第5章_对流传热的理论基础与工程计算
对流传热的理论基础与工程计算
力大小 ❖ 体积热容越大,表明单位体积流体携带并转移
热量的能力越强
❖ 水和空气冷却能力的对比 ❖ ——常温下:水的体积热容量约等于4175kJ
/(m3·℃),空气仅为1.21 kJ/(m3·℃),两者 差数千倍! ❖ ——一般用水作为冷却介质
❖ (2)导热系数 ❖ 对流换热过程中也包含有流体导热的作用 ❖ 流体导热系数的大小会直接影响流体内部的热
量传递过程和温度分布状态 ❖ 特别是对紧贴固体壁面的那部分流体来说,导
热系数更是起着关键的作用
❖ 紧贴固体壁面的流体相对于壁面来说是静止的 ❖ 显然,导热系数越大,对流换热过程越强烈
❖ 仍以水和空气作比较,常温下水的导热系数比 空气高大约二十几倍
为Re
Re ulc ulc
❖ 确定流态的实验(雷诺试验)
❖ 层流—流体只沿着与流道轴心平行的流线流动 ,或者说在轴线或沿表面方向上作规则的缓慢 分层运动,仅有非常微弱的横向(指和流速垂 直的方向)混合
❖ 湍流—流线处于不规则的状态,除了存在纵向 (流动方向)速度外,在流动截面上也存在横 向速度。流体内部存在强烈的涡旋运动,处于 充分的混合算
❖ 热对流——流体(气体或液体)中温度不同各 部分发生相互混合的宏观运动引起的热量传递 现象,以流体整体作为研究对象
❖ 热对流的机理 ❖ ——(1)流体分子间微观的导热作用 ❖ ——(2)流体微团间宏观的对流作用
❖ 对流传热——相对运动的流体与其温度不同的 壁面接触时,流体与壁面之间的热量传递过程
❖ 粘度越大的流体,分子间的约束力就越强,相同流速 下越不容易发展成湍流状态
❖ 高粘度的油类较多地处于层流状态,表面传热系数一 般比较小
第5章 对流传热理论与计算-5-实验关联式与自然对流
六 计算中需要注意的问题
3 注意的问题
(1)判断问题的性质
这是正确求解对流传热问题的关键。流体有无发生相 变?是自然对流还是强制对流?内部流动还是外部流动? 流态是层流还是湍流?
(2)选择正确的实验关联式
切忌张冠李戴,特别注意公式的适用范围,切不可随
意外推
40
六 计算中需要注意的问题
f w
0.14
2
33
(2) Hausen公式
若 Ref Prf
L /d
10时
Nuf
3.66
1
0.0668
0.04
Ref dL
Prf d L Ref Prf
2
3
可用于热入口段或混合段的层流对流传热
34
四 过渡区强迫对流传热的计算
过渡区:难以找到既简便又精确的计算公式
气体被加热时
气体被冷却时
c t
T T 0.55 fw
ct 1
对液体
m
c t
f w
m 0.11 液体受热时
m 0.25
液体被冷却时
24
引入修正系数ct来考虑不均匀物性场对换热的影响
Nu f
0.023
Ref0.8
Prfn
c t
气体被加热时
气体被冷却时
5.5 管内强迫对流传热的实验关联式
说明:
(1)管槽的含义:流动截面是圆形、椭圆形、正 方形、矩形、三角形等
(2)本节内容的重要性: ——指导工程计算的基础、给出的关联式是工程计算 的依据,必须掌握 ——考试的必考内容
《传热学》第5章_对流传热的理论基础分析
动量守恒定律
能量守恒定律
t t t 2t 2t u v 2 2 x y c p x y
12
第5章 对流传热的理论基础
2. 定解条件 (1)规定边界上流体的温度分布(第一类边界条件)
(2)给定边界上加热或冷却流体的热流密度(第二类边界条件)
1
第5章 对流传热的理论基础
5.1 对流传热概说
5.1.1 对流传热的影响因素
影响流动的因素和影响流体中热量传递的因素包括:
1. 流体流动的成因:强制对流or自然对流 2. 流体有无相变:流体显热or相变热
3. 流体的流动状态:层流or湍流,后者较大
4. 换热表面的几何因素:形状、大小、相对位置、换热表面状态 5. 流体的物理性质:密度、粘度、导热系数等等
(2) 稳态的对流问题,非稳态项消失,公式(5-6a)可以改写为:
2t 2t 对流项为速度矢量与温度梯度的点积 c p U gradt x 2 y 2 (3) 如果流体中有内热源,那么直接在(5-6)右端添加内热源项:
2 2 2 u v u v x, y 2 y y x x
第5章 对流传热的理论基础
复习:
对流传热:流体经过固体表面时流体与固体间的热量交换。
对流传热的表达形式——牛顿冷却公式:
Ahtm
t m 是流体与固体表面间的平均温差,总取正值。
关键点:表面传热系数h的定义式,没有揭示表面传热系数与影响它的 各物理量之间的内在联系。 主要内容:(1) 对流传热过程的物理本质 (2) 对流传热的数学描述方法 (3) 分析解的应用 关键点:(1) 掌握各种数学表达式所反映的物理意义 (2) 理解对流传热过程的物理本质
传热学-第五章1-2
假设边界层内的速度分布和温度分布,解积分方程 c)数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速 (2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流 时的局部表面摩擦系数推知局部表面传热系数 (3)实验法 用相似理论指导
五、
对流换热过程的单值性条件
c [J (kg C) ]
[N s m2 ]
[1 K ]
运动粘度 [m 2 s]
1 v 1 v T p T p
h (流体内部和流体与壁 面间导热热阻小)
、c h (单位体积流体能携带更多能量)
流动引起的对流相项 非稳态项
导热引起的扩散项
1)如u=0、v=0上式即为二维导热微分方程。 2)如控制体内有内热源,在其右端加上
1 ( x, y) c
3)由能量方程说明,运动的流体除了依靠流体的 宏观位移传递热量,还依靠导热传递热量。
归纳对流换热微分方程组:(常物性、无内热源、 二维、不可压缩牛顿流体)
前面4个方程求出温度场之后,可以利用牛顿冷 却微分方程: t
hx t y w, x
计算当地对流换热系数 hx
四、表面传热系数的确定方法 (1)微分方程式的数学解法 a)精确解法(分析解):根据边界层理论,得到 边界层微分方程组 常微分方程 求解
b)近似积分法:
单值性条件:能单值地反映对流换热过程特点的条件 完整数学描述:对流换热微分方程组 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界 (1) 几何条件 说明对流换热过程中的几何形状和大小 平板、圆管;竖直圆管、水平圆管;长度、 直径等 (2) 物理条件 说明对流换热过程的物理特征
传热学第五章对流换热
1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
第5章对流传热的理论基础资料
由于粘性作用,流体流速在靠近壁面处随离壁面的距离的缩短而逐渐 降低;在贴壁处被滞止,处于无滑移状态。
从 y = 0、u = 0 开始,u 随着 y 方向离壁面距离的增加而迅速增ห้องสมุดไป่ตู้大;经过厚度为 的薄层,u 接近主流速度 u
体物性为常数、无内热源;(4)粘性耗散产生的耗散热(高速气
体的流动除外)可以忽略不计。
2.微元体能量收支平衡的分析
二维、常物性、无内热源的能量微分方程:
c
p
(
t
u
t x
v t ) y
( 2t
x 2
+ 2t ) y 2
扩散项:导热引起的扩散作用
非稳态项:控制 对流项:流体流进与流出控制
容积中,流体温 容积净带走的热量
第5章 对流传热的理论基础
5.1 对流传热概说 5.2 对流传热问题的数学描写 5.3 边界层型对流传热问题的数学描写 5.4 流体外掠平板传热层流分析解及比拟理论
第5章 对流传热的理论基础
1
5.1.1 对流传热的影响因素 对流换热是流体的导热和对流两种基本传热方式共同作用的结果。
其影响因素主要有以下五个方面:(1)流体流动的起因; (2)流体有无相 变;(3)流体的 流动状态; (4)换热表面的几何因素; (5)流体的热物理性质。
那么,如何从流体中的温度分布来进一步得到表面传热系数呢? 表面传热系数h与流体温度场间的关系:
第5章 对流传热的理论基础
4
当粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面的地方 流速逐渐减小,而在贴壁处流体将被滞止而处于无滑移状态。
传热学 第五章 对流原理.
层流边界层 紊流核心区
过渡区 紊流边界层 层流底层 主流区 速度边界层厚度 临界距离
层流
过渡流
湍流
u
y
x
xc
层流底层 缓冲层
根据流体力学知识,层流边界层厚度 xv 5x 5x 5 vf vf x Re x
在层流边界层内的速度分布线为抛物线型; 在紊流边界层内,层流底层部分的速度 分布较陡,接近于直线,而在底层以外 的区域,由于流体微团的紊流运动,动 量传递被强化了,速度变化趋于平缓。
如果流体的流动是由于流体冷热部分的密度不同 引起的浮升力造成的,则称为自然对流。暖气 片的散热,蒸汽或其他热流体输送管道的热量 损失,都与这类换热有关。 一般来讲:强迫对流 换热优于自然对流。
二、 在分析对流换热时,还应分清流体的流态。 流体力学告诉我们,流体受迫在流道内流 动时可以有两种不同性质的流态。流体分 层地平行于流道的壁面流动,呈现层流状 态。但当流动状态到超过某一临界值时, 流体的流动出现了旋涡,而且在不断地发 展和扩散,引起不规则的脉动,使流动呈 现紊流状态。
α =q/(tf-tw) W
对流换热系数 α表征着对流换热的强弱 。
在数值上,它等于流体和壁面之间的温度 差为 1℃时,通过对流换热交换的热流密 度。单位为W/(m2·℃)。 对流换热量以及相应的换热系数的大小,将 更多地取决于流体的运动性质和情况。
一、速度边界层
流体力学指出,具有粘性且能湿润固 体壁面的流体,流过壁面会产生粘性力。 根据牛顿粘性(内摩擦)定律,流体粘性 力 τ 与垂直于运动方程速度梯度 (dv/dy ) 成正比,即: τ=μ(dv/dy) N/m2 (5-2) 式中,μ 称为流体的动力粘度,单位为Pa· s 或kg/(m· s)。
传热学第五章_对流换热原理-1
Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。
传热学对流传热原理
+v
t y
=
cp
2t x2
+
2t y2
4个方程,4个未知量 —— 可求得速度场(u,v)和温度场(t) 以及压力场(p), 既适用于层流,也适用于湍流(瞬时值)
➢ 边界层型对流传热问题的数学描写
动量方程中的惯性力项和能量方程中的对流 项均为非线性项,难以直接求解
边界层理论
简化
流动
普朗特 速度边界层
2t y2
→固体中的热传导过程是介质中传热过程的一个特例。
稳态对流换热微分方程组:
(常物性、无内热源、二维、不可压缩牛顿流体)
u v 0 x y
(u
u x
v
u y
)
Fx
p x
(
2u x 2
2u y 2
)
(u
v x
v
v y
)
Fy
p y
(
2v x 2
2v y 2
)
hx
t
t
y
w
,x
u
t x
5.4 相似原理与量纲分析
1、目的—— 简化实验 • 减少自变量的个数
1
1
hx x
0.332
u x
2
3
v a
Nu x
0.332
Re
1 x
2
Pr
1
3
• 缩小实验模型的尺寸 • 反映同一类现象的规律性
建立基于相似理论的实验关联式
(1)相似分析法;(2)量纲分析法
控制方程的无量纲化
二维、稳态、常物性、不可压缩、不计重力、无内热源、 无粘性耗散、牛顿流体的外掠平板强迫对流换热。
• y=0:u = 0, v = 0, t = tw
第五章-传热学
h
' h,x
' h,y
cpuxtvytdxdy
8
单位时间内微元体热力学能的增加为
dU
d
cp
t
dxdy
于是根据微元体的能量守恒
h
dU
d
可得
2t x2
2t y2
dxdy
cpuxtvytdxdy
cp
t
dxdy
cptux tvy ttu xv y
2t x2
2t y2
2
20
cp
uxt
v t y
=
2t x2
2t y2
1
11 1
1
2
1 1
1
2
对流换热微分方程组简化为
h t tw tf y w
u v 0 x y
简化方程组只有4个方
程,但仍含有h、u、v、 p、t 等5个未知量,方
程组不封闭。如何求解?
uuxvuy1ddpxy2u2
u t x
v t y
26
第六节 相似理论基础
相似原理指导下的实验研究仍然是解决复杂对流换 热问题的可靠方法。
相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
一、 相似原理的主要内容
1.物理现象相似的定义 2.物理现象相似的性质 3.相似特征数之间的关系 4.物理现象相似的条件
三、解的函数形式——特征数关联式
特征数是由一些物理量组成的无量纲数,例如毕 渥数Bi和付里叶数Fo。对流换热的解也可以表示成 特征数函数的形式,称为特征数关联式。
通过对流换热微分方程的无量纲化可以导出与对 流换热有关的特征数。
第5章对流传热的理论基础
能量守恒方程
cp( t u x t v y t)( x 2 2 t+ y 2 t2)
*
7
2.定解条件 包括初始时刻的条件以及边界上与速度、压力及温度等有关的条件。以能量守恒方
程为例,边界条件包括: 1)第一类边界条件。 规定边界上流体的温度分布。 (2)第二类边界条件 规定边界上加热或冷却流体的热流密度。 由于获得表面传热系数是求解对流换热问题的最终目的,因此,一般来说,求解对流换 热问题没有第三类边界条件。
10m/s。求离平板前缘320mm处的流动边界层和热边界层的厚度。
假设:流动处于稳态。
计算:空气的物性参数按板表面温度和空气温度的平均值30℃确定。 30℃时空气的 v1 610 6m 2/s, P r0.701
Re ul 100.32 2105 属于层流 v 16106
于是,流动边界层的度厚为
11
临界雷诺数:Rec
Rec
惯性力 粘性力
uxc
平板:
uxc
R c 2 e 1 5 ~ 3 0 1 6 ;0 取 R c 5 e 1 50
湍流边界层:
粘性底层(层流底层):紧靠壁面处,粘滞力会占绝对优势,使粘附于壁的一极薄
层仍然会保持层流特征,具有最大的速度梯度。
3.流动边界层内的动量方程
边界层)。 (2)流动边பைடு நூலகம்层的厚度
视接近主流速度的程度而定。 通常规定达到主流速度的0.99处的y值为流动边界层的厚度,记为
。
(3)边界层厚度与壁面尺寸l相比是个很小的量,远不只小于一个数量级。
10
2. 流动边界层内的流态 边界层内流动状态分层流与湍流;湍流边界层内紧靠壁面处仍有极薄层保持层流状
态,称层流底层。
第5章对流换热
相同原理研究支配相同系统旳性质以及怎样用模型 试验处理实际问题旳一门科学,是进行模型试验旳 根据。但不是一种独立旳科学措施,只是试验和分 析研究旳辅助措施。
相同原理应用举例:汽车、飞机风洞试验
风洞试验旳基本原理是相对性原理和相同性原理。 根据相对性原理,汽车、飞机在静止空气中飞行所
8)量纲分析法——π定理
π定理旳内容:任一物理过程涉及有n个有量纲旳 物理量,如果选择其中旳r个作为基本物理量 ,则这一物理过程可由n个物理量构成旳n-r个 无量纲量所构成旳关系式描述。因这些无量纲 数是用π表示旳,故称为π定理。以数学形式可 表示如下。
设个物理量为x1、x2…… xn,则这一物理 过程可表达为一般函数关系式
0.034 0.0276
64.19W (m2 K )
准数 准数旳形式 准数旳物理涵义
Nu 努 赛 尔 特Nusselt
Nu=h·lc/λf
反应对流传热旳强弱 程度
Re 雷 诺 Reynolds
Re
lu
lu
流体流动形态和湍动 程度
Pr 普 兰 德 Prandtl
Pr cp
流体旳物理性质对对 流传热旳影响
热边界层厚度δt由流体中垂直于壁面上 旳温度 分布决定旳,与热扩散率α有关。
如果tW t 则热边界层不存在
5.1.2 相同原理
1、基本概念 1)同一类物理现象:用相同形式和相同内容旳微分
方程所描述旳物理量。 2)物理相同现象:同一类物理现象中,但凡相同旳
现象,在空间相应旳点上和时间相应旳瞬间,其 各相应旳物理量分别成一定旳百分比。
式中 h —平均对流传热系数,W/(m2K); u —流体旳特征流速,m/s; d —管道直径,m; λ—导热系数 ρ —流体密度 cp —定压比热容 η — 动力粘度系数
第五章 对 流 换 热
第五章 对 流 换 热本章内容要求:1 、重点内容: 对流换热及其影响因素;牛顿冷却公式;用分析方法求解对流换热问题的实质边界层概念及其应用相似原理无相变换热的表面传热系数及换热量的计算2 、掌握内容:对流换热及其影响因素;用分析方法求解对流换热问题的实质3 、讲述基本的内容:对流换热概述; 对流换热的数学描写; 对流换热的边界层微分方程组; 边界层积分方程组的求解及比拟理论; 相似原理及量纲分析; 相似原理的应用; 内部流动强制对流换热实验关联式; 外部流动强制对流换热实验关联式; 自然对流换热实验关联式在绪论中已经指出, 对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程, 是发生在流体中的热量传递过程的特例。
由于流体系统中流体的运动,热量将主要以热传导和热对流的方式进行,这必然使热量传递过程比单纯的导热过程要复杂得多。
本章将在对换热过程进行一般性讨论的基础上,将质量守恒、动量守恒和能量守恒的基本定律应用于流体系统,导出支配流体速度场和温度场的场方程-对流换热微分方程组。
由于该方程组的复杂性,除少数简单的对流换热问题可以通过分析求解微分方程而得出相应的速度分布和温度分布之外,大多数对流换热问题的分析求解是十分困难的。
因此,在对流换热的研究中常常采用实验研究的方法来解决复杂的对流换热问题。
在这一章,我们将 通过方程的无量纲化和实验研究方法的介绍而得到常用的准则及准则关系式。
讨论的重点放在工程上常用的管内流动、平行流过平板以及绕流圆管的受迫对流换热,大空间和受限空间的自然对流换热,以及蒸汽凝结与液体沸腾换热。
§5-1 对流换热概述本节要求:1。
对流换热的概念:流体−−→−温差固体壁面; 2.对流换热中,导热核对流通式汽作用;3.对流换热的影响因素:)(f w t t hA -=Φ,h ——过程量;4.对流换热系数如何确定:0=∂∂∆-=y y tt h λ1 对流换热过程对流换热是发生在流体和与之接触的固体壁面之间的热量传递过程 ,( 直接接触是与辐射换热的区别),是宏观的热对流与微观的热传导的综合传热过程。
对流传热原理
5.壁 面 形 状
确定对流换热系数的方法: 1)理论解法
在边界层建立对流传热微分方程组的基础上, 通过数学分析法、积分近似解法、数值解法和比拟 解法求得。
2)实验解法
对微分方程组进行量纲分析,得出有关相似 特征数,在相似原理的指导下建立实验台和整理 实验数据,求得各特征数间的函数关系,再将函 数关系推广至与实验现象相似的现象中去。
从y方向流出微元体的质量流量在x方向上的 动量为: ∂v ∂u
v dy dx 1 u dy ∂y ∂y
x方向上的动量改变量 :
∂u ∂u dxdy 1 u v ∂y ∂x
化简过程中利用了连续性方程和忽略了高阶 小量。 同理,导出y方向上的动量改变量 :
1)定义
具有很大温度变化的流体薄层,即具有明显 温度梯度的流体薄层为热边界层。 2)热边界层厚度 把从壁面过余温度(t-tw)为零,到流体过 余温度为来流过余温度的99 % 的热边界层 距离称为热边界层厚度,用δ t 表示。
热边界层的形成和发展与速度边界类似。
3、热边界层与速度边界层的关系 速度边界层厚度δ与速度分布有关,反映 流体分子动量是扩散能力与运动粘度有关。 热边界层厚度δt与温度分布有关,反映流体 分子热量扩散能力,与热扩散率α 有关。
单位时间内微元体内流体质量的变化:
∂ρdxdy ) ( ∂τ = ∂ρ ∂τ dxdy
∵单位时间:流入微元体的净质量 = 微元体内 流体质量的变化
∂ u ) ( ∂x dxdy ∂ v) ( ∂y dxdy ∂ ∂ dxdy
∴连续性方程:
∂ρ ∂τ
+
∂ρu ∂x
+
第5章 对流传热理论与计算-3-边界层理论
2 2v v v 1 p v u v 2 2 x y y y x
u x
v y
0
简化依据——边界层理论 方法——数量级分析法 数量级分析法—通过比较方程式中各项的数量级大小, 将数量级大的项保留下来,舍去数量级较小的项,从而 实现方程式的合理简化
50
换热充分发展的特点
(1)热边界层厚度不变 (2)局部表面传热系数为常数 (3)无量纲温度维持不变
t rx t wx t fx t wx
trx—距管轴线r、入口x处的流体温度 twx—离入口x处的管壁温度 tfx—离入口x处的截面上流体的平均温度
51
管内对流传热时的局部对流传热系数沿管长的变化
状流动
☆湍流:Re大,惯性力起主要作用,流动不规则、杂
乱无章
☆边界层内粘性力和惯性力的相对大小使边界层内也
会出现层流、紊流两种不同流态
17
平板前缘:δ小,速度梯度大,粘性力大,为层流层流 边界层(laminar boundary layer)
特点:层状、有秩序的滑动状流动,各层之间互不干扰
上节课
本章的目标——用理论或实践的方法具体给出各种场合
下h的计算关系式(经验半经验公式)
对流传热的影响因素 ——流动的起因及流动的状态 ——流体的热物理性质 ——换热面的形状、大小和位置 ——相变的影响、介质类型的影响 对流传热的分类
1
上节课
换热微分方程式——对流传热的计算式
h
t
t w t f y
| y 0
能量微分方程式——计算流体的温度场
第5章-对流传热的理论基础与工程计算[2]
壁面形状 与位置 垂直平壁 或圆柱 水平圆柱
流动情况
特征长度 壁面高度
C
0.59 0.10
n
1/4 1/3 0.188 1/4 1/3
适用范围 GrPr
104 ~ 109
109 ~ 1013
102 ~ 104 104 ~ 107 107 ~ 1012
圆柱外径
d
0.85 0.48 0.125
水平热壁 上面或水 平冷壁下 面 水平热壁 下面或水 平冷壁上 面
1/ 4
小 结
(1)对流换热的影响因素; (2)对流换热的数学模型; (3)边界层概念及其特征,对求解对流换热问题的意义;
(4)对流换热问题解的形式——特征数关联式;
(5)Nu、Re、Pr、Gr表达式及其物理意义; (6)相似原理主要内容及其对解决对流换热问题的指导 意义; (7)单相流体管内强迫对流、外掠壁面、自然对流换热 的特点及其影响因素; (8)会利用特征数关联式计算上述对流换热问题。
Gr
g v tl
2
3 c
浮升力 粘性力
Gr称为格拉晓夫数,在物理上,Gr数是浮升力
/粘滞力比值的一种量度。
Gr数的增大表明浮升力作用的相对增大。 自然对流换热准则方程式为
Nu f (Gr , Pr)
二、大空间自然对流换热的实验关联式
1、恒壁温 工程中广泛使用的是下面的关联式:
0.635W/(m K) h Nuf 91.4 5804W/m 2 K d 0.01m
计算壁面温度
f
计算壁面温度
h dl (tw t f ) um
2
d2
4
' f
cP (t ''f t 'f )
工程传热学第五章对流换热计算
大温差情况下计算换热时准则式右边要 乘以物性修正项 。 对于液体乘以 f w n
液 体 被 加 热 n=0.11 , 液 体 被 冷 却 n=0.25( 物性量的下标表示取值的定性温 度) 对于气体则乘以: T f Tw
n
气 体 被 加 热 n=0.55 , 气 体 被 冷 却 n=0.0 (此处温度用大写字符是表示取绝对温 标下的数值)。
qw w LT L 层流: t 0.055 Re Pr; t 0.07 Re Pr 热进口段长度: d d
L 紊流 : 50 d
热边界条件有均匀壁温和均匀热流两种。 对于管壁热流为常数时,流体温度随流动方 向线性变化,且与管壁之间的温差保持不变, 有
t f ( x) t 'f 4qw x cpumd
n m
准则的特征流速为流体最小截面处的最大流 速 umax ;特征尺寸为圆柱体外直径 d ;定性温 度除 Prw 按壁面温 tw 取值之外,皆用流体的主 流温度tf ;
Pr f Pr w
0.25
是在选用 tf 为定性温度时考虑热流方 向不同对换热性能产生影响的一个修 正系数。
如果流体流动方向与圆 柱体轴线的夹角(亦称 冲击角)在 30°- 90° 的范围内时,平均表面 传热系数可按下式计算
如果边界层在管中心处 汇合时流体已经从层流 流动完全转变为紊流流 动,那么进入充分发展 区后就会维持紊流流动 状态,从而构成流体管 内紊流流动过程。
如果出现紊流,紊流的扰动与混合作用又会 使表面传热系数有所提高,再逐渐趋向一个 定值。
Re
um04) — — 过渡区 Re 10
层流流动
紊流流动
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ ▲介质类型的影响 ❖ 工程中常见的气液两相流动的对流传热过程非
3 换热表面的形状、大小和位置
❖ 换热面的情况对换热强度也有不容忽视的影响 。
❖ 分析对流传热问题首先必须先区分对流换热问 题在几何特征方面的类型
❖ 分清是内部流动还是外部流动换热问题,这两 者在速度场、温度场以及换热的特征方面均有 相当显著的差异
❖ 内部流动:流体的流动是受流动空间的限制,如 管内、不规则通道内
❖ (2)导热系数 ❖ 对流换热过程中也包含有流体导热的作用 ❖ 流体导热系数的大小会直接影响流体内部的热
量传递过程和温度分布状态 ❖ 特别是对紧贴固体壁面的那部分流体来说,导
热系数更是起着关键的作用
❖ 紧贴固体壁面的流体相对于壁面来说是静止的 ❖ 显然,导热系数越大,对流换热过程越强烈
❖ 仍以水和空气作比较,常温下水的导热系数比 空气高大约二十几倍
❖ 粘度越大的流体,分子间的约束力就越强,相同流速 下越不容易发展成湍流状态
❖ 高粘度的油类较多地处于层流状态,表面传热系数一 般比较小
(4)体积膨胀系数
V
1 v v T
p
1
T
p
❖ 式中,v为流体的比容,密度的倒数 ❖ 正是由于流体的密度随温度的变化才导致了自
然对流现象的发生 ❖ 体积膨胀系数主要影响自然对流传热 ❖ 与水相比,空气更容易发生自然对流
❖ 外部流动:流体的流动不受空间的限制,外掠平 板、圆管和管束
❖ 自然对流传热中:几何布置对流动传热亦有决 定性影响
❖ 如图所示的水平壁面,热面朝上时散热的流动 与热面朝下散热的流动就截然不同
4 其它因素 ❖ ▲流体相变的影响 ❖ ——无相变对流换热:热量交换依靠流体显热
的变化而实现的,流体得到或失去热量温度必 然要发生变化 ❖ ——有相变对流传热:流体相变热(潜热)的 释放或吸收起主要作用,汽化潜热要比比热容 大得多,流体温度不发生变化 ❖ 同时,相变时对流体的扰动也要剧烈的多,如 沸腾时的气泡。显然,有无相变的换热规律应 当有所不同
热对流中起着举足轻重的作用 ❖ 物理意义-单位体积流体携带并转移热量的能
力大小 ❖ 体积热容越大,表明单位体积流体携带并转移
热量的能力越强
❖ 水和空气冷却能力的对比 ❖ ——常温下:水的体积热容量约等于4175kJ
/(m3·℃),空气仅为1.21 kJ/(m3·℃),两者 差数千倍! ❖ ——一般用水作为冷却介质
hA thA twtf
❖ 表面传热系数h与导热系数λ不同,它不是一个 物性参数,而是一个过程量
❖ ——对流传热的类型不同、流体的种类、温度 不同、流速不同、壁面的形状和温度不同,表 面传热系数都是不同的
hA thA twtf
❖ 对流传热过程传热量的计算是非常简单的,但 确定h却不是一件容易的事
机械功,使管道中流体的动能和静压力提高, 从而获得宏观速度。这种流动称为强迫对流( forced convection) ❖ 又称为强制对流、受迫对流
❖ 二是由于流体中存在温度差,由此产生密度 差异从而导致浮升力引起流体的运动,称为 自然对流(natural convection)
❖ 流动成因不同,流体的速度不同,对流的剧 烈程度不同
❖ 热对流的机理 ❖ ——(1)流体分子间微观的导热作用 ❖ ——(2)流体微团间宏观的对流作用
❖ 对流传热——相对运动的流体与其温度不同的 壁面接触时,流体与壁面之间的热量传递过程
❖ 三个要素:流动着的流体、固体壁面、温差 ❖ 对流传热的计算公式为牛顿冷却定律
hA thA twtf
h A th A tf tw
第5章_对流传热的理论基础与工程计 算
❖ 作业: ❖ 习题5-1、5-5、5-8; ❖ 5-10、5-14、5-16(强迫对流) ❖ 5-21、5-22(自然对流)
§5-1 概述
❖ 一 对流传热的概念与计算
❖ 热对流——流体(气体或液体)中温度不同各 部分发生相互混合的宏观运动引起的热量传递 现象,以流体整体作为研究对象
❖ 注意! ❖ ——不能将流动状态和流动的起因简单地一一
对应 ❖ 事实上,层流和湍流既可能发生在强迫流动中
,也可能发生在自然对流中
❖ 传热特点 ❖ 层流-热量传递主要依靠分子扩散作用 ❖ 湍流—热量传递除了导热外,更多地依靠热对
流作用
h湍流 h层流
2 流体的热物理性质 ❖ (1)密度和比热容 ❖ 密度和比热容的乘积称为流体的体积热容,在
❖ 形式简单的牛顿冷却定律仅可作为表面传热系 数的定义,它把影响对流传热过程的一切复杂 因素归结到对流换热系数上
❖ 本章的目标——用理论或实验的方法具体给出 各种场合下h的计算关系式(经验半经验公式)
二 影响对流传热过程的因素
❖ 1 流动的影响—流动起因和流态 ❖ 使流体产生运动的原因: ❖ 一是通过外界施加强迫力,泵、风机对流体作
为Re
Re ulc ulc
❖ 确定流态的实验(雷诺试验)
❖ 层流—流体只沿着与流道轴心平行的流线流动 ,或者说在轴线或沿表面方向上作规则的缓慢 分层运动,仅有非常微弱的横向(指和流速垂 直的方向)混合
❖ 湍流—流线处于不规则的状态,除了存在纵向 (流动方向)速度外,在流动截面上也存在横 向速度。流体内部存在强烈的涡旋运动,处于 充分的混合状态
❖ 20℃ :水-0.599W/(m.K);空气- 0.0259W/(m.K)
❖ 从体积热容和导热系数二者来看:相同条件下 水的冷却能力必定大大强于空气
❖ 生活和工业中通常采用水作为冷却介质,夏天 游泳、冲凉,比较在水中和空来自中的冷热感觉❖ (3)粘度
❖ 流体的粘度是通过流态影响对流换热的强弱
R e ulc
❖ 流速越高,流体的掺混就越强烈,对流传热就 越强
❖ 强迫对流时的速度一般高于自然对流,强迫对 流传热的表面传热系数也多半高于后者
h强制 h自然
❖ 夏天,有风吹着比没风时感觉更凉快。 ❖ 风扇的转速
❖ 流态-流动的状态 ❖ 层流(laminar flow) ❖ 湍(紊)流(turbulent flow) ❖ 过渡流(transition region) ❖ 区分流体处于何种流态的特征数为雷诺数,记