B的子图也是块,则称B是G的块。 G中成块的极大子图叫做G的块。
例1
设图G 如下图所示.
v1 e1 v2
e5
v6 e4
v5 e3 v4
e2
v5
e6 v3
取 V’={v3, v6}. 则 G – V’ 如下:
v1 e1 v2
e3
v4
G – V’
所以 V’ 是2顶点割; 同时, v5 , v6 是割点。
定义2 对n阶连通图G,若G存在顶点割,则称G的最小顶点 割中的点数为G的连通度;否则称n-1为其连通度。 G的连通 u 度记为κ (G),简记为κ ;对非连通图G定义κ (G) = 0。

图论第三章

图论第三章

是G 的顶点割。
-3-
图论及其应用第三章 (2)k 顶点割:含有k 个元素的顶点割。 注:1)1 顶点割与割点是两个不同的概念。
u
{u} 是1 顶点割,但 u 不是割点
v
v 是割点,但 {v} 不是1 顶点割
2)G 连通且无环,则 v 是割点
(G v ) (G )
{v} 是1顶点割
-10-
图论及其应用第三章 (2)k 边割 {e}为1 边割 {e}为割边。
(3)G 的连通度 (G ) 定义如下:
min{ k | G 有 k 边割 }, G 是非平凡图 (G ) 0, G 是平凡图
注: 1) (G ) 0
G 平凡或不连通
2)G 是含有割边的连通图
( n ≥l )
(G ) 1 (G xy ) (G )
(G ) 1 (G x )
-14-
图论及其应用第三章 三. 连通度的基本结果
。 证明:(1)先证 。 若G 平凡或不连通,则
定理3.1
0
-17-
图论及其应用第三章
例5
G
(G ) ( 2 ), (G ) ( 3 ), (G ) ( 4 )
-18-
图论及其应用第三章 例6
A 4-edge-connected graph G such that G-{x1, x2, x3, x4} is connected
-19-
(G ) 1
-11-
图论及其应用第三章 3) (G ) k 0 G 的k 边割均为键
(4)k 连通图:若 (G ) k ,则称G 为k 边连通图 的。 注第三章 例4 1、分别找G1和G2两个边割; 2、给出它们的边连通度。 v2 v1 v5 v6 v9 v 7 v8 v4 G1 v3 v1 v3 G 2 v8 v2 v4 v5 v6 v7

图论及其应用第三章答案(电子科大)

图论及其应用第三章答案(电子科大)

习题三:● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对12,u V v V ∀∈∀∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必含。

必要性:取12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。

●3.设G 是阶大于2的连通图,证明下列命题等价:(1)G 是块 (2)G 无环且任意一个点和任意一条边都位于同一个圈上;(3)G 无环且任意三个不同点都位于同一条路上。

: 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此得到新图,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈上,于是中u 与边都位于同一个圈上。

: 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e ,若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,显然的是阶数大于3的块,则两条边的三个不同点在同一条路上。

:连通,若不是块,则中存在着割点,划分为不同的子集块,,,无环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。

●7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。

证明:是单图的割点,则有两个连通分支。

现任取, 如果不在的同一分支中,令是与处于不同分支的点,那么,与在的补图中连通。

若在的同一分支中,则它们在的补图中邻接。

所以,若是的割点,则不是补图的割点。

● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。

解:()12G κ= 最小点割 {6,8}1()2G λ= 最小边割{(6,5),(8,5)}()25G κ= 最小点割{6,7,8,9,10}2()5G λ= 最小边割{(2,7)…(1,6)}●13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G).解: 通常.eH整个图为,割点左边的图为的的子图,,则.。

图论总结(超强大)解读

图论总结(超强大)解读

1.图论Graph Theory1.1.定义与术语Definition and Glossary1.1.1.图与网络Graph and Network1.1.2.图的术语Glossary of Graph1.1.3.路径与回路Path and Cycle1.1.4.连通性Connectivity1.1.5.图论中特殊的集合Sets in graph1.1.6.匹配Matching1.1.7.树Tree1.1.8.组合优化Combinatorial optimization1.2.图的表示Expressions of graph1.2.1.邻接矩阵Adjacency matrix1.2.2.关联矩阵Incidence matrix1.2.3.邻接表Adjacency list1.2.4.弧表Arc list1.2.5.星形表示Star1.3.图的遍历Traveling in graph1.3.1.深度优先搜索Depth first search (DFS)1.3.1.1.概念1.3.1.2.求无向连通图中的桥Finding bridges in undirected graph1.3.2.广度优先搜索Breadth first search (BFS)1.4.拓扑排序Topological sort1.5.路径与回路Paths and circuits1.5.1.欧拉路径或回路Eulerian path1.5.1.1.无向图1.5.1.2.有向图1.5.1.3.混合图1.5.1.4.无权图Unweighted1.5.1.5.有权图Weighed —中国邮路问题The Chinese post problem1.5.2.Hamiltonian Cycle 哈氏路径与回路1.5.2.1.无权图Unweighted1.5.2.2.有权图Weighed —旅行商问题The travelling salesman problem1.6.网络优化Network optimization1.6.1.最小生成树Minimum spanning trees1.6.1.1.基本算法Basic algorithms1.6.1.1.1.Prim1.6.1.1.2.Kruskal1.6.1.1.3.Sollin(Boruvka)1.6.1.2.扩展模型Extended models1.6.1.2.1.度限制生成树Minimum degree-bounded spanning trees1.6.1.2.2.k小生成树The k minimum spanning tree problem(k-MST)1.6.2.最短路Shortest paths1.6.2.1.单源最短路Single-source shortest paths1.6.2.1.1.基本算法Basic algorithms1.6.2.1.1.1. ..................................................................................................... D ijkstra1.6.2.1.1.2. .......................................................................................... B ellman-Ford1.6.2.1.1.2.1.....................................Shortest path faster algorithm(SPFA)1.6.2.1.2.应用Applications1.6.2.1.2.1. ........................... 差分约束系统System of difference constraints1.6.2.1.2.2. .......................... 有向无环图上的最短路Shortest paths in DAG1.6.2.2.所有顶点对间最短路All-pairs shortest paths1.6.2.2.1.基本算法Basic algorithms1.6.2.2.1.1. ....................................................................................... F loyd-Warshall1.6.2.2.1.2. .................................................................................................... Johnson 1.6.3.网络流Flow network1.6.3.1.最大流Maximum flow1.6.3.1.1.基本算法Basic algorithms1.6.3.1.1.1. ........................................................................ Ford-Fulkerson method1.6.3.1.1.1.1.......................................................... E dmonds-Karp algorithm1.6.3.1.1.1.1.1. ................................................... M inimum length path1.6.3.1.1.1.1.2. ........................................... Maximum capability path1.6.3.1.1.2. ............................................... 预流推进算法Preflow push method1.6.3.1.1.2.1.................................................................................. P ush-relabel1.6.3.1.1.2.2........................................................................... Relabel-to-front1.6.3.1.1.3. .......................................................................................... Dinic method1.6.3.1.2.扩展模型Extended models1.6.3.1.2.1. ............................................................................... 有上下界的流问题1.6.3.2.最小费用流Minimum cost flow1.6.3.2.1.找最小费用路Finding minimum cost path1.6.3.2.2.找负权圈Finding negative circle1.6.3.2.3.网络单纯形Network simplex algorithm1.6.4.匹配Matching1.6.4.1.二分图Bipartite Graph1.6.4.1.1.无权图-匈牙利算法Unweighted - Hopcroft and Karp algorithm1.6.4.1.2.带权图-KM算法Weighted –Kuhn-Munkres(KM) algorithm1.6.4.2.一般图General Graph1.6.4.2.1.无权图-带花树算法Unweighted - Blossom (Edmonds)1.图论Graph Theory1.1. 定义与术语Definition and Glossary1.1.1.图与网络Graph and Network二元组(),V E称为图(graph)。

图论讲义第2章-连通性

图论讲义第2章-连通性

第二章 图的连通性在第一章中已经定义连通图是任二顶点间都有路相连的图。

对于连通图,其连通的程度也有高有低。

例如,下列三个图都是连通图。

对于图G 1,删除一条边或一个顶点便可使其变得不连通;而对于图G 2,至少需要删除两条边才能使其不连通,也可以删除一个顶点使其不连通;对于图G 3,要破坏其连通性,则至少需要删除三条边或三个顶点。

本章主要讨论如何通过图的顶点集、边集和不交的路集合的结构性质来获知图的连通性程度。

通过研究割边和割点来刻画1连通图的特性;定义连通度和边连通度来度量连通图连通程度的高低;通过不交路结构和元素的共圈性质来反映图的2连通和k 连通性。

§2.1 割点和割边定义2.1.1 设)(G V v ∈,如果)()(G w v G w >−,则称v 为G 的一个割点。

(注:该定义与某些著作中的定义有所不同,主要是在环边的顶点是否算作割点上有区别)。

例如,下图中u , v 两点是其割点。

定理2.1.1 如果点v 是简单图G 的一个割点,则边集E (G)可划分为两个非空子集1E 和2E ,使得][1E G 和][2E G 恰好有一个公共顶点v 。

证明留作习题。

推论2.1.1 对连通图G ,顶点v 是G 的割点当且仅当v G −不连通。

定理2.1.2 设v 是树T 的顶点,则v 是T 的割点当且仅当1)(>v d 。

证明:必要性:设v 是T 的割点,下面用反证法证明1)(>v d 。

若0)(=v d ,则1K T ≅,显然v 不是割点。

若1)(=v d ,则v T −是有1)(−−v T ν条边的无圈图,故是树。

从而)(1)(T w v T w ==−。

因此v 不是割点。

以上均与条件矛盾。

充分性:设1)(>v d ,则v 至少有两个邻点u ,w 。

路uvw 是T 中一条),(w u 路。

因T 是树,uvw 是T 中唯一的),(w u 路,从而)(1)(T w v T w =>−。

图论中的圈与块(共79张PPT)精选

图论中的圈与块(共79张PPT)精选

程序代码
PROCEDURE DFS(v);
begin
inc(sign); dfn[v] := sign; //给v按照访问顺序的先后标号为sign
lowlink[v] := sign; //给lowlink[v]赋初始值
for 寻找一个v的相邻(xiānɡ lín)节点u
if 边uv没有被标记过 then
1:询问某两个点之间的min(u,v)
2:删除一条边
你的任务是对于每个询问,输出min(u,v)的值。 (WC2006)
2024/2/27
5
第五页,共79页。
水管局长(2)
数据范围约定 结点个数N≤1000 图中的边数M≤100000 询问(xúnwèn)次数Q≤100000 删边次数D≤5000
32
第三十二页,共79页。
关键(guānjiàn)网线(2)
朴素算法: 枚举每条边,删除它,然后判断是否有独立
出来的连通区域内没有A属性或者(huòzhě)没 有B属性。复杂度O(M2) 当然,这个复杂度太大了!
2024/2/27
33
第三十三页,共79页。
关键(guānjiàn)网线(3)
a
b
2024/2/27
27
第二十七页,共79页。
嗅探器(2)
数据范围(fànwéi)约定 结点个数N≤100 边数M≤N*(N-1)/2
2024/2/27
28
第二十八页,共79页。
嗅探器(3)
朴素算法: 枚举每个点,删除它,然后(ránhòu)判断a和
b是否连通,时间复杂度O(NM) 如果数据范围扩大,该算法就失败了!
8
第八页,共79页。
水管局长(5)

(课件)图论讲义

(课件)图论讲义

3
(8) 完全图(complete graph)
(9) 图的顶点数(图的阶)ν 、边数 ε
(10) 顶点 v 的度(degree):d(v) = 顶点 v 所关联的边的数目(环边计两次)。
(11) 图 G 的最大度: ∆(G) = max{dG (v) | v ∈V (G)}
图 G 的最小度:δ (G) = min{dG (v) | v ∈V (G)}
这便定义出一个图。
2. 图的图示
通常,图的顶点可用平面上的一个点来表示,边可用平面上的线段来表示(直的或曲的)。 这样画出的平面图形称为图的图示。
例如,例 1.1.1 中图的一个图示为
v1
v2
e1
e6 e5
e2
e4
v5
e7
v3
e3 v4
注:(1)由于表示顶点的平面点的位置的任意性,同一个图可以画出形状迥异的很多图示。
和 Y。
(2)否则,设 u′ 是 P 与 Q 的最后一个公共顶点,因 P 的 (u, u′) 段和 Q 的 (u, u′) 段都是 u 到 u′ 的最短路,故这两段长度相等。
假如 P,Q 的奇偶性相同,则 P 的 (u′, v1) 段和 Q 的 (u′, v2 ) 段奇偶性相同,这两段与边 e 构成一个奇圈,与定理条件矛盾。可见 P,Q 的奇偶性不同,从而 v1, v2 分属于 X 和 Y。
这便证明了 G 是一个二部图。 证毕。
7. 连通性 图中两点的连通:如果在图 G 中 u,v 两点有路相通,则称顶点 u,v 在图 G 中连通。 连通图(connected graph):图 G 中任二顶点都连通。 图的连通分支(connected branch, component):若图 G 的顶点集 V(G)可划分为若干非空子集
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不可分图
定义:不含割点的非平凡连通图。
定理5.7:阶至少为3的图是不可分的当且 仅当任意两个顶点都位于某个圈上。
证明:[反证法]充分性,设图G阶数至少为3,且任意 两个顶点位于某一个圈上,则这两个顶点是连通的, G当然是连通的,若G不可分,G必包含一个割点v, 设u,w分别为G-v中两个不同连通分支上的点,知u, w位于某个圈C上,则C上有两条u—w路,其中至少 一条不包含v由定理5.3知与假设矛盾,因此G不含割 点,是不可分的。
必要性证明:设G是一个阶至少为3的不可分图,假设G存在一些顶点对, 使得它们不在同一个圈上,在所有这样的顶点对中找到两个顶点u,v 使得它们的距离最小,即d(u,v)最小。假设d(u,v)=1,则 uv∈E(G).通过观察不难发现uv位于一个圈上。因而d(u,v) =k>=2.设P:u=v0,v1,…,vk-1,vk=v是G中一个长度为k的u—v路。由 于d(u,vk-1)=k-1<k,则存在一个包含u和vk-1的圈C。由假设,v不 在C上。由于vk-1不是G的割点,且u和v是与vk-1不同的两个顶点,由 定理5.4,则存在一条不包含vk-1的u—v路Q。由于u位于C上,因此考 虑Q中第一个位于C上的顶点是有意义的,记该顶点为x。设Q′为Q的 v—x子路,P′为C上包含u的vk-1-x路。(若x≠u, 则 P′是唯一的 )然而, 由v到邻点uk-1,再沿P′到x,最后Q′到v所构成的圈C′包含u和v,从而导致
推论5.9 非平凡连通图G的任意两个不同图的块B1和B2具有下 面的性质:
(1)B1,B2是边不相交的。 (2)B1,B2至多有一个公共顶点。 (3)若B1,B2有一个公共顶点v,则v是G的割点。 证明: 由定理5.8.得,任意两个不同的块是边不相交的。下面证明(2)。假设B1,B2 有两个不同的公共顶点u,v,因为B1,B2均是G的连通子图,所以在B1,中存在一 条u-v路P′,在B2中存在一条u-v路P″。此外,由于B1和B2是边不相交的, 则P′和P″也是边不相交的,设w是P′和P″的在u之后的第一公共顶点 (w=v)P′的u-w子路Q′和P′ 的u-w子路Q″构成了G的一个圈,该圈包含了 B1的边e1和B2的边e2,因此,e1 e2 在G的同一个块中,这显然不成立。(3) 设G的两个块B1和B2有一个公共顶点v,则v关联B1中的边e1=vv1和B2中的边 e2=vv2。假设v不是G的割点,则存在一条不包含v的v1-v2路,因此,P与v,e1, e2构成一个包含e1 e2的圈,由于e1 e2属于不同块,故不成立。
证: 直接证法。知R是自反的和对称的,因此现在只证明传递性。设e ,f,g
∈E(G),满足e R f和f R g 。若e=f 或f=g,则e R g必然成立。因此, 假设e f是位于圈C上,f g 位于圈C′。若e位于C′上或g位于C上,则得
e R g。因此,假设上述的两种情况均不发生。设e=uv,P是C上不含e 的 一条路 ,x 是P上第一个属于C′的顶点,y是P上最后一个属于C′的顶 点,设P′是C′上包含g的一条x-y路,P″是C上包含e 的一条 x-y路, 则P′ 和P″ 构成一个包含e和g的圈C″故有e R g由定理5.8知,其描述 的等价关系把任意非平凡连通图G的边集划分成等价类,实际上,由每个等 价类中边所诱导的G的子图都是G的一个块。
矛盾。

定义:若图G的一个不可分子图不是其他任 意不可分子图的真子图,则称该子图是G的 一个块。
性质:
1.G的任意一个块都是G的诱导子图。
2.G是不可分的当且仅当G仅有一个 块,即G本身。
3.不在任意圈上的边构成一个块。
u1
图G:
u
u2
G的块:
u3
v1
v3 v

v2 w1
W2
定理5.8:设R是定义在非平凡连通图G的边集上的如 下关系:对于c,f ∈E(G),若e=f或e ,f位于G的 同一个圈上,则e ,f 有关系R,记为e R f ,则R 的等价关系。
相关文档
最新文档