发动机原理_叶片振动

合集下载

航空发动机振动监测技术-教学PPT课件

航空发动机振动监测技术-教学PPT课件

三、振动监测系统的组成 振动监测系统:预处理、报警和结果输出、数据库、 数据采集、数据传输和通信及监测分析。 振动监测过程:振动测量、振动信号处理、故障特征 提取、状态识别。 振动监测系统的主要功能: 1、数据存储与显示。 2、系统的信号分析与处理 3、数据管理
1、振动测量: ①振点:传统做法是振点选择在外部机匣上, 新型发动机振点转移至内部转子支撑点。 ②参数:振动位移、振动速度、振动加速度。
控制附面层分离的措施
1、分离点的位置靠后流动阻力小,而分离点位置与流动状态与物面形状有 关。改变物面形状,流线型光滑物面-----层流段延长。
2、若附面层分离不可避免时,还可通过增加边界层内的流体流 量,如吹气、吸气、前缘缝翼减小分离区域。
高尔夫球进化史
层流附面层更易分离,而湍流边界层不易分离,改变物面粗糙 度,分离点后移,尾迹变窄。
等进行测量
设备、传感器、测振仪
中使用广泛
3、航空发动机振动测量系统 1、振动传感器 电动式速度传感器,产生的电信号与振动速度呈正比 随技术更新已淘汰;压电加速度计根据压电效应设计, 电信号与振动加速度成正比。
2、振动测量分析仪 分析仪有四类: ① 最简单的振动测量分析仪 ② 专门设计的自动跟踪转速滤波技术的振动测量分析
仪 ③ 运用快速傅里叶变换技术的数字式振动信号分析仪。
国外发展较快。 ④ 机载发动机数字式振动监视仪,分析加速度计所测
的信号并生成及存储发动机振幅和相位的数据。波 音、空客、麦道均MICROTRAC的仪器。









2、振动测量方法:
名称 电测法
机械法
原理
优缺点及应用

航空发动机喘振故障分析

航空发动机喘振故障分析

航空发动机喘振故障分析摘要:本文简要介绍了航空发动机喘振的概念和原理,分析了发动机喘振的机理和诱发因素。

通过介绍发动机喘振的主要特征,在分析压气机喘振因素的基础上,提出了中间级放气是一种结构简单、可操作性强的防喘振措施。

同时,多转子发动机具有工作范围广、效率高、不易喘振、适应性好、启动方便等优点,在航空发动机中得到了广泛应用。

总之,要有效地预防和控制发动机喘振问题,必须认真分析原因并采取相应的解决措施。

只有这样才能可靠地保证发动机组的长期稳定运行。

关键词:发动机;喘振;损伤;故障分析;措施1、前言发动机喘振会对航空发动机的运行造成严重危害,是其运行过程中的一种异常状态。

为了保障发动机稳定工作,本文详细论述了发动机喘振的机理和现象。

并就如何控制和预防发动机喘振故障提出了一系列措施和建议,以保证发动机的正常运行。

同时为了提高发动机的效率,保证人员的安全,提高设备操作性,必须采取必要的防喘振措施,以保障发动机的稳定运行。

2、基本概念2.1发动机简介发动机叶轮叶片的前部大多是弯曲的,称为导向轮。

利用快速旋转的叶片增加空气压力,它将气体导入工作叶轮,以减少气流的冲击损失。

小型增压器的发动机叶轮一般由导向轮和工作叶轮组成,在发动机叶轮出口设置扩散器,将叶轮内气体的动能转化为压力。

发动机壳体上一般设有进气口和出气口,进气口一般沿轴向布置,通流部分略有减小,以减小进口阻力,排气口一般设计成蜗杆形状的圆周扩张流道,使高速气流不断扩张,提高了增压器的整体效率。

发动机由涡轮驱动,其主要性能参数为:转速、流量、空气流量、增压比。

2.2喘振现象及判断发动机一旦发生喘振,音调会变低而沉闷,导致设备振动增大,主要表现为压力高、流量波动大。

发动机出口压力和流量波动大,转速不稳定,气压突然下降。

发动机排气温度升高,导致温度过高。

喘振严重时,气流阻断,发动机会熄火停机。

发动机一旦进入喘振状态,首先会引起发动机强烈的机械振动和端部过热,在很短的时间内会对设备部件造成严重损坏。

最全发动机原理图解(简单直观,一看就懂)

最全发动机原理图解(简单直观,一看就懂)

最全发动机原理动图(简单直观,一看就懂)通过直观的发动机动图,我们来了解各种发动机的工作原理!1、单缸发动机单缸发动机是所有发动机中最简单的一种,它只有一个气缸,是发动机的基本形式。

单缸发动机工作时,曲轴每转一圈(二冲程)或两圈(四冲程),气缸内的混合气点火燃烧一次,从声音和振动上,能明显地感到发动机的工作是断续的,排气也是"突突"的断续声。

如果从工作的连贯性来看,单缸机工作不平稳,转速波动较大,容易熄火。

但是,它的结构简单,制造成本较低,维护也不复杂,是中低档小型摩托车发动机的首选。

2、双缸发动机双缸发动机,是指有两个气缸的发动机,它是由两个相同的单缸排列在一个机体上共用一根曲轴输出动力所组成。

▲水平对置双缸发动机双缸发动机既适用于动力发生装置,也可指包括动力装置的整个机器,比如汽油发动机,航空发动机。

▲摩托车双缸发动机双缸发动机多用于轿车的发动机、摩托车、油锯和其他小功率动力机械中。

3、三缸发动机三缸发动机是拥有三个气缸的发动机,一般排量比较小,为了满足动力需求,那些紧凑级的车型一般都会配备涡轮增压版的三缸车型。

三缸发动机的油耗表现会比较好,但是发动机的声音不那么悦耳。

它的体积小、质量轻、成本低,但振动有些大。

4、四缸发动机四缸发动机,又可称为四缸引擎,其机体主要由气缸体、曲轴箱、气缸盖和气缸垫等部件组成。

四缸发动机其基本原理是将汽油(柴油)的热能,通过在密封汽缸内燃烧气体膨胀,推动活塞作功,转变为机械能。

▲四冲程发动机做功过程▲直列式发动机直列式发动机:所有汽缸均肩并肩排成一个平面,它的缸体和曲轴结构简单,而且使用一个汽缸盖,制造成本较低,稳定性高,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛。

其缺点是功率较低。

▲V型发动机V型发动机:相邻汽缸以一定夹角布置,使两组汽缸形成有一个夹角的平面,从侧面看汽缸呈V字形的发动机。

V型发动机的高度和长度尺寸小,在汽车上布置起来较为方便。

航空发动机原理图文解析

航空发动机原理图文解析

航空发动机原理--螺桨风扇发动机螺桨风扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来,目前正处于研究和实验阶段。

螺桨风扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。

螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片。

根据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比越来越大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8~M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。

由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左右。

同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不同所决定的。

普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。

当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。

航空发动机的喘振

航空发动机的喘振
发展阶段
随着航空工业的快速发展,喘振研究在20世纪中期进入发展阶段,研究重点转向解决实际工程问题,并开始广泛应 用在航空发动机设计、制造和维护中。
深入探索阶段
进入21世纪,喘振研究进入深入探索阶段,研究领域不断拓宽,研究方法不断创新,对喘振的机理和特 性有了更深入的理解,为解决实际工程问题提供了更有效的方案。
THANKS FOR WATCHING
感谢您的观看
05 航空发动机喘振的实际案 例分析
案例选择的标准和来源
01
案例应具有代表性
选择的案例应能代表航空发动机 喘振的典型情况,以便更好地说 明问题。
02
案例应具有实际应 用价值
所选案例应来源于实际运行的航 空发动机,以便更好地反映实际 情况。
03
案例应具有广泛性
为了全面了解航空发动机喘振的 情况,所选案例应涵盖不同类型 的航空发动机。
喘振的预防措施
定期维护和检查
按照制造商推荐的维护计划,定期对发动机进行维护和检查,确 保发动机处于良好的工作状态。
控制燃油流量
根据飞行条件和发动机状态,合理控制燃油流量,避免燃油过多或 过少导致喘振。
调整发动机进气口角度
根据飞行高度和速度,适时调整发动机进气口角度,优化进气气流, 防止喘振发生。
喘振的控制技术
从案例中获得的启示与建议
启示一
航空发动机喘振的原因多种 多样,需要针对具体情况进 行分析和解决。
启示二
进气道、压气机和进口温度 等因素都可能引发航空发动 机喘振,需要在设计和使用 过程中充分考虑这些因素。
建议一
加强航空发动机喘振的监测 和预警,以便及时发现和解 决问题。
建议二
在设计和制造过程中要充分 考虑各种可能引发喘振的因 素,并采取相应的预防措施。

转子发动机工作原理

转子发动机工作原理

转子发动机工作原理转子发动机是一种使用气体或液体作为工作介质的发动机,其工作原理可以简单分为吸入、压缩、燃烧和排放四个阶段。

首先,转子发动机通过转子的旋转运动来吸入工作介质。

当转子旋转时,空气或燃料-空气混合物会被引入转子的吸气室。

转子上有凸起的叶片,当转子旋转时,这些叶片就会不断地将工作介质拉入转子内部。

接下来,工作介质被转子压缩。

当工作介质被拉入转子后,转子会不断地旋转将工作介质逐渐压缩。

转子上的凸起叶片会不断地挤压工作介质,使得其体积减小,从而增加其密度和压力。

这个过程将导致工作介质的温度上升。

然后,工作介质通过与燃料的混合物进行燃烧来释放能量。

在燃烧室中,燃料-空气混合物被点燃,产生高温高压的燃烧气体。

由于转子的旋转运动,燃烧气体会在转子内部进行爆炸式扩张,从而产生的高压气体能够推动转子旋转,并将能量传递给转子。

最后,剩余的燃烧废气被排出发动机。

当燃烧气体推动转子旋转时,转子会将剩余的燃烧废气排出发动机,通过排气管排出。

同时,新的工作介质将被吸入转子,循环开始。

总结起来,转子发动机的工作原理是通过转子的旋转运动来实现吸入、压缩、燃烧和排放等工作过程。

这种结构和工作原理使得转子发动机具有高效、高功率和低振动噪音等优点,适用于航空、汽车和发电等领域。

转子发动机作为一种独特的动力装置,在工业和交通运输领域发挥着重要作用。

它既具有高效能、高功率的特点,又能够减少振动噪音,是燃烧力学和流体力学结合的产物。

下面将进一步探讨转子发动机的工作原理及其应用领域。

首先,转子的旋转运动是转子发动机工作的核心。

通过转子的旋转,工作介质可以被吸入、压缩、燃烧和排出。

转子发动机通常由转子、燃烧室、排气系统和控制系统等组成。

转子上有凸起的叶片,当转子旋转时,这些叶片将工作介质逐渐拉入转子内部,形成吸入过程。

与此同时,压缩腔内的介质通过转子的压缩,密度逐渐增大,体积缩小。

然后进入燃烧室,在燃料的燃烧下产生高温高压气体。

涡轮发动机结构之压气机—可调导流叶片防喘原理

涡轮发动机结构之压气机—可调导流叶片防喘原理

可调压气机静子叶片 (VSV)
可 作 传电
调 动 动子
叶 筒 机控

构制


民用V2500、CFM56-5以及军用AL-31型发动机上均有VSV
内容 CONTENTS来自一 可调导流叶片防喘原理 二 可调导流叶片工作特点
二 可调导流叶片工作特点
问题: 什么时候需要VSV转动?
分析喘振原因
流动困难
转速低流动困难
可调导流叶片
一 可调导流叶片防喘原理
问题二:如何实现旋转C?
可调导流叶片
顺转子旋转方向转动导 流装置能防喘
一 可调导流叶片防喘原理
可调导流叶片
一 可调导流叶片防喘原理 导流叶片转动视频
一 可调导流叶片防喘原理
第1级转子
第2级转子
可调导流叶片
静子+可调导流叶片 =可调静子叶片
一 可调导流叶片防喘原理
可调导流叶片防喘原理
回顾 喘振原因和防喘基本方法
气流进气正向攻角过大 i 0
C大小和方向、U大小会影响攻角
回顾 喘振原因和防喘基本方法
改变i
使i恢复到设计值 i 0
改变 C方向 改变 C大小 改变 U大小
目标
利用防喘原理,识别防喘装置和 说出其工作原理—可调导流叶片
内容 CONTENTS
转速高流动困难? 还是相反
二 可调导流叶片工作特点
问题: 什么时候需要VSV转动?
根据 n2 来调节 T1*

n2
T1* 减小到某一范围
时转动VSV
某型发动机VSV调节角度变化曲线
一 可调导流叶片工作特点
装置
可调静子叶片 外部控制结构
优点

机械振动控制技术在航空工程中的应用研究

机械振动控制技术在航空工程中的应用研究

机械振动控制技术在航空工程中的应用研究引言:机械振动是航空工程中常见的问题之一,它会对飞行器的性能、安全性和寿命产生不可忽视的影响。

为了解决这一问题,人们利用机械振动控制技术来减小飞行器的振动。

本文将就机械振动控制技术在航空工程中的应用进行分析和研究。

一、机械振动的成因及危害机械振动是指系统在外界激励下发生的周期性或非周期性振动。

在航空工程中,机翼、燃气轮机叶片、飞行控制系统等都容易发生振动。

这些振动会导致以下问题:1. 降低飞行器的性能:振动会增加飞行器的阻力、发动机燃油消耗和飞行器整体飞行稳定性,降低其速度和爬升能力。

2. 加速疲劳破坏:振动会对飞行器结构产生冲击和超载,加快材料疲劳破坏,缩短飞行器的使用寿命。

3. 影响乘客的舒适度:飞行器在飞行过程中发生大幅振动,会使乘客感到不适,甚至引起健康问题。

因此,控制机械振动是航空工程中迫切需要解决的问题。

二、机械振动控制技术的基本原理机械振动控制技术是通过在振动源、振动传递路径和振动响应处施加外力或采取结构设计等方式,来控制和减小振动幅值和频率。

主要包括主动振动控制、被动振动控制和半主动振动控制。

1. 主动振动控制:主动振动控制是通过在振动系统上引入主动力和控制系统,根据振动信号进行实时控制来消除或减小振动。

其核心是控制系统的反馈和信号处理功能。

2. 被动振动控制:被动振动控制是通过传感器感知到系统振动信息,利用吸振材料或机械机构消耗振动能量,从而减小振动幅值。

被动振动控制不需要外部能源,性能稳定可靠,但缺乏自适应性。

3. 半主动振动控制:半主动振动控制技术是主动振动控制和被动振动控制的结合,既具备主动控制的优势,又兼顾被动控制的简洁性和可靠性。

通过控制材料的特性、电流或电压的调节等手段来控制其阻尼特性。

三、机械振动控制技术在航空工程中的应用机械振动控制技术在航空工程中有广泛的应用,涵盖了飞行器的各个方面。

1. 飞行控制系统的振动控制:飞行器的飞行控制系统常常容易发生振动,影响其航空性能和操控精度。

发动机原理与结构习题(含参考答案)

发动机原理与结构习题(含参考答案)

发动机原理与结构习题(含参考答案)一、单选题(共100题,每题1分,共100分)1、液压机械式控制器的特征是( )A、由机械的,液压的元件组成,由燃油(或个别机型用滑油)作为控制油B、由机械的电子的控制器共同工作C、由电子元件构成,燃油作为伺服介质D、由气动,机械元件组成,由压气机空气作为伺服介质正确答案:A2、发动机振动指示大说明( )A、叶片失速B、旋转部件发生不平衡C、燃油过多D、润滑不足正确答案:B3、控制涡轮机匣膨胀量的空气来源( )A、引压气机最后一级的空气B、风扇后的空气C、压气机不同级的引气或风扇后的空气D、引固定量的空气正确答案:C4、某燃气涡轮发动机滑油系统的油箱容积为10加仑,加滑油时应留( )的膨胀空间A、1.0加仑B、2.0加仑C、1.5加仑D、0.5加仑正确答案:A5、航空燃气涡轮发动机是将( )A、动能转变为热能的装置B、势能转变为热能的装置C、热能转变为机械能的装置D、动能转变为机械能的装置正确答案:C6、点火装置按使用的电源不用,可分为( )A、直流点火装置和交流点火装置B、高能点火装置和低能点火装置C、直流断续点火装置和直流晶体管点火装置D、高压点火装置和低压点火装置正确答案:A7、燃气涡轮喷气发动机的推力与流过发动机的空气流量之比称为( )A、推重比B、流量比C、压力比D、单位推力正确答案:D8、滑油系统的供油泵和回油泵装在( )A、装在转换齿轮箱B、装在滑油箱里C、通常在润滑组件里,并装在附件齿轮箱上D、分开装在附件齿轮箱的安装座上正确答案:C9、在燃气涡轮喷气发动机中,轴流式压气机的级数( )涡轮的级数A、不等于1B、等于C、小于D、大于正确答案:D10、离心式压气机的两个主要部件是( )A、工作叶轮和喷管B、导气管和工作叶轮C、扩压器和导管D、工作叶轮和扩压器正确答案:D11、进气道的冲压比是( )A、进气道进口处的总压与来流总压之比B、进气道进口处的总压与来流静压之比C、进气道出口处的总压与赖柳总压之比D、进气道出口处的总压与来流静压之比正确答案:D12、发动机假启动(湿冷转)是( )A、起动机不工作,供油并点火B、起动机不工作,不供油不点火C、起动机工作,不供油不点火D、起动机工作,供油不点火正确答案:D13、自由涡轮是指( )A、驱动低压压气机的涡轮B、和驱动压气机的涡轮只有气动联系没有机械连接C、燃气首先经过的涡轮D、驱动高压压气机的涡轮正确答案:B14、燃气涡轮喷气发动机燃烧室中进行的( )过程可以理想化A、多变B、定温C、定容D、定压正确答案:D15、轴流式压气机喘振时,发动机的( )A、EGT下降B、振动减小C、振动加大D、EPR增高正确答案:C16、涡轮喷气发动机的总效率是( )A、推进功率与单位时间内发动机燃油完全燃烧时放出的热量之比B、发动机完成的推进功与可用动能之比C、单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比D、发动机的推力与动能之比正确答案:A17、当压气机的实际流量系数小于流量系数的设计值时,空气流过工作叶轮时,会在叶片( )处发生气流分离A、叶背B、叶根C、叶盆D、叶尖正确答案:A18、使用反推时,反推杆是否可以一直向后拉( )A、分阶段一直拉到最大反推B、使用反推时反推杆可以一直拉C、要等反推装置展开到位继续拉D、先慢后快正确答案:C19、推力杆和反推杆互锁是指( )A、反推杆可以随时提起B、反推杆拉起,推力杆可以继续推C、两个杆可以同时动作D、推力杆在慢车位反推杆才能拉起,反推杆拉起推力杆不能前推正确答案:D20、涡轮喷气发动机的总效率等于发动机的热效率与推进效率想( )A、减B、加C、乘D、除正确答案:C21、燃气涡轮发动机使用合成滑油,应避免长时间与( )接触A、皮肤B、钢和铜C、铝合金材料D、金属材料正确答案:A22、轴流式压气机的转速保持不变,( )可以改变工作叶片进口处气流的攻角A、工作叶轮进口处绝对温度B、工作叶轮进口处绝对压力C、工作叶轮进口处绝对湿度D、工作叶轮进口处的绝对速度正确答案:D23、发动机冷转(干冷转)是( )A、不喷油,不点火,仅由起动机带动发动机转动B、试完大车后发动机的转动过程C、只供油,不点火,起动机带动发动机到一定转速D、发动机点火后转速并未增加至慢车转速,而保持在较低转速的转动正确答案:A24、燃气涡轮发动机的涡轮形式有( )A、径向内流式和轴流式B、高压式和中压式C、径向内流式和径向外流式D、自由涡轮式和动力涡轮式正确答案:A25、装机用的柱塞泵供油的多少由( )决定A、转速和齿数B、齿数和斜盘角度C、转速和分油盘大小D、转速和斜盘角度正确答案:D26、滑油撒热气装在供油路上称为( )A、湿槽式B、热箱系统C、冷箱系统D、干槽式正确答案:B27、保证EEC工作正常,通常如何实现元件冷却( )A、冷却空气流经EEC带走热量B、冷却介质通过EECC、喷射冷却液D、自然散热正确答案:A28、燃气涡轮发动机工作的主要限制因素是( )A、涡轮进口温度B、燃烧室压力C、压气机进口空气压力D、压气机出口压力正确答案:A29、轴流式压气机的总增压比等于各级增压比的( )A、乘积B、差C、和D、向量和正确答案:A30、机械操纵系统中,推力杆通过( )与液压机械式燃油控制器上的功率杆相连A、伺服机构B、功率放大器C、反馈钢索D、操纵系统的鼓轮,传动钢索,扇形轮,推拉钢索等正确答案:D31、航空燃气涡轮发动机中燃烧室的第一股气流与燃油形成( )A、余气系数大于1的混合气B、油气比等于1的混合气C、余气系数稍小于1的混合气D、油气比小于1的混合气正确答案:C32、双转子发动机的两个转子是( )A、风扇转子和低压压气机转子B、低压转子和高压转子C、高压压气机转子和高压涡轮转子D、压气机转子和涡轮转子正确答案:B33、对于涡轮冷却,以下正确的说法是( )A、涡轮寿命仅取决于他们的结构形式B、高压涡轮导向叶片不需冷却C、涡轮一般不采用气膜冷却和冲击冷却D、高压涡轮导向器和涡轮叶片采用气流流过叶片内部流道进行冷却正确答案:D34、压气机速度三角形的绝对速度的切向分量叫做( )A、预旋量B、径向分量C、轴向分量D、偏转量正确答案:A35、轴流式基元级速度三角形中的叶轮圆周速度代表( )A、叶轮进口处空气预旋大小B、压气机空气流量大小C、压气机空气进气速度大小D、压气机转速大小正确答案:D36、( )的说法是不正确的A、大气压力随海拔高度的增高而降低B、大气温度随海拔高度的增高而降低C、大气湿度随季节的不同而不同D、大气密度随海拔高度的增高而降低正确答案:B37、发动机扭矩和转速用以决定涡桨发动机产生的( )A、功B、功率C、输出力D、力矩正确答案:B38、监控润滑系统中的金属污染参数是( )A、金属微粒的大小、数量、材料种类B、金属微粒的数量C、金属微粒的大小D、金属微粒的材料种类正确答案:A39、高涵道比的涡扇发动机中噪声的主要来源( )A、压气机B、风扇和涡轮C、尾喷气流D、风扇正确答案:B40、轴流式压气机基元级的进口速度三角形由( )A、叶轮进口处的周向速度,轴向速度,相对速度组成B、叶轮进口处的绝对速度,牵连速度,周向速度组成C、叶轮进口处的绝对速度,牵连速度,相对速度组成D、叶轮出口处的周向速度,轴向速度,牵连速度责成正确答案:C41、发动机燃油控制器位于( )A、主轮舱B、风扇机匣外侧C、附件齿轮箱燃油泵后D、电气电子舱正确答案:C42、高压涡轮转子叶片和导向叶片做成空心的是为了( )A、增加燃气流路B、冷却C、减轻重量D、增加刚度正确答案:B43、发动机快速减速时,( )容易发生喘振A、低压转子B、高压转子C、中压转子D、涡轮转子正确答案:A44、( )的高低和变化可以反映出滑油散热器或轴承的故障A、滑油温度B、发动机排气温度C、高压转子转速D、燃油流量正确答案:A45、发动机迅速减速时可能会出现( )A、压气机超压B、涡轮超温C、贫油熄火和喘振D、富油熄火和喘振正确答案:C46、在高涵道比涡扇发动机上,反推力是( )而实现的A、将热的排气流反向B、将通过风扇的气流反向C、将通过风扇的气流和热的排气流同时反向D、将风扇反转正确答案:B47、在管环形燃烧室中,联焰管连通( )个火焰筒A、两B、一C、每D、几正确答案:C48、滑油添加的方式有( )A、自动加油B、空中加油C、重力加油和远距离压力加油D、定期加油正确答案:C49、发动机转子上的联轴器是连接( )的组合件A、压气机与燃烧室B、涡轮与附件齿轮箱C、涡轮转子与压气机转子D、燃烧室与涡轮正确答案:C50、在液压机械式燃油调节器中,转速调节通常采用( )A、减速装置B、闭环控制C、加速装置D、开环控制正确答案:B51、燃气涡轮喷气发动机中最重要的一个参数( )A、涡轮前燃气总温B、压气机出口处的空气温度C、燃烧室中的压力D、压气机进口处的空气温度正确答案:A52、涡轮风扇发动机按外涵道气流排出方式分为( )A、螺桨和桨扇B、高涵道比和低涵道比C、前风扇和后风扇D、短外涵和长外涵正确答案:D53、在发动机控制中,当外界干扰量发生变化时,保持既定的发动机稳态工作点,这被称为( )A、稳态控制B、安全限制C、动态控制D、过渡控制正确答案:A54、液压机械式控制器的主要组成是( )A、计量部分和计算部分B、传感器和作动器C、控制元件和反馈元件D、燃油泵和转速调节器正确答案:A55、在飞行速度和飞行高度保持不变的情况下,燃气涡轮喷气发动机的燃油消耗率随发动机转速的变化规律是( )A、随着转速的增加先增加后稍有减小B、随着转速的增加而减小C、随着转速的增加而增加D、随着转速的增加先减小后稍有增加正确答案:D56、在燃气涡轮发动机中,燃烧是在什么条件下进行( )A、体积不变B、密度不变C、转速不变D、压力不变正确答案:D57、转速传感器目前通常测量的是( )A、电压B、电流C、电阻D、频率正确答案:D58、航空发动机术语中Tt2是指( )A、2站位总温B、2站位静温C、使用时间D、使用循环正确答案:A59、推进功率等于( )A、单位时间内发动机产生的可用动能B、单位时间内发动机加热量C、单位时间内发动机产生的机械能D、推力乘以飞行速度正确答案:D60、( )是发动机热启动A、发动机转速超限B、发动机振动超限C、发动机转速悬挂D、排气温度上升太快,将要超过红线限制或已经超过正确答案:D61、发动机燃油系统中的油滤旁通活门何时打开( )A、油滤压差电门闭合,指示灯亮时B、油滤前,后压差达到预定值时C、油滤开始堵塞时D、油滤大部分堵塞时正确答案:B62、在航空发动机术语中Pt2是指( )A、2站位的总压B、2站位的静压C、推力D、功率正确答案:A63、大型飞机发动机反推系统工作的两个主要条件是拉起反推手柄且( )A、起落架放出B、发动机工作在慢车C、飞机必须在地面D、有电源和液压源正确答案:C64、对于定型的燃气涡轮发动机,影响涡轮叶片叶尖与涡轮机匣间的间隙的因素是( )A、涡轮的级数B、压气机的增压比C、发动机的工作状态D、大气压力和温度正确答案:C65、涡扇发动机有两股气流喷入大气,即( )A、高温的外涵空气流和低温的涡轮出口燃气流B、外涵气流和风扇气流C、内涵气流和涡轮出口燃气流D、低温的外涵空气流和高温的涡轮出口燃气流正确答案:D66、在双转子涡轮喷气发动机中第一级涡轮带动( )A、低压压气机B、风扇和低压压气机C、风扇D、高压压气机正确答案:D67、描写燃烧室中燃油燃烧完全程度的参数是( )A、油气比B、燃烧速度C、燃烧效率D、燃烧时间正确答案:C68、涡轮叶片的枞树型榫头同涡轮盘的连接,当涡轮静止时( )A、榫头和盘没有间隙B、叶片和盘是刚性连接C、叶片是固定的D、叶片是活动的正确答案:D69、轴流式压气机功为各级压气机功之( ),压气机增压比为各级增压比之A、积,和B、积,积C、和,和D、和,积正确答案:D70、燃气流离开涡轮时存在残余的漩涡速度,会产生附加损失,为了减少这些损失,气流在( )中先行扭直A、涡轮导向器B、排气锥C、喷口D、涡轮后部支柱正确答案:D71、涡轮喷气发动机的热效率是( )A、发动机的推力与动能之比B、单位时间发动机产生的机械能与单位时间内发动机燃油完全燃烧时放出的热量之比C、推进功率与单位时间内发动机燃油完全燃烧时放出的热量之比D、发动机完成的推进功与可用动能之比正确答案:B72、滑油系统中磁屑探测器的作用是( )A、测量滑油压力B、测量滑油温度C、吸附微小含铁粒子,帮助进行故障分析D、去除气泡,蒸汽,防止供油中断或破坏油膜,减少滑油消耗正确答案:C73、涡轮转子和涡轮机匣受热后,( )膨胀的快A、涡轮机匣B、涡轮叶片C、涡轮盘D、涡轮转子正确答案:A74、涡轮喷气发动机的理想热力循环是由( )A、绝热压缩过程,定容加热过程,绝热膨胀过程和定压放热过程B、绝热压缩过程,定压加热过程,定温膨胀过程和定压放热过程C、绝热压缩过程,定温加热过程,绝热膨胀过程和定压放热过程D、绝热压缩过程,定压加热过程,绝热膨胀过程和定压放热过程正确答案:D75、反推装置的作用是( )A、飞机触地后,减低飞机速度,缩短滑跑距离B、飞机机轮刹车失效时起刹车作用C、增加发动机推力D、用于飞机倒车正确答案:A76、发动机燃油泵通常有( )A、增压级和主级泵B、液压泵和电动泵C、仅有增压级D、仅有主级正确答案:A77、涡轮间隙主动控制是指( )A、控制涡轮机匣的膨胀量B、控制我理论叶片的膨胀C、保持引气温度恒定D、涡轮叶片和涡轮机匣同时冷却正确答案:A78、航空燃气涡轮发动机中燃烧室的第一股进气的功用是( )A、参加燃烧B、冷却火焰筒C、冷却涡轮D、降低温度正确答案:A79、进气道热空气防冰,如何对该系统保护( )A、继电器B、不需要保护C、定时器D、压力,温度传感器监视防止过压,超温正确答案:D80、如果EEC的两个通道发生故障,将如何处置( )A、自动转到故障-安全状态B、推力失去控制C、转到液压机械式控制D、转到手动控制正确答案:A81、为什么涡轮工作叶片和导向器叶片做成扭转的( )A、温度一致B、叶根部位比叶尖部位有较多的功C、叶尖部位比叶根部位有较多的功D、燃气流沿叶片长度做相等的功正确答案:D82、EEC的地面测试检查时,电源来自( )A、专用的发电机B、飞机电源C、APU发电机D、备用发电机正确答案:B83、低压涡轮出口处的总压与压气机进口处的总压之比称为( )A、发动机的压缩比B、发动机的增压比C、发动机的压力比D、发动机的容积比正确答案:C84、挤压油膜轴承减低了振动和疲劳损坏的可能,它是在( )有油膜A、轴承内圈和轴之间B、轴承外圈和轴承座之间C、滚珠和保持架之间D、轴承内圈和轴承座之间正确答案:B85、高涵道比涡扇发动机推力的指示参数EPR是( )A、发动机压气机增压比B、发动机排气总温与发动机进气总温比C、发动机增压比D、发动机排气总压与发动机进气总压之比正确答案:D86、发动机能够保持稳定工作的最小转速是( )A、巡航转速B、最大连续转速C、自持转速D、慢车转速正确答案:D87、发动机空中再启动是否需要起动机工作( )A、起动机冷转B、起动机不需要工作C、如果风车转速不够,则需要起动机工作,一般不需要D、起动机必须工作正确答案:C88、当飞行速度和发动机的转速保持一定时,随着飞行高度的增加,发动机的推力将( )A、减小B、增大C、不变D、先增大后减小正确答案:A89、单转子燃气涡轮喷气发动机本体的主要组成部分是( )A、进气道,压气机,燃烧室,涡轮和喷管B、气缸,活塞,连杆,气门和曲轴C、扩压器,静子,转子,排气装置D、螺旋桨,减速器,涡轮和排气管正确答案:A90、枞树型榫头的涡轮叶片,涡轮旋转时( )载荷使其同盘刚性连接A、高温燃气B、气动载荷C、离心载荷D、振动载荷正确答案:C91、轴流式压气机从进口到出口,其流动通道是( )型的A、扩张B、圆锥C、收敛D、圆柱正确答案:C92、进气道的总压恢复系数是( )A、进气道进口处的总压与来流静压之比值B、进气道出口处的总压与来流静压之比值C、进气道出口处的总压与来流总压之比值D、进气道进口处的总压与来流总压之比值正确答案:C93、使用电子控制的发动机,驾驶员操纵推力杆的命令如何传到EEC( )A、通过推力控制鼓轮B、通过推力杆角度解算器C、通过电门D、通过连杆正确答案:B94、离心式压气机的最大优点是( )A、流动损失大B、单位面积的流通能力低C、单级增压比高D、级数少正确答案:C95、供给螺旋桨的功率加上喷气推力的总功率输出称( )A、燃油消耗率B、轴功率C、有效推力D、当量功率正确答案:D96、涡桨发动机组合了涡喷发动机的优点和螺旋桨在低速时( )高的特点A、最大功率B、有效功率C、推进效率D、拉力正确答案:C97、EGT传感器一般在( )测量A、低压涡轮前B、高压涡轮前C、高压涡轮后D、低压涡轮后或低压涡轮中间级正确答案:D98、有独立的滑油箱的润滑系统是( )A、热箱系统B、干槽式C、冷箱系统D、湿槽式正确答案:B99、拆下磁堵时,如何防止滑油泄漏( )A、磁堵上的自封活门B、滑油路上防漏活门C、用容器接滑油D、油箱关断活门正确答案:A100、燃气涡轮发动机的进气道一般分为( )两种类型A、亚音速进气道和超音速进气道B、单级进气道和多级进气道C、离心式进气道和轴流式进气道D、冲压式进气道和反作用式进气道正确答案:A。

涡扇发动机的工作原理及应用综述

涡扇发动机的工作原理及应用综述

涡扇发动机的工作原理及应用综述作者:陈建军来源:《时代汽车》 2018年第5期摘要:涡扇发动机在民用机、战斗机中的应用十分广泛,其类型多样,通常是由风扇、进气道、尾喷管、压气机、涡轮、燃烧室等部分构成,各部门的有效工作保障了涡轮发送机的整体有效运行。

本文将就涡扇发动机的具体组成结构和功能作用进行详细介绍分析,在此基础上阐述其工作原理以及具体应用中的各项性能参数。

关键词:涡扇发送机;结构;工作原理;性能参数1引言涡轮发动机是一种常用的飞机发动机,其是利用旋转的机件自穿过它得流体中汲取动能的发动机形式,属于内燃机的范畴。

相较于其它发动机,涡轮发动机的优势在于能欧在不增加发动机排量的基础上,极大的提升发动机的功率。

此外,其还具备节省燃油、降低排放等优点。

但是由于其风扇直径较大,其迎风面积也相对较大,因此受到的阻力也高于其它发动机。

且这种发动机的结构十分复杂,设计工作难度较高。

因此探究涡扇发动机的工作原理和应用具有十分重要的积极意义。

2涡扇发动机的发展背景和具体分类介绍传统飞机常用的发动机类型为活塞式发动机,当其飞行速度和音速接近的情况下,其飞行阻力会出现大幅度的提升,对此,人们对发动机的重量和尺寸进行了增加。

其后随着燃气涡轮发动机的发展应用,燃气涡轮发动机不仅重量较低,且突破了音障的限制,因此其开始广泛应用于各式飞机中,并且随着应用的不断深入,逐渐衍生出多种不同的类型,于是传统的发动机形式因劣势过于明显逐渐被废弃。

经过长期的发展,燃气涡轮式发动机已经具备多种类型,如涡轮喷气发动机、涡轮螺旋桨发动机、涡轮风扇发动机等。

除了这些还存在其它多种类型,在此不一一列举。

其中涡扇发动机是由涡轮螺旋桨发动机衍生发展而来的,同时其在结构上则和涡轮喷气式发动机存在类似之处。

在对涡扇发动机进行分类时,存在多项分类标准,例如以涵道比的高低为分类标准,可以将其分成大涵道比涡扇发动机和小涵道比涡扇发动机。

相较于传统的发动机,涡扇发动机具有推力大、效率高、噪音低、油耗低,飞行航程远等优势,但其同样存在一定的缺陷,如风扇直径较大、结构复杂,设计难度高等。

航空发动机的喘振课件

航空发动机的喘振课件

喘振对飞机的影响
飞机失控
喘振会导致发动机功率下降,甚至停车,从而使飞机失去动力,严重时可能导致飞机失控坠毁。
机体强烈振动
喘振发生时,发动机和飞机都会产生强烈的振动,对机体结构造成损伤。
飞机性能下降
喘振会导致飞机性能下降,如爬升率、巡航速度等都会受到影响。
02
航空发动机喘振的机理
旋转失速与喘振的关系
新型材料的应用
高温材料
研发能够承受更高温度的 新型材料,提高航空发动 机的工作效率和性能。
轻质材料
采用轻质、高强度的材料 ,降低航空发动机的重量 ,提高其燃油经济性和机 动性。
复合材料
利用复合材料的优点,如 耐高温、高强度、轻质等 ,提高航空发动机的结构 强度和耐久性。
THANKS
解决方案
清理进气道异物,对发动机进行全 面检查和维修,确保正常运行。
案例二:某型发动机喘振故障排除过程
故障描述
某型发动机在运行过程中出现喘振, 功率下降。
解决方案
定期对发动机进行维护保养,检查燃 烧室和进气道状态,保持发动机良好 运行状态。
故障排除过程
首先检查发动机进气道,未发现异常 ;然后对发动机内部进行检查,发现 燃烧室存在积碳,进行清理后故障排 除。
当发动机在高攻角或低转速等异常工况下工作时,压气机的特性曲线可能会变得 较为陡峭,使得压气机容易进入不稳定工作区域,进而引发喘振。
发动机热力状态与喘振的关系
发动机热力状态是指发动机内部燃烧室和燃气涡轮的热力性 能表现。
当发动机热力状态不佳时,如燃烧室温度过高或燃气涡轮性 能下降,可能会导致发动机进气温度和压力的波动增大,进 而影响压气机的工作稳定性,引发喘振。
新型控制技术的应用

飞机涡轮螺旋桨发动机—螺旋桨

飞机涡轮螺旋桨发动机—螺旋桨

检查铝合金桨叶上是否有点蚀、压坑、刻痕、裂纹和腐蚀。损坏敏感的区域包括
前缘和叶面。为帮助检查,可用4 倍的放大镜。怀疑有裂纹应做着色渗透检查。
铝合金桨叶表面缺陷的修理必须在平行于长度进行。螺旋桨边缘典型修理最大允
许的尺寸深度为1/8in(英寸),长度不大于1.5in(英寸)(右图)。如果一个桨
叶叶尖修短,则其余桨叶必须修短到一样尺寸。叶背和叶面修理后用非常细的砂
旋桨转速控制以及从反桨距或低桨距到高桨距的操作。
目视检查复合材料桨叶有无裂纹。检查桨毂,特别注意每个桨叶根部上有无裂纹;使用涡流设备检查桨毂,因
为裂纹通常都不明显。
2.9.7 螺旋桨的检查和维护
三、 超转和冲击损坏评估
螺旋桨超转是指螺旋桨转速超过最大转速限制。螺旋桨超转时,桨叶根部承受很大的离心力,而且若是桨叶
桨固定在带安装边的轮毂上,每对螺栓的保险丝必须在拉紧的方向。如果安装螺旋桨使用的是槽顶螺母,则用
开口销保险
2.9.7 螺旋桨的检查和维护
2、 桨叶角的检测
检测指定的桨叶站位检查桨叶角需要使用
螺旋桨通用分度仪。通用的基准是螺旋桨
桨毂。测量桨叶角时,将分度仪靠住叶面
,转动圆盘调节器直到气泡位于水准仪中
心;转动螺旋桨, 直到要检查的第一片桨叶,
使桨叶的前缘处于水平位置;找出桨叶叶
面的基准标记位置, 将分度仪的边放在桨叶
面的基准位置上;转动圆盘调整钮, 直到中
心酒精水平仪水平为止;以圆上的零线为
标志, 从游标尺上零刻度所对应的数值便是
桨叶角的度数。
2.9.7 螺旋桨的检查和维护
测量桨叶角时,将分度仪靠住叶面,转动圆盘调节器直到气泡位于水准仪中心;转
装置和继电器组成。

伯努利原理生活中的现象

伯努利原理生活中的现象

伯努利原理生活中的现象
伯努利原理在生活中的一些典型现象包括:
1. 飞机机翼产生升力- 空气速度变化导致压强变化,根据伯努利原理产生升力。

2. 喷气式发动机的工作原理- 压缩空气,加速喷出,产生推力。

3. 风力发电机的运转- 风力带动涡轮机叶片旋转,空气速度变化产生动力。

4. 浴室的换气扇- 扇叶高速旋转造成压强梯度,排出浴室空气。

5. 水龙头两侧的负压- 水流喷出时速度变快,根据伯努利原理降低本地压强。

6. 卡式耳机- 耳机间的压强差带动膜片振动,产生音乐声音。

7. 喇叭和号角- airs流经管道时速度改变,压强差形成音波。

8. 海湾流的形成- 地转偏向力作用下,海水产生压强梯度而流动。

9. 风箱的鼓风原理- 气流通过缩小的出口加速,减小出口压强。

10. 帆船的前进- 帆布受风带动船只前进,空气产生动量交换。

水轮发动机的振动与噪声控制技术改进

水轮发动机的振动与噪声控制技术改进

水轮发动机的振动与噪声控制技术改进水轮发动机作为一种重要的发电设备,因其运行时产生的振动与噪声问题,一直是工程师们不断努力改进的焦点。

振动与噪声的产生不仅降低了机器的效率,还可能对周围环境和工作人员的身体健康带来不利影响。

因此,改进水轮发动机的振动与噪声控制技术,对提高其工作效率、延长使用寿命并保障环境和人员健康具有重要意义。

本文将从水轮发动机振动与噪声的产生原因、现有技术控制手段和技术改进方向这三个方面展开论述。

振动与噪声的产生原因水轮发动机在运行时产生的振动与噪声主要源于以下几个方面:1. 水流不稳定:当水轮机的水流受到外界干扰或水质不佳时,会导致水流不稳定,产生压力脉动,从而引起水轮的振动与噪声。

2. 结构共振:水轮机自身的结构共振现象,尤其是在高速运转时,容易导致机械结构的振动,从而引发噪音。

3. 不平衡质量:水轮机转子的不平衡质量,如叶片质量分布不均匀或转子动平衡不良等问题,会引起振动与噪声的产生。

4. 摩擦与磨损:水轮机在运行时摩擦与磨损也是振动与噪声的产生源,尤其在机械零部件不得不接触的情况下,振动与噪声问题更加突出。

现有技术控制手段为了控制水轮机振动与噪声问题,工程师们目前已经采用了多种技术手段:1. 结构优化:通过对水轮机结构的优化设计,降低结构共振的发生概率,减少机械振动与噪声的产生。

2. 润滑技术改进:采用先进的润滑技术,减少水轮机摩擦与磨损,从根源上减少振动与噪声的产生。

3. 动平衡技术:采用精密的动平衡技术,减小水轮机转子不平衡质量,从而降低振动与噪声水平。

技术改进方向针对水轮发动机振动与噪声控制技术的现状,未来的技术改进方向可以从以下几个方面展开:1. 新材料应用:研发轻质高强度的新材料,用于水轮机的关键部件,如叶片和转子,有利于减少结构共振、改善动态平衡,从而减小振动与噪声。

2. 智能控制系统:引入智能控制系统,利用先进的传感器和控制算法,实时监测水轮机的振动与噪声状态,实现自动调节和优化运行参数。

航空发动机原理与构造复习题

航空发动机原理与构造复习题

一、选择题 1燃气涡轮发动机的核心机包括 A .压气机、燃烧室和加力燃室 C .压气机、燃烧室和涡轮 2•在0〜9截面划分法中,压气机出口截面是 A . 1 — 1截面 B . 3 — 3截面 C . 4—4截面3. 在0〜9截面划分法中,燃烧室出口截面是。

CA . 1 — 1截面B . 3—3截面C . 4 — 4截面D . 6—6截面4. _____________________________________________ 发动机正常工作时,燃气涡轮发动机的涡轮是 _________________________________________ B ___ 旋转的。

A .压气机带动 B .燃气推动C .电动机带动D .燃气涡轮起动机带动5.气流在轴流式压气机基元级工作叶轮内流动,其 C 。

A .相对速度增加,压力下降 B .绝对速度增加,压力增加 C .相对速度降低,压力增加D .绝对速度下降,压力增加6. _____________________________________________ 气流在轴流式压气机基元级整流环内流动,其 _________________________________________ C,A. _____________________________________________相对速度增加,压力下降 C .相对速度降低,压力增加7. 气流流过轴流式压气机,其 A .压力下降,温度增加 C .压力增加,温度上升&轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是 A .工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B .工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C .工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D .工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的9. 轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是 A .工作叶轮在前,不转动;整流环在后,转动 B .工作叶轮在前,转动;整流环在后,不转动 C .整流环在前,不转动;工作叶轮在后,转动 D .整流环在前,转动;工作叶轮在后,不转动10. 轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是 A .工作叶轮在前,不转动;整流环在后,转动 B .工作叶轮在前,转动;整流环在后,不转动 C .整流环在前,不转动;工作叶轮在后,转动 D .整流环在前,转动;工作叶轮在后,不转动11. _______________________________ 多级轴流式压气机由前向后, A A .叶片长度逐渐减小,叶片数量逐渐增多 B .叶片长度逐渐减小,叶片数量逐渐减小 C .叶片长度逐渐增大,叶片数量逐渐增多 D .叶片长度逐渐增大,叶片数量逐渐减小12. 涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是 A .导向器在前,不转动;工作叶轮在后,转动 B .导向器在前,转动;工作叶轮在后,不转动C _____ 。

燃气发动机的工作原理

燃气发动机的工作原理

燃气发动机的工作原理燃气发动机是一种常用于飞机、火箭、船舶以及发电厂等领域的重要能源转换装置。

它能够将化学能转化为机械能,并以此驱动相应设备的运行。

本文将重点介绍燃气发动机工作的基本原理,并探讨其各个组成部分以及工作过程。

一、燃气发动机的基本原理燃气发动机基于热力学循环原理工作,其主要原理包括压缩机、燃烧室、涡轮以及尾喷管。

整个工作过程中,燃气发动机将大气中的空气与燃料混合后,在燃烧室内点火燃烧,将产生的高温高压气体通过涡轮的作用输出动力。

下面将详细介绍这个过程。

1. 压缩机燃气发动机的工作从压缩机开始。

压缩机的作用是将大气中的空气进行压缩,增加其密度和压力。

通常采用的压缩机是离心式压缩机,其内部由一系列叶轮和定子组成。

当空气通过压缩机流过时,叶轮将空气加速,并将其向外投射。

这样,在经过多个级别的压缩之后,空气的压力和温度均大幅提高。

2. 燃烧室压缩后的空气进入燃烧室,在此与燃料进行混合并点燃。

燃烧室内的燃烧过程将产生高温高压的燃气。

在现代的燃气发动机中,燃烧室通常采用由火焰筒、燃烧头以及喷嘴等组成的复杂结构。

火焰筒内部的形状和设计将直接影响到燃烧的效果和热能的利用率。

3. 涡轮在燃烧室燃烧产生的热能将用于推动涡轮运转。

涡轮由高压和低压部分组成,两者通过轴连接。

高压部分通过燃气的高温和高压推动转子运转,转子与低压部分的叶片相连,从而将动能转化为压缩机等其他设备的机械能。

4. 尾喷管燃气发动机的最后一个关键部分是尾喷管。

在涡轮推动下,高温高压气体被输送到尾喷管中,并通过尾喷管喷出。

通过喷射高速气体的反作用力,发动机产生了相对应的推力。

这种推力将驱动飞机、火箭、船舶等运动,并提供所需功率。

二、燃气发动机的常见类型燃气发动机根据其工作原理和结构特点的不同,可分为多种类型。

以下为一些常见的燃气发动机类型的简要介绍。

1. 涡轮喷气式发动机涡轮喷气式发动机是最常见的一种燃气发动机类型,广泛应用于商用飞机和喷气客机等领域。

hb 5277 发动机叶平及材料振动疲劳试验方法

hb 5277 发动机叶平及材料振动疲劳试验方法

hb 5277 发动机叶平及材料振动疲劳试验方法HB 5277 发动机叶片及材料振动疲劳试验方法发动机是现代机械工程中重要的动力装置,而发动机叶片及其材料的振动疲劳试验方法对于发动机的设计和性能提升具有重要意义。

本文将介绍和探讨HB 5277 发动机叶片及材料振动疲劳试验方法的应用和要点。

一、引言发动机是实现燃烧能源转换为机械能的装置,而发动机叶片作为发动机的重要组成部分,其性能和可靠性直接关系着整个发动机系统的工作效率和寿命。

因此,对发动机叶片及其材料进行振动疲劳试验具有重要意义,可以评估其性能和可靠性,为发动机的设计和改进提供科学依据。

二、HB 5277 发动机叶片及材料振动疲劳试验方法的原理和步骤HB 5277 是一种专门应用于发动机叶片及其材料振动疲劳试验的标准方法,其原理和步骤主要包括:1. 试验样本的准备:选择符合规范要求的发动机叶片样本,对其进行标准化处理,包括尺寸加工、表面清洁等。

2. 制备试验平台:按照标准要求,设计并制作适合的试验平台,确保叶片样本能够在振动疲劳试验中获得合适的载荷和频率。

3. 振动载荷的施加:根据试验要求,选择适当的振动载荷,并将其施加到叶片样本上,记录实时振动信息。

4. 振动疲劳试验:根据规定的振动载荷和时间,对叶片样本进行振动疲劳试验,记录试验数据,包括振动变形、频率响应等。

5. 试验数据分析:对试验数据进行分析和处理,包括振动模态分析、疲劳寿命预测等,以评估叶片样本的性能和可靠性。

三、HB 5277 发动机叶片及材料振动疲劳试验方法的应用和意义HB 5277 发动机叶片及材料振动疲劳试验方法的应用主要体现在以下几个方面:1. 增强发动机叶片设计的可靠性:通过振动疲劳试验,可以评估发动机叶片在实际工作条件下的振动性能,为叶片设计的优化提供科学依据,提高叶片的可靠性和寿命。

2. 提高发动机系统的工作效率:振动疲劳试验可以发现叶片在振动载荷下的工作特性,通过优化叶片结构和材料,减小振动损失,提高发动机系统的工作效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空发动机强度与振动
Structural Stressing and Vibration in Aircraft Gas Turbine Engines
第三章 叶片振动 Chapter 3 Blade Vibrations
能源与动力工程学院 School of Energy and Power Engineering

C3=C4=0满足上式,为平凡解;非零解的条件为
shal sin al chal cos al chal cos al shal sin al 0
6/15/2014 10:57:40 PM School of Energy and Power Engineering 19



强迫振动—共振(Resonance) 高循环疲劳(High Cycle Fatigue, HCF) 颤振(Flutter) 低/高循环疲劳(Low Cycle Fatigue, LCF) 旋转失速 随机振动
School of Energy and Power Engineering 4
200
5064
约为:5000m/s
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
23
典型叶片自然频率值
梁 频率方程
1 chal cos al 0
1 chal cos al 0
基频
3.515 EI 1 2 A l
3.2.1 基本方程


实际叶片都是有扭向的变截面叶片,两端边界条件也比 较复杂。为此首先讨论无扭向等截面悬臂梁 ( 根部固装 的叶片),目的是找出叶片振动的基本规律和特征。 假设 细长梁--梁的截面尺寸远小于梁的长度; 纯弯 -- 振动只发生在一个平面内,仅有关于最小惯性 轴的弯曲变形,没有扭转变形; 不考虑剪力对变形的影响;


惯性力:
梁弯曲:
2 y q ቤተ መጻሕፍቲ ባይዱ 2 t
2 y 2 2 y 2 y M EI 2 2 EI 2 A 2 0 x x t t

细长梁—欧拉梁;深梁—铁木辛柯梁
6/15/2014 10:57:40 PM School of Energy and Power Engineering 16
h/l=1/10,剪切变形为弯曲变形的1.07%
h/l=1/3,
剪切变形为弯曲变形的10.4%
略去阻尼、转动惯量等的影响
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
13
无扭向等截面悬臂叶片基本方程
y( x, t ) y0 ( x)cos t

单个叶片振型


弯曲振动:关于各横截面最小惯性轴的弯曲振动; 扭转振动:绕扭心线扭转的振动; 弦向弯曲振动:沿叶高出现两条以上纵向节线; 复合振动:弯扭耦合振动。

目前航空发动机风扇 / 压气机叶片多为宽弦薄叶片,振 动多属于弯扭耦合,或以弯为主,弯中带扭;或以扭为 主,扭中带弯。此时叶片振动应力分布较纯弯或纯扭要 复杂得多。
21
弯曲振动的自然频率
3.515 EI 22.03 EI 61.70 EI 1 2 ; 2 2 ; 3 2 l A l A l A 单位:rad / s
各阶固有频率:
f / 2 ( Hz ) f1 : f 2 : f3 1 : 2 : 3 1: 6.3:17.5
3.2.4 等截面悬臂梁弯曲振动时的振型

对于悬臂梁
'' 0
shal sin al y (l ) 0 C4 C3 chal cos al
shal sin al y0 x C3 shax sin ax chax cos ax chal cos al
6/15/2014 10:57:40 PM
3.1.1 概述

研究叶片振动,要掌握的主要内容



叶片的振动特性 外激振力特性 叶片频率(或模态)和弹性线 叶片振动响应和稳定性计算 叶片排故和防振、减振措施 实验研究方法 解析法:本章重点,物理概念清晰 有限元法:适用范围广

计算方法

18
3.2.3 弯曲振动的自然频率
x l , M 0 ( y0 l 0); Q 0 ( y (l ) 0)
'' '' 0
(自由端)
2 2 C3 a ( shal sin al ) C 4 a (chal cos al ) 0 3 3 C3 a (chal cos al ) C 4 a ( shal sin al ) 0
弯曲振动的自然频率
1 cos al chal
(频率方程)
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
20
弯曲振动的自然频率
(al )1 1.875, (al )2 4.694, (al )3 7.855
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
8
3.1.2 叶片基本振动特性
应力, MPa
时间, s
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
9
3.1.2 叶片振动基本特性
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
17
3.2.3弯曲振动的自然频率

B.C.
i
固定端 自由端 简支端
dy0 x 0, y0 0, 0 dx d 2 y0 d 3 y0 x l, M 0 ,Q 0 2 dx dx3 y0 0 0, y0'' 0 0
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
15
3.2.1 基本方程

力平衡: 力矩平衡:
Q Q dx qdx 0 q x x
M Q 1 M dx (Q )dx qdx dx 0 Q x x 2 x
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
22
典型叶片材料密度与弹性模量
ρ,kg/m3
E, GPa
73 110 151
E / ,m/ s
铝合金 钛合金 耐热合金
2850 4500 8000
5061 4964 4345

7800
6
叶片失效—实例
PW4052发动机压气机叶片失效
6/15/2014 10:57:40 PM School of Energy and Power Engineering 7
3.1.2 叶片基本振动特性

振动的主要参数
振幅A:振动时叶片各截面上的质点距原平衡位置的
最大距离; 频率f:叶片每秒钟振动次数,单位Hz,固有属性; 节线:共振时叶片截面上振幅为0的点的连线; 振型 ( 模态或振动形态 ) :叶片振动形态,指叶片自 由振动或共振时各处振幅的相对关系; 振动应力:计算、测量
6/15/2014 10:57:40 PM
School of Energy and Power Engineering
5
叶片失效—实例
RB211高压3级叶片掉 块

PW4185-3 高压 5 级转 子叶片叶尖掉块
6/15/2014 10:57:40 PM
School of Energy and Power Engineering

铁木辛柯(Stephen Prokofievitch Timoshenko, 1878-1972),乌克兰人。 1901年毕业于俄国彼得堡交通道路学院。 1903-1906年德国格丁根大学。 1907-1911年任基辅工学院教授。 1922 年受聘于美国费城振动专业公司,次 年到匹兹堡的威斯汀豪斯 (Westinghouse) 电 气公司。 1928 年,他建立了“美国机械工程师学会 力学部”。同年秋天到密歇根大学任教授。 1936 年起,铁木辛柯到斯坦福大学任教授 达二十年之久。 1965 年迁居联邦德国,直 至逝世。 著作:《材料力学》《弹性力学》《板壳 理论》《结构力学》
4.712 2 1 l2 3.927 2 1 l2 EI A EI A
1 : 2 : 3
1:6.3:17.5 1:2.67:5.4
1 tgalthal 0
1:3.25:6.77
? ? ?
6/15/2014 10:57:40 PM
? ? ?
? ? ?
24
School of Energy and Power Engineering
y
y0(x)是弹性线
y0(x) y(x,t) o x
M
M M dx x
Q
q
Q Q dx x
x
dx
等截面叶片的弯曲振动
6/15/2014 10:57:40 PM
微元段的受力情况
14
School of Energy and Power Engineering
铁木辛柯教授
相关文档
最新文档