13第十三章压杆稳定解析
压杆稳定解析课件
查表13-1,得 0.276, 与 0.289 相差不大
故可选28a工字钢,校核其稳定性
F 45.1MPa [ ] 46.92MPa
A
例6: 图示梁杆结构,材料均为Q235钢。AB梁为14号
工字钢,BC杆为 d=20mm的圆杆。已知: F=25kN,
l1=1.25m,l2=0.55m,E=206GPa,p=200MPa, s=235MPa,n=1.4,nst=1.8。求校核该结构是否安全。
二﹑欧拉公式应用中的几个问题
(1)Fcr与EI成正比,与l2 成反比,且与杆端约束有 关。 Fcr越大,压杆稳定性越好,越不容易失稳;
(2)杆端约束情况对Fcr的影响,是 通过长度系数μ来实现的。要根据实 际情况选择适当的μ 。
(3)当压杆在两个形心主惯性平面内 的杆端约束情况相同时,则失稳一定 发生在最小刚度平面,即I 最小的纵 向平面。
y z x
轴销
y z
x
轴销
解:xy面内,两端视作铰支,μ = 1,iz = 4.14 cm
z
l
iz
1 2 4.14 102
48.3
y z
x
轴销
xz面内,两端视作固定端,μ = 0.5,查表iy= 1.52cm
y
l
iy
0.5 2 1.52 102
65.8
显然 z y
压杆将在xz平面内失稳 而 p 100,u s 60
lw
x
O
y
M(x) Fcr=F
w
w = Asinkx +Bcoskx (d)
Fcr
k2=Fcr / EI 两个边界条件:
w = Asinkx +Bcoskx
12-13 压杆稳定和动载荷2015
④ 确定积分常数: w(0) w(l ) 0
C 2 0 C1 0 C2 0 即: C1 sin kl 0 C1 sin kl C2 cos kl 0
若C1=0, 则挠曲线:
w C1 sin kx C2 coskx 0
与杆处于微弯平衡状态的假设相矛盾! 故 C1≠0
FCD
30
3.5m F
例126 图示结构,立柱CD为外径D=100mm,内径 d=80mm的钢管,其材料为Q235钢, P=200MPa, s=240MPa,E=206GPa,稳定安全系数为[n]st=3。试 求许可荷载[F]。 F C B 解:( 1 )以杆 ACB 为研究对象, A 2m 3m 求CD杆轴向压力与F的关系
Fcr A cr 2 8.367 10 4 204 10 6 28 341kN
§12.5
nst nst
压杆的稳定计算
安全因数法,压杆的稳定条件(stability condition)为 : nst-工作安全因数 [n]st-规定的稳定安全因数
Fcr cr nst n st F
压杆的临界应力总图
一、临界应力(critical stress) 压杆在临界力作用下,其横截面上的平均应力:
2 2 2 Fcr EI E E cr 1.细长压杆的临界应力: A ( l ) 2 A ( l / i) 2 2
Fcr cr A
i
I -- 惯性半径 。 A
F
FN BC
故Fmax 0.267 2 EI
26
(2)若仅调整支座C的位置,确定充分发挥两杆承 载能力的角。 2 EI ( F ) 2 EI ( FAB ) cr , BC cr 临界力 2.25 2.56
13级压杆稳定
理论分析计算
压杆什么时候发生稳定性问题,什么时候产生强度问题呢?
§9–3 临界应力· 欧拉公式的适用范围 一、临界应力 临界力除以压杆横截面面积,所得应力称为临界应力。
§9–1 压杆稳定的概念 受压杆件除了要满足必要的强度条件之外,还必须能维
持原有的平衡状态,这就是稳定性问题,杆件维持原有的平
衡状态的能力称其为稳定性。
轴向受压的等截面直杆称为理想压杆。 图示为两端铰支的理想压杆。
F Fcr
(1) F Fcr
干扰力去掉后,杆件由微小弯曲回到 直线位置,恢复原有的平衡状态,称压杆 直线状态的平衡是稳定平衡。
ss
sP
s cr a b
2E s cr 2
l
i
1)若 1 欧拉公式
2 EI Pcr E P 或 cr s cr 2 ( l ) 2 A
2
o
s
P
a s s 2)否则,要计算 2 b
当 1 1 用经验公式
当 2 临界应力等于ss 24
用直线公式
l
80 1
不能用欧拉公式
C
0.6
0.3
B F
A
σcr a b 214 MPa
FN cr A σ cr 268 kN
FN cr [ FN ] nst
FN 2.27 F
[F] =118kN/3=39.3kN
图示结构中AC与CD杆均用3号钢制成,C、D两处均为球铰。已知d=20mm, b=100mm,h=180mm;E=200GPa,s s =235MPa,s b =400MPa;强度安全 系数n=2.0,稳定安全系数 nst 5.0 。试确定该结构的最大许可荷载。
压杆稳定
表 细长压杆临界力与杆端支承的关系
两端铰支
Fcr
L l 相当(折算)长度
(与支承有关的)长度系数
Fcr
π 2 EI
L 2
l
EI
L 1l
O
一端固定一端自由
Fcr
一端固定一端铰支
Fcr
两端固定
Fcr
L 0.7l
l
EI
l
EI L 0.5l
O
O
EI l
L 2l
O
图示材料相同,直径相同的四根细长圆杆, ( )杆能承受的压力最大。
Fcr=?
●其它构件的稳定性问题
深梁失稳
薄壁圆管失稳
压杆稳定
Stability of Compressed Columns
2 细长压杆的临界力
2.1 两端铰支细长压杆的临界力——欧拉公式
临界状态: 微弯状态的平衡 杆的任一横截面上的弯矩:
x Fcr
Fcr wM x
Fcr
M x Fcrw
EI
l
cr F
A
cr
1 安全系数法
cr
nst
cr
nst:稳定安全系数
[cr]:稳定许用应力
稳定条件:
F A
cr
例5: 图示结构中,支承柱CD的直径d=20mm,
材料为A3钢,A、C、D三铰均为球铰。已知: P=25kN,l1=1.25m,l2=0.55mm,E=106 GPa,规定 的稳定安全系数nst=2.0,试校核CD杆是否安全。
压杆稳定
1 压杆稳定性的概念 2 细长压杆的临界力 3 压杆的柔度与压杆的非弹性失稳 4 压杆的稳定计算 5 提高压杆稳定性的措施
压杆稳定
压杆稳定课件
第十三章压杆稳定【学时】4内容:压杆稳定的概念;稳定平衡与不稳定平衡;临界压力;计算细长压杆临界压力的欧拉公式;杆端约束不同对临界压力的影响;长度系数,临界压力,压杆柔度;欧拉公式的适用范围。
经验公式;临界应力总图。
压杆的稳定计算;安全系数和折减系数法。
【基本要求】1.理解压杆稳定的概念[2]。
2.掌握临界力的欧拉公式[1]。
3.掌握临界应力的欧拉公式[1]4.了解欧拉公式的适用范围[3]。
5.理解临界应力总图[2]。
6.了解压杆稳定的安全计算[3]。
【重点】压杆稳定的概念,临界压力和临界应力的计算,以及压杆稳定校核的方法——安全系数和折减系数法。
【难点】压杆稳定的概念,压杆稳定的安全计算。
§13–1 稳定的概念一、三种平衡状态稳定平衡 随寓平衡 不稳定平衡二、弹性稳定弹性稳定---受力后弹性体平衡状态的稳定性。
Pcr 临界力。
cr P P 〈,稳定平衡;cr P P =,临界平衡;cr P P 〉,不稳定平衡。
失稳---平衡丧失稳定性现象。
条件:失稳后,仍处于线弹性。
理想压杆与实际压杆的差异:压杆多有缺陷:截面不完全一样;材料不均;轴不绝对直;荷载偏心等等。
这些偶然因素起干扰力Q 作用。
§13–2 弹性压杆的临界力弹性压杆的分叉现象表明:压杆从直线状态的平衡,过渡到微弯状态的平衡,也即临界力作用下,可能在微弯下平衡。
条件:杆内应力不超出比例极限,用挠曲线近似微分方程。
当,,Py M P P cr ==但y EI EI M ''-==ρ,所以Py y EI =''-, 微弯曲线微分方程:,0=+''Py y EI 令EIP k =2,所以02=+''y k y , 有通解:kx c kx c y sin cos 21+=,边界条件:.0,;0,0====y l x y x 稳定方程式:sinkl=0. 两端铰支:22l EIP cr π=。
第十三章 压杆稳定
临界力为
Fccrr21c2Er A77c.r1Md4P2a 151KN
压杆2为中柔度杆,对于Q235钢,a=310MPa,b=1.24MPa,临界应力为
临界力为
σcr
Fcr
crA cr
d 2 4
414 KN
压杆3为小柔度杆,因为Q235钢为塑性材料,故其临界应力为
临界力为
σcr
Fcr
sA s
d 2 4
➢ 合理选择截面形状 应该选择Iz=Iy的截面,使压杆在各个平面内的稳定性相同。
➢ 减小压杆长度 在条件允许时,应尽量减小压杆的长度或在压杆中间增加支座。
➢ 改善支承条件 压杆与其他构件连接时,应尽可能制作成刚性连接或采用较紧 密的配合。
习题参考解答或提示
2EI ( l ) 2
μ——压杆的长度因数
➢ 杆端约束情况的简化
焊接或铆接
螺母和丝杠连接
柱形铰约束
对于与坚实的基础固结成一体的柱脚,可简化为固定端。
§13-3 欧拉公式的适用范围 中、小柔度杆的临界应力
➢ 临界应力的欧拉公式
cr
2E 2
i——压杆横截面的惯性半径,单位为mm; λ——压杆的柔度,无量纲,柔度越大,则临界应力越小,压 杆越容易失稳。
解 (1)计算各压杆的柔度 因压杆两端为铰链支承,查表得长度系数μ=1。圆形截 面对y轴和z轴的惯性矩相等,均为故圆形截Βιβλιοθήκη 的惯性半径为各压杆的柔度分别为
(2) 计算各压杆的临界应力和临界力
对于Q235钢λ p=100, λ s=60。对于压杆1,其柔度λ 1=160> λ p,所以压杆 1为大柔度杆,临界应力用欧拉公式计算。
压杆的临界力越大,稳定性越强
第十三章压杆的稳定性
(a)
(b)
7
§ 13-2
细长压杆的临界力
w A sin kx B cos kx (c)
将边界条件x=0,w=0代入式(c)得 B=0。于是根据(c)式并利用边界条件 x=l,w=0得到
A sin kl 0
由于B=0,故上式中的A不可能等于零,则
sin kl 0
w
解得:kl 0,π, 2π,
φ28 800 C
P=30kN
1
μ1l1 0.5 900 75 i1 6 s 1 P
解: 1.根据已知条件求 s ,P cr1 304 1.12 75 220MPa
a - s 304 - 240 s 57.1 b 1.12
3
§ 13-1
压杆稳定性的概念
2. 理想中心杆件 1. 压杆轴线是理想直线即无初弯曲, 2. 压力作用线与轴线完全重合, 3. 材料是绝对均匀的。
二、失稳(屈曲)
压杆丧失其直线平衡而过渡到曲线平衡,
称为丧失稳定性,简称失稳或屈曲。
4
§ 13-1
压杆稳定性的概念
F<Fcr
F=Fcr
F>Fcr
Fcr:临界压力
F 30 103 2 48.72MPa A2 p 282 4
24
§ 13-4
压杆的稳定性计算
作业:P1076; P10916 思考:P11017; P11018
25
§ 13-4
压杆的稳定性计算
答疑通知
地点:工科二号楼A424(力学系)
时间:17周的周二下午两点;
26
§ 13-4
P=30kN
n2
第十三章-压杆稳定知识讲解
1基本概念及知识要点
1.1基本概念
理想受压直杆、理想受压直杆稳定性、屈曲、临界压力。
1.2临界压力
细长压杆(大柔度杆)用欧拉公式计算临界压力(或应力);中柔度杆用经验公式计算临界压力(或应力);小柔度杆发生强度破坏。
1.3稳定计算
为了保证受压构件不发生稳定失效,需要建立如下稳定条件,进行稳定计算:
稳定计算要求掌握安全系数法。
解析方法:稳定计算一般涉及两方面计算,即压杆临界压力计算和工作压力计算。临界压力根据柔度由相应的公式计算,工作压力根据压杆受力分析,应用平衡方程获得。
3典型问题解析
3.1临界压力
例题13.1材料、受力和约束相同,截面形式不同的四压杆如图图13-1所示,面积均为3.2×103mm2,截面尺寸分别为(1)、b=40mm、(2)、a=56.5mm、(3)、d=63.8mm、(4)、D=89.3mm,d=62.5mm。若已知材料的E=200GPa,σs=235MPa,σcr=304-1.12λ,λp=100,λs=61.4,试计算各杆的临界荷载。
解题指导:
1.计算压杆的临界压力时,需要综合考虑压杆的材料、约束、长度、惯性半径,即需要首先计算压杆的柔度,根据柔度值,代入相应的公式计算压杆的临界压力。当
λ>λP时压杆为大柔度杆,用欧拉公式计算其临界应力;
λs<λ<λP时压杆为中柔度杆,用经验公式计算其临界应力;
λ<λs时压杆为短粗杆,压杆将首先发生强度破坏。
压杆的柔度
iy=iz=i
由于
所以,λ>λP压杆为大柔度杆
用欧拉公式计算临界压力
例题13.4所示工字钢直杆在温度t1=20℃时安装,此时杆不受力,已知杆长l=6m,材料的λP=132,E= 200GPa,线膨胀系数α=12.5×10-6/℃。试问当温度升高到多少度时杆将失稳。
压杆的稳定ppt
定义
01
边界条件是指压杆在支撑条件下的限制条件,如固定、自由、
简支等。
描述
02
不同的边界条件对压杆的稳定性产生不同的影响。例如,固定
边界条件下的压杆比自由边界条件下的压杆更稳定。
影响因素
03
边界条件对压杆稳定性的影响主要表现在支撑反力的分布和大
小上,从而影响压杆的临界载荷和屈曲载荷。
03
压杆稳定性问题的解决策略
合理选择材料和截面形状
选择高强度材料
如合金钢、不锈钢等,能够提高压杆的屈服强度和抗拉强度 ,增加压杆的稳定性。
选择合适的截面形状
如圆形、方形、工字形等,能够改变压杆的截面面积和惯性 矩,进而改变压杆的稳定性。
对压杆进行合理支撑和固定
增加支撑点
通过在压杆的适当位置增加支撑点,能够提高压杆的稳定性,防止其发生屈 曲变形。
船舶设计
在船舶设计中,压杆被用于船体结构的支撑和固定。特 别是在海洋环境中,压杆的稳定性对于抵御海浪冲击和 保证船舶的安全至关重要。
地下工程
在隧道、地铁等地下工程中,压杆被用于支撑和固定土 石方及结构物。其稳定性对于保障地下工程的稳定性和 安全性至关重要。
06
总结与展望
总结
压杆稳定的定义
压杆稳定的重要性
05
压杆稳定性问Leabharlann 的工程应用建筑结构中的压杆稳定性问题
建筑物的支撑结构
在建筑设计中,压杆常被用于支撑和固定建筑结构,如桥梁、高层建筑等。其稳定性直接 影响到建筑物的安全性和使用寿命。
抗风和抗震设计
在地震或强风天气中,建筑物的压杆稳定性显得尤为重要。压杆能够提供必要的支撑力, 帮助建筑物抵御自然灾害。
定义
压杆稳定
178第二十三章 压杆稳定一、 内容提要1、稳定的概念压杆的稳定性:压杆保持初始直线平衡状态的能力。
压杆的失稳:压杆丧失直线形状的平衡状态。
临界载荷:保持压杆稳定平衡时杆件所能承受的最大外力。
2、临界应力的计算大柔度杆( )中柔度杆( )小柔度杆( ) 说明:(1)压杆的临界应力在稳定问题中相当于强度问题中的极限应力,是确定稳定许用应力的依据。
(2)一种材料的极限应力是由材料本身的性质决定的。
压杆的临界应力除决定于材料外,还与杆的柔度有关,(3)根据 的值判断压杆的类别(大柔度杆、中柔度杆或小柔度杆),选用相应的计算临界力的公式。
3、压杆的稳定计算压杆的稳定性条件其中 安全系数法折减系数法说明(1)与强度问题类似,稳定计算也存在三方面的问题:稳定校核、截面设计、计算许可载荷。
(2)杆件丧失稳定是一种整体性行为,横截面的局部削弱对稳定的临界应力影响不大,因此在稳定计算时采用横截面的毛面积。
二、 基本要求1. 明确稳定平衡、不稳定平衡和临界载荷的概念,理解两端铰支压杆临界载荷公式的推导过程。
2. 理解长度系数的力学意义,熟练掌握四种常见的约束形式下细长压杆的临界载荷的计算。
p s λλλ≤≤p λλ>s λλ<22λπσE cr =λσb a cr -=scr σσ=λ[]crA N σσ≤=[]w crcr n σσ=[][]σϕσ=cr1793. 明确压杆柔度、临界应力和临界应力总图的概念,熟练掌握大柔度、中柔度和小柔度三类压杆的判别方法及其临界载荷的计算和稳定性的校核方法。
4. 了解根据压杆稳定性条件设计杆件截面的折减系数法。
5. 了解提高压杆稳定性的主要措施。
三、 典型例题分析例1 三根圆截面压杆直径均为 ,材料为 钢, MPa b 12.1=), , , , 两端均为铰支,长度分别为 且 , 试计算各杆的临界力。
解 (1)有关数据(2)计算各杆的临界力1杆 属大柔度杆2杆 属中柔度杆3杆属小柔度杆mm d 160=MPa E5102⨯=MPa p 200=σMPa s 240=σ,,,321l l l m l l l 542321===,304(MPa a =3A 2222210202.016.044mm d A -⨯==⨯==ππ45441022.316.06464md I -⨯=⨯==ππm d i 04.0416.04===1=μ10010200102611=⨯⨯==πσπλpp E5712.1240304=-=-=ba ss σλ10012504.05111=>=⨯==p il λμλKNl EIP cr 2540)(212==μπ5.6204.05.2122=⨯==il μλMPab a cr 2342=-=λσKNA P cr cr 46801021023426=⨯⨯⨯=⋅=-σ2.3104.025.1133=⨯==il μλ180例2 截面为 的矩形木柱,长 , 。
材料力学第十三章
A 2L
CL
P=4KN
B
y1
L=1m y2
D
8、各构件均为圆截面,直径d=20毫米,材料弹性模
量E=200GPa,L=1米,第一特征柔度λp= 100,第 二特征柔度λs=57,经验公式σcr=304-1.12λ,稳定安 全系数nw=3,许用应力 [σ]=140MPa,求此结构的许 可载荷[P]。
C
P
L
B
A
D
L
L
L EL
9、横梁为刚性杆,1、2杆件的材料相同均为A3钢,比例极 限σP=200MPa,屈服极限为σs=240Mpa,强度极限为σb= 400MPa。 1杆的直径为d1=10毫米,杆长L1=1米。2杆 的直径为d2=20毫米,杆长为L2=1米。1杆与横梁的夹角 为30度,2杆与横梁的夹角为60度。两杆的强度与稳定安全 系数均为2.0。求结构的许可载荷[P]=?
材料和直径均相同问题压杆的临界应力总图弹性失稳弹塑性稳定问题强度失效细长杆细长杆中长杆中长杆粗短粗短杆杆临界应力总图150030sin30cos1计算工作压力mm161081610732crcr26118ab杆满足稳定性要求3选用公式计算临界应力4计算安全系数5结论kn11822两根直径均为两根直径均为dd的压杆杆材料都是材料都是qq235235钢钢但二者长度和约束条件但二者长度和约束条件各不相同各不相同
A
B
L
L
C
3、钢制矩形截面杆的长度为L=1.732米,横截面为 60×100,P=100KN,许用应力为[σ]=30MPa, 弹性模量E=200GPa,比例极限σP=80MPa, 屈服极限σS=160MPa,稳定安全系数nw=2, a=304MPa,b=1.12MPa。构件安全吗?
《压杆稳定》课件
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
材料力学压杆稳定
材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。
在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。
压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。
稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。
本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。
压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。
压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。
这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。
为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。
一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。
此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。
2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。
一般来说,杆件所使用的材料应当具有足够的强度和刚度。
强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。
此外,材料应当具有足够的韧性,以防止杆件发生断裂。
3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。
一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。
支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。
4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。
外力可以包括静力荷载、动力荷载和温度荷载等。
在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。
总之,压杆的稳定性是确保结构安全可靠性的重要因素。
在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。
合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。
材料力学教学课件压杆稳定
机械设备的压杆稳定性分析
总结词
机械设备的压杆稳定性分析对于保证设 备正常运转和操作人员的安全至关重要 。
VS
详细描述
在机械设备中,如压力机、压缩机等,压 杆常常作为传递力的部件。为了防止压杆 在工作中发生失稳,需要进行稳定性分析 。这需要考虑压杆的材料性质、截面形状 、工作载荷以及支撑条件等因素。对于长 细比较大的压杆,还需特别考虑其柔性对 稳定性的影响。
计算方法
基于弹性理论,采用挠曲 线方程和欧拉公式进行计 算。
长细比较大的压杆
定义
长细比较大的压杆是指杆件长度 与其横截面尺寸之比很大的杆件
。
特点
在压力作用下,这类杆件容易发生 失稳,即弯曲变形达到一定程度后 ,杆件会突然发生屈曲。
计算方法
基于稳定性理论,采用折减系数法 或能量法进行计算。
临界力的计算
03
压杆稳定性的校核
稳定性校核的方法
静力法
通过比较临界力和实际外力的关系,判断压杆是 否失稳。
动力法
通过分析压杆的振动特性,判断其是否具有不稳 定振动。
能量法
利用能量守恒原理,计算压杆的临界载荷。
稳定性校核的步骤
01
02
03
04
1. 确定压杆的长度、直径、 材料等参数。
2. 计算临界载荷。
3. 比较临界载荷与实际载荷 ,判断是否满足稳定性要求。
压缩失稳
当压杆受到的横向约束不 足时,会发生压缩失稳, 表现为整体弯曲或局部屈 曲。
扭转失稳
当压杆受到的扭矩超过其 临界值时,会发生扭转失 稳,导致结构变形和破坏 。
压杆稳定的基本理论
欧拉公式
欧拉公式是压杆稳定理论的基础,它 给出了理想直杆在轴向压力作用下的 临界压力值。
《压杆稳定教学》课件
增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EIw Fcr w F0 l x
F0
w
x
l
F0 l x w kw k Fcr F0 l x w A sin kx B cos kx Fcr
2
F0
Me
Fcr
x 0, w 0, w 0; x l , w 0; F0 F0l A ,B kFcr Fcr F0 1 w sin kx l cos kx l x Fcr k 2 EI tan kl kl , kl 4.49, Fcr 2 0.7 l
(2)x = l, w=0 得:A sinkl=0
kl n
k Fcr n EI l
n 0, 1 , 2,
n 0, 1 , 2,
k
Fcr n EI l
x
n 0, 1 , 2,
l
Fcr
n = 1 时:
w0
l/2 O y
Fcr
2 EI
l2
——欧拉公式
w =A sinπx / l
w x o
w kw k 2 w0
l
w A sin kx B cos kx w0
x 0, w 0;
x 0, w 0 :
A 0, B w0 , w w0 1 cos kx
2 EI n x l , w w0 , cos kl 0, kl , n 1,3,5... Fcr 2 2 2l
l
E I w″=-M(x)(b) 得 E I w″= - Fcrw 令 k2=Fcr / EI 得 w″+ k2 w= 0 ( c)
w
x O y
M(x) Fcr=F
w
Fcr
w = Asinkx +Bcoskx (d)
k2=Fcr / EI 两个边界条件:
w = Asinkx +Bcoskx
(1)x = 0,w =0 得: B=0 : w = Asinkx
Fcr——压杆保持稳定平衡所能承受的极限压力, 即临界压力(临界荷载)。 压杆在外力作用下保持原有平衡形式的能力
稳定性
丧失原有平衡形式的现象称为失稳 失稳也是一种失效形式 理想中心受压细长压杆的临界力
§13-2
细长压杆的临界力
x Fcr
一﹑Euler公式 1.两端铰支的临界压力
M(x)=Fcrw (a)
F
(4)若压杆在两个形心主惯性平面内的杆端约束不相
同时,该杆的临界力应按两个方向的(I/ μl)min值计算。
y z x
轴销
(5)假设压杆是均质的直杆,且只有在压杆的微弯
曲状态下仍然处于弹性状态时才是成立的;实际压杆
的临界力均小于理论值。
9l 5l
2l
7l
问题的提出:
几根材料和直径相同,但是长度不同、约束不同的压杆:
撤去横向干扰力后,
压杆仍能恢复原有的
干扰力
直线平衡状态。 原有的直线平衡状态 是稳定的。
(a)
(b)
(c)
(2)当F≥Fcr时,
F ≥ Fcr F ≥ Fcr 直线
干扰力
位置,在曲线状态下
保持平衡。
(a)
(b)
原有的直线平衡状态
(c)
是不稳定的。
这种丧失原有平衡形式的现象称为丧失稳定性, 简称失稳.
F z y b h
与杆发生弯曲关 与截面形状有关,(如果Iy=Iz,且 I 越大,承载力就不同了)
F
与杆的长度有关
F
F1
F
实际压杆与弯曲有关的因素还有:
荷载不可避免地有一定的偏心;
杆轴线有一定初曲率;
材料本身的不均匀性。
什么是压杆的稳定性呢?
(1)当F<Fcr时,
F<Fcr F<Fcr
F<Fcr
Fcr
Fcr
Fcr
l/4
l
0.7l
l
2l
l/2
l/4
0.3l
μ=1
μ=2
μ=0.5
μ=0.7
2 EI Fcr 统一形式: Fcr ( l ) 2
——欧拉公式
μ——长度系数, μl——相当长度
1)、一端固定,另一端自由:
x
w0
M x Fcr w0 w
Fcr
EIw Fcr w0 w
二﹑欧拉公式应用中的几个问题
(1)Fcr与EI成正比,与l2 成反比,且与杆端约束有
关。 Fcr越大,压杆稳定性越好,越不容易失稳;
(2)杆端约束情况对Fcr的影响,是 通过长度系数μ来实现的。要根据实
F
z y b h
际情况选择适当的μ 。 (3)当压杆在两个形心主惯性平面内
的杆端约束情况相同时,则失稳一定 发生在最小刚度平面,即I 最小的纵 向平面。
第十三章
压 杆 稳 定
作者:黄孟生
§13-1 压杆稳定性的概念
压杆
FQ a
C e FW
l
FP
桁架中的压杆
A
FA b
B FB
高压输电线路保持相间距离的受压构件
某杆,材料σb=130MPa;截面A=2×30mm2, 长 l=300mm, 按强度条件,Fb=130×2×30=7.8kN.但 实际上只有几牛顿的力杆就折断了,为什么?
F
w│x=l/2 = A = w0
B′ B
A Fcr O
w = w0sinπx / l
w0
2、杆端约束对临界压力的影响
x Fcr
w = w0sinπx / l ——正弦曲线 x = 0,x=l : w =0 , M=0,w″=0
y
l
w0
l/2 O
x = l/2: w=w0=wmax ,且w′=0
Fcr
Me x
2)、两端固定:
Fcr
M x Me Fcr w
EIw M e Fcr w
Me w kw k Fcr
2
w
x
l
Me w A sin kx B cos kx Fcr
x 0, w 0, w 0; x l , w 0, w 0
能不能应用欧拉公式计算每根压杆的临界力? 每根压杆是不是都会发生失稳?
§13-3
欧拉公式的适用范围与 压杆的非弹性失稳
i2 I A
一、压杆的临界应力与柔度
Me Me A 0, B ,w 1 cos kx Fcr Fcr
Fcr
Me
Fcr
cos kl 1 , kl n , n 2, 4...
2 EI
0.5l
2
3)、一端固定,另一端铰支:
x
Fcr
M x Fcr w F0 l x