第一章—导热理论基础

合集下载

高等传热学知识点总结

高等传热学知识点总结

多维、线性齐次,乘积解: t ( x, y, z, ) ψ( x, y, z )( ) 令 ψ( x, y, z) X ( x)Y ( y) Z ( z) ,分别求解,然后相乘
t ( x, y, z, ) Cmnp e a ( m
m 1 n 1 p 1
2
m2 m2 )
X( m , x)Y( m , y)Z(m , z)
多维稳态非齐次:边界非齐 fi (r ) 0 or 方程非齐 0 边界非齐次(方程齐次) :分离变量法
t ( x, y) X ( x)Y ( y) ,参照时间与空间的分离变量法
当多个边界非齐次时,等于各单非齐问题的叠加 方程非齐次:等于相应齐次解+非齐次特解 线性、非齐次、非稳态: 热源函数法:在无限大区域,初始时刻 x=x0 处,作用了 一个 t=t0 的热源,当 0 时,
13
0.14
2 Num 0 . 6 6 4 1 R l e
1 3
Pr
大空间自然对流换热: Nu C (GrPr) C ( Ra)
x z yz z
, 利用
1 H
u H
i 1 i
3

H t 2 i ui
t cp
第二章 分离变量法 分离变量法: 将温度分成只与空间有 t (r , ) ψ(r )( ) , 关的 ψ(r ) 和只与时间有关的 ( ) 的乘积。 对于线性齐次非稳态无内热源问题, t
ห้องสมุดไป่ตู้对流
t y
y w, x
对流换热基本计算式:傅里叶定律 qw
牛顿冷却公式 qc h(tw, x t ) ,t 在内流时取管道截面 平均流体温度,外流时取远离壁面的流体温度。

第一章—导热理论基础

第一章—导热理论基础

第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律与导热问题的基本分析方法。

物质部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。

物质部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。

导热理论从宏观研究问题,采用连续介质模型。

第一节基本概念与傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体各点温度分布的总称,称为即为温度场(标量场)。

它是空间坐标和时间坐标的函数。

在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:①稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。

(如设备正常运行工况)稳态导热:发生于稳态温度场中的导热。

②非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。

(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。

2.从空间坐标分: ①三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ②二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τg ra d t③一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体温度相同的点连成的面即为等温面。

2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。

为了直观地表示出物体部的温度分布,可采用图示法,标绘出物体中的等温面(线)。

《传热学》(第五版)

《传热学》(第五版)

第一章导热理论基础2已知:10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、40.016()W m K λ=∙求:'R λ、''R λ 解:2'3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫∙=++=++⨯= ⎪⎝⎭'"232232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪⎝⎭由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。

5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=∙求:(1)0x q =、6x q = (2)v q解:(1)00020x x x dtq bx dx λλ====-=-= 3322452(2000)5010910x x x dtW q bx m dx σσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=2332245(2000)218010v d t W q b m dxλλ=-=-=-⨯-⨯=⨯9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂ 10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dtQ t dx dx dxλ+=-++∙ 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b f U d t T dx εσλ-= 00,x t T == ,0()x ldtx l dx ===假设的 4()b e x ldtfT f dx λεσ=-=真实的 第二章稳态导热3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关5.解: 2111222()0,(),w w ww d dt r dr drr r t t t t r r t t===>==设有:12124()11w w Q t t r r πλ=-- 21214F r r R r r λπλ-=7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δ ,可认为该墙为无限大平壁15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯= 8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mmδδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2W m k q q λ=⋅=求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,且12w w t t >221313由题意知:1211212w w t t q δδλλ-=+122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w w t t t t δδδδδλλλλλ--=+++得:123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤ 求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t tmq qδλ+-∆==+⨯⋅ 44505045050[0.094 1.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m m mδ≤≥时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ=解: '2121'3123112313,w w w w t t t t q q δδδδδλλλλλ--==+++由题意知:'q q =212tw 1tw 2q 11λ12λ23λ322即有:2121'3123112313w w w wt t t t δδδδδλλλλλ--=+++'33322λδδδλ=+ 0.6250505000.12mm =+⨯= 12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----====∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===--33414200600.2660060w w w w R t t R t t λλ--===-- 14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 220112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'23030,,70/()h W m k δδλλ===⋅求:123123,,,,,q q q k k k ∆∆∆ 解:未变前的122030102250605687.2/1113101754050f f t t q W m h h δλ---===⨯++++tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+t αt f221)21311121129.96/()1112101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-= 2)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-= 3) 22330'101136.11/()131********k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,1.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分R 1R 1R 1R2R3R 2R 2R3R311113222,A B C A B C R R R R RR R R R =++==++ 3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅332322222335101301020.221()/1.530.742C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅2212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:1)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+tw 1112323tw 4132R R R λλλ∴< 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑ 3)由 121w w l t t q R λ-=得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃ 同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211,,22m m d d δδλλ=== 求:'ll q q 解:忽略管壁热阻010121020122211ln ln 222d d R d d λδδδπλπλδ+++=++ '010122010122211ln ln 222d d R d d λδδδπλπλδ+++=++ '',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010*******22211lnln 22222211ln ln 222l l d d q R d d d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==+++++01010010101001241lnln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)3''15ln 3ln23 1.277ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q ='21.7%l llq q q -∆==即热损失比原来减小21.7%。

传热学复习要点

传热学复习要点

传热学复习要点1-3节为导热部分1.导热理论基础(分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差与其法线方向距离的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数:λ=λ0(1+bt)t= q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度. 当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热(分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析(对流换热=导热+热对流)(1)对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程②必须有直接接触(流体与壁面)和宏观运动;也必须有温差③由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。

第一章 导热理论基础

第一章 导热理论基础

三维温度场
t t t t t t
f (x) f ( x, ) f ( x, y ) f ( x, y, ) f ( x, y, z ) f ( x, y , z , )
传热学 Heat Transfer
2.等温面,等温线 ①定义:同一时刻,温度场中所有温度相同的点 连接所构成的面叫做等温面。不同的等温面与同 一平面相交,则在此平面上构成的一簇曲线称为 等温线 ②特点:a、同一时刻,温度不同的等温线(面)不能相交;
y
x
1.温度场:某一时刻空间所有各点温度分布的总 称
温度场是时间和空间的函数:
t f ( x, y, z, )
传热学 Heat Transfer
稳态温度场
t f ( x, y, z )
非稳态温度场
t 0
t 0
t f ( x, y , z , )
一维温度场 二维温度场
传热学 Heat Transfer
1.导热基本定律的文字表达:
在导热现象中,单位时间内通过给定截面的热量, 正比于垂直于该截面方向上的温度梯度和截面面积, 方向与温度梯度相反。
2.导热基本定律的数学表达:
Agradt t q gradt n A n
t t t q ( i ) ( j ) ( k ) x y z
§1-2 导热系数
1.定义
q gradt
物理意义:物体中单位温度梯度单位时间通 过单位面积的导热量,标量,单位:W/(m· K) 2.导热系数数值表征物体导热能力的大小,由 实验测定
传热学 Heat Transfer
3.导热系数与物质种类及热力状态有关(温度, 压力(气体)),与物质几何形状无关。 常用物质之值:

热传导理论

热传导理论
对一般金属其值在10-12~10-13 s左右
c2 a /o
a c2
q τ
q
-λt
讨论:
(1)对于稳态导热,热流密度矢量不随时间变化, 传播相(左边第一项)的影响消失,傅立叶定律精 确成立。
(2)在通常情况下,热扩散率比热传播速度的平方 约小10个数量级 (a c2) 0 ,传播项的影响可忽略不 计,此时傅立叶定律仍然适用。
温度梯度:对于确定的空间点,在空间各方向上 最大温度变化率称为该点的梯度。 系统中某一点所在的等温面的法线方向是最大温 度变化方向。该方向的温度变化率即为温度梯度,
记为gradt。
温度梯度是用以反映温度场在空间的变化特征 的物理量。
等温面和热流方向示意图
温度梯度在直角坐标系中的表示
t
Δt t
gradt lim n
:气体的密度; cv :气体的定容比热
1 3
ulcv
✓ 气体的压力升高时,气体的密度增大、平均 自由行程减小、而两者的乘积保持不变。除非
压 力 很 低 或 很 高 , 在 2.67×10-3MPa ~ 2.0×103MPa范围内,气体的热导率基本不随压
力变化。
✓ 气体的温度升高时,气体分子运动速度和 定容比热随T升高而增大,导致气体的热导率 随温度升高而增大。
a c2
q τ
q
-λt
(3)在一些超常情况下,如深冷(c很小)、急速 加热或冷却、超高热负荷等( q 很大),才 必须考虑热传播项的影响。
例如在1.4K的液氮中,热传播速度c仅为19m/s, 传播项的影响不可忽略不计。
第二节 导热系数
一、导热系数
导热系数的定义由傅立叶定律给出:
λ q grad t

传热学第七版知识点总结

传热学第七版知识点总结

传热学第七版知识点总结●绪论●热传递的基本方式●导热(热传导)●产生条件●有温差●有接触●导热量计算式●重要的物理量Rt—热阻●热对流●牛顿冷却公式●h—表面传热系数●Rh—既1➗h—单位表面积上的对流传热热阻●热辐射●斯蒂芬—玻尔茨曼定律●黑体辐射力Eb●斯蒂芬—玻尔茨曼常量(5678)●实际物体表面发射率(黑度)●传热过程●k为传热系数p5●第一章:导热理论基础●基本概念●温度场●t=f(x,y,z,t)●稳态导热与非稳态导热●等温面与等温线(类比等高线)●温度梯度●方向为法线●gradt●指向温度增加的方向●热流(密度)矢量●直角坐标系●圆柱坐标系●圆球坐标系●傅里叶定律●适用条件:各向同性物体●公式见p12●热导率●注意多孔材料的导温系数●导热微分方程式●微元体的热平衡●热扩散率●方程简化问题p19●有无穷多个解●导热过程的单值性条件●几何条件●物理条件●导热过程的热物性参数●时间条件●也叫初始条件●边界条件●第一类边界条件●已知温度分布●第二类边界条件●已知热分布●第三类边界条件●已知tf和h●第二章:稳态导热●通过平壁的导热●第一类边界条件●温度只沿厚度发生变化,H和W远大于壁厚●第三类边界条件●已知tf1和2,h1和2●通过复合平壁的导热●具有内热源的平壁导热●通过圆筒壁的导热●公式见p37●掌握计算公式及传热过程●掌握临界热绝缘直径dc●通过肋壁的导热●直肋●牛顿冷却公式●环肋●肋片效率●通过接触面的导热●了解接触热阻Rc●二维稳态导热●了解简化计算方法●形状因子S●第三章:非稳态导热●非稳态导热过程的类型和特点●了解过程●了解变化阶段●无限大平壁的瞬态导热●加热或冷却过程的分析解法●表达式及物理意义●傅立叶数Fo●毕渥准则Bi●集总参数法●应用条件●见课本p69●物理意义●见课本p70●半无限大物体的瞬态导热●其他形状物体的瞬态导热●周期性非稳态导热●第四章:导热数值解法基础●建立离散方程的方法●有限差分法●一阶截差公式p91●控制容积法●根据傅立叶定律表示导热量●稳态导热的数值计算●节点方程的建立●热平衡法●勿忽略边界节点●非稳态导热的数值计算●显式差分●勿忽略稳定性要求●隐式差分●第五章:对流传热分析●对流传热概述●流动的起因和状态●起因●自然对流●受迫对流●流速快强度大h高●状态●层流●紊流●采用较多●流体的热物理性质●热物性●比热容●热导率●液体大于气体●密度●黏度●大了不利于对流传热●液体●温度越高黏度越低●气体●温度越高黏度越大●定性温度●流体温度●主流温度●管道进出口平均温度●容积平均温度●壁表面温度●流体温度与壁面温度的算数平均值●流体的相变●相变传热●传热表面几何因素●壁面形状●长度●定型长度l●粗糙度●流体的相对位置●外部流动●外掠平板●外掠圆管及管束●内部流动●管内流动●槽内流动●对流传热微分方程组●对流传热过程微分方程式●见课本p116公式5-2●第一类边界条件●已知壁温●第二类边界条件●已知热流密度q●连续性方程●质量流量M的概念●p117公式5-3●二维常物性不可压缩流体稳态流动连续性方程●动量守恒微分方程式●动量守恒方程式●p118公式5-4●N- S方程●注意各项的含义●能量守恒微分方程式●四种热量●导热量●热对流传递的能量●表面切向应力对微元体做功的热(耗散热)●内热源产生的热●方程式p119公式5-5●边界层对流传热微分方程组●流动边界层●层流边界层●紊流边界层●层流底层(黏性底层)●会画分布规律●热边界层●也称温度边界层●会画分布规律●数量级分析与边界层微分方程●普朗特数Pr的概念●外掠平板层流传热边界层微分方程式分析解简述●熟记雷诺准则●努谢尔特数Nu含义●动量传递和热量传递的类比●两传类比见p132内容较多●动量传递●掌握雷诺类比率●热量传递●掌握柯尔朋类比率●相似理论基础●三个相似原理●同类物理现象●同名的已定特征数相等●单值性条件相似●初始条件●边界条件●几何条件●物理条件●对流传热过程的数值求解方法简介p145●第六章:单相流体对流传热●会用准则关联式计算h●p162例题●确定定性温度,定型尺寸●查物性参数计算Re●附录2●选择准则关联式●p160公式6-4●第七章:凝结与沸腾传热●凝结传热●形成和传热模式的不同●珠状凝结●膜状凝结●了解影响因素●了解关联式的应用●沸腾传热●了解换热机理●掌握大空间沸腾曲线●影响因素●计算方法●热管●了解工作原理●第八章:热辐射的基本定律●基本概念●理解●热辐射的本质●热辐射的特点●掌握概念●黑体●灰体●漫射体●发射率●吸收率●热辐射的基本定律●重点掌握●维恩位移定律●斯蒂芬-玻尔兹曼定律●基尔霍夫定律●漫灰表面发射率等于吸收率●第九章:辐射传热计算●任意两黑表面之间的辐射换热量●角系数●用代数法进行计算●空间热阻●封闭空腔法●三个黑表面之间的辐射换热●掌握热阻网格图●灰表面间●辐射换热●基尔霍夫定律计算●掌握三个灰表面●有效辐射●掌握概念●表面热阻●绝热面重辐射面●遮热板工作原理及应用●气体辐射特点●第十章:传热和换热器●通过肋壁的传热●了解计算方法●复合传热时的传热计算●传热的强化和削弱●了解措施●换热器的形式和基本构造●了解分类●平均温度差●掌握LMTD方法●换热器计算●对数平均温差法●掌握传热单元数法p305●换热器性能评价简述。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ=⇒ 1t R R A λλ==2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线 12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃ 222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.24.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁 即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h ,21h σλ 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

导热基础知识

导热基础知识

grad t 第一章 导热理论基础第一节基本概念及傅里叶定律 1-1 导热基本概念一、温度场1、定义:在某一时间,物体内部各处的温度分布即为温度场。

直角坐标系:),,,(τz y x f t = (2-1)热流是由高温向低温传递,具有方向性。

而温度则属于标量,无方向性。

2、分类: 从时间坐标看,稳态导热:温度分布与时间无关,),,(z y x f t =; 非稳态导热:温度分布与时间有关,),,,(τz y x f t =。

从空间坐标可将导热分为一维、二维、三维导热。

其中最简单的是一维稳态导热,可表示为:)(x f t =。

3、等温面(线) 在同一瞬间,物体内温度相同的点连成的面即为等温面。

不同的等温面与同一平面相交,在平面上得到的一组线为等温线。

不同的等温面(线)之间是不可能相交的。

图2-1所示的即为一维大平壁和一维圆筒壁内的等温面(线)的示意图。

二、温度梯度定义沿法线方向的温度变化率为温度梯度,以t grad →表示。

ntn t grad n t ∂∂=∆∆=→∆→0lim(2-3) 温度梯度是一个矢量,具有方向性。

它的方向是沿等温面法线由低温指向高温方向。

在直角坐标系:zt y t x t gradt ∂∂+∂∂+∂∂=(2-4)其中,x t ∂∂、y t ∂∂、zt∂∂分别为沿x 、y 、z 方向的温度梯度。

三、热流密度热流密度,。

热流密度是一个矢量,具有方向性,其大小等于沿着这方向单位时间单位面积流过的热量,方向即为沿等温面之法线方向,且由高温指向低温方向,见图。

在直角坐标系中,同样可以分解成由沿坐标轴三个方向的分量表示:q q q z y x ++= (2-)式中z y x q q q ,,为沿坐标轴三个方向的分热流。

而通过该等温面传递的热量为z z y y x x A q A q A q A q ++=⋅=Φ→→ (2-)1-2.傅立叶定律傅立叶(J. Fourier )热流密度与温度梯度的关系可以用下式表示ntgradt q ∂∂-=-=λλ (2-5)n tA Agradt ∂∂-=-=Φλλ (2-6)式中的比例系数λ即为材料的导热系数(或称热导率),单位)C m W ︒⋅。

导热理论基础

导热理论基础

传热的基本方式
(1)热传导: 纯导热过程:物体各部分之间不发生相对位移。 (2)对流传热 对流传热:是指流体各部分质点发生相对位移而 引起的热量传递过程。因而对流只能发生在流体 中。 (3 )辐射传热 )辐射传热 因热原因而发出辐射能的过程称为热辐射。
铜底铝鳍 但由于银的价格相当昂贵,因此目前还没有哪个厂 商采用纯银来制造散热器因此现在市场上比较流 行的高档散热片大多采用铜来做为导热材质。 采用了"铜底铝鳍"的设计,所谓"铜底铝鳍" 采用了"铜底铝鳍"的设计,所谓"铜底铝鳍"就是与处 理器表面接触的底板采用纯铜材料,而散热鳍片 则继续沿用铝。这种结构能充分发挥铜热传导快 的优点,增大了散热面积,使CPU产生的热量迅 的优点,增大了散热面积,使CPU产生的热量迅 速散除。
2.材质相同时,接触面积越大,热传导效果越明 2.材质相同时,接触面积越大,热传导效果越明 显 根据热传导理论,导热量与接触面积成正比。 对于CPU散热器而言,CPU表面积已越来越来越 对于CPU散热器而言,CPU表面积已越来越来越 小,接触面积已经受限,且散热器底部与CPU表 小,接触面积已经受限,且散热器底部与CPU表 CPU 面因不可能完全平滑,所以需要选用适当的导热 介质填充空隙,可增大接触面积,达到将热源的 热量大量带走的目的。前面谈到,散热片吸入的 热量要尽量传至鳍片以便对流换热,主要靠改善 鳍片与散热片的接触面积来实现,鳍片底部与散 热片基部的连接处用弧状,就是为了增大接触面 积。
导热理论基础
金属材料的导热系数较大, 固体非金属材料的导热系数较小, 纯金属导热系数值大于合金, 纯金属导热系数值大于合金, 且合金中杂质含量越多, 且合金中杂质含量越多,导热系数值越 小,而气体的导热系数最小。

传热学第五版课件完整版PPT课件

传热学第五版课件完整版PPT课件

d 2t qV 0 2 dx
7.物性参数λ 、 ρ 、c均为常数,一维稳态温度场,无内热源:
d 2t 0 2 dx
第四节
通解
导热过程的单值性条件
特解
作用:用来对某一特定的导热过程进行进一步的具体说明
四种单值性条件:
几 何 条 件 时 间 条 件 物 理 条 件 边 界 条 件
δ,l,d……
q z
t z
第二节
导热系数
每种物质的导热系数可通过实验确定 常用物质可查表获取
一 般 规 律
固相>液相>气相 金属>非金属 晶体>无定形态 纯物质>有杂质物质 纯金属>合金
导热系数的主要影响因素:温度、压力
气体的导热系数:
随温度升高而增大(由于分子运动速度和比定容热容增大),
压力对其影响不大(密度增大但自由程减小)
第三节
导热微分方程式
研究目标:确定物体内的温度场
研究基础: 导热微分方程式=能量守恒定律+傅立叶定律 研究对象: 右 图 中 的 六 面 微 元 体
根据能量守恒定律: 导入和导出微元体的净热量+微元体中内热源的发热量 =微元体热能(内能)的增加
在一定时间dτ内: 导入微元体的净热量: 导出微元体的净热量:
t t t t c qV x x y y z z
——导热微分方程式
在几种特殊条件下对导热微分方程式的简化:
1.物性参数λ 、 ρ 、c均为常数:
q z dz q z q z dz z
q y
代入上式
再将傅立叶定律代入,得出: 三个方向导入与导出微元体的净热量:

传热学第五版完整版答案

传热学第五版完整版答案

1.冰雹落地后,即慢慢融化,试分析一下,它融化所需的热量是由哪些途径得到的?答:冰雹融化所需热量主要由三种途径得到:a 、地面向冰雹导热所得热量;b 、冰雹与周围的空气对流换热所得到的热量;c 、冰雹周围的物体对冰雹辐射所得的热量。

2.秋天地上草叶在夜间向外界放出热量,温度降低,叶面有露珠生成,请分析这部分热量是通过什么途径放出的?放到哪里去了?到了白天,叶面的露水又会慢慢蒸发掉,试分析蒸发所需的热量又是通过哪些途径获得的?答:通过对流换热,草叶把热量散发到空气中;通过辐射,草叶把热量散发到周围的物体上。

白天,通过辐射,太阳和草叶周围的物体把热量传给露水;通过对流换热,空气把热量传给露水。

4.现在冬季室内供暖可以采用多种方法。

就你所知试分析每一种供暖方法为人们提供热量的主要传热方式是什么?填写在各箭头上。

答:暖气片内的蒸汽或热水对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体;暖气片外壁辐射墙壁辐射人体电热暖气片:电加热后的油对流换热暖气片内壁导热暖气片外壁对流换热和辐射室内空气对流换热和辐射人体红外电热器:红外电热元件辐射人体;红外电热元件辐射墙壁辐射人体电热暖机:电加热器对流换热和辐射加热风对流换热和辐射人体冷暖两用空调机(供热时):加热风对流换热和辐射人体太阳照射:阳光辐射人体5.自然界和日常生活中存在大量传热现象,如加热、冷却、冷凝、沸腾、升华、凝固、融熔等,试各举一例说明这些现象中热量的传递方式?答:加热:用炭火对锅进行加热——辐射换热冷却:烙铁在水中冷却——对流换热和辐射换热凝固:冬天湖水结冰——对流换热和辐射换热沸腾:水在容器中沸腾——对流换热和辐射换热升华:结冰的衣物变干——对流换热和辐射换热冷凝:制冷剂在冷凝器中冷凝——对流换热和导热融熔:冰在空气中熔化——对流换热和辐射换热5.夏季在维持20℃的室内,穿单衣感到舒服,而冬季在保持同样温度的室内却必须穿绒衣,试从传热的观点分析其原因?冬季挂上窗帘布后顿觉暖和,原因又何在?答:夏季室内温度低,室外温度高,室外物体向室内辐射热量,故在20℃的环境中穿单衣感到舒服;而冬季室外温度低于室内,室内向室外辐射散热,所以需要穿绒衣。

传热学课后答案(完整版)

传热学课后答案(完整版)

绪论思考题与习题(89P -)答案:1.冰雹落体后溶化所需热量主要是由以下途径得到: Q λ—— 与地面的导热量 f Q ——与空气的对流换热热量注:若直接暴露于阳光下可考虑辐射换热,否则可忽略不计。

2.略 3.略 4.略 5.略6.夏季:在维持20℃的室内,人体通过与空气的对流换热失去热量,但同时又与外界和内墙面通过辐射换热得到热量,最终的总失热量减少。

(T T 〉外内)冬季:在与夏季相似的条件下,一方面人体通过对流换热失去部分热量,另一方面又与外界和内墙通过辐射换热失去部分热量,最终的总失热量增加。

(T T 〈外内)挂上窗帘布阻断了与外界的辐射换热,减少了人体的失热量。

7.热对流不等于对流换热,对流换热 = 热对流 + 热传导 热对流为基本传热方式,对流换热为非基本传热方式 8.门窗、墙壁、楼板等等。

以热传导和热对流的方式。

9.因内、外两间为真空,故其间无导热和对流传热,热量仅能通过胆壁传到外界,但夹层两侧均镀锌,其间的系统辐射系数降低,故能较长时间地保持热水的温度。

当真空被破坏掉后,1、2两侧将存在对流换热,使其保温性能变得很差。

10.t R R A λλ= ⇒ 1t R R A λλ== 2218.331012m --=⨯11.q t λσ=∆ const λ=→直线 const λ≠ 而为λλ=(t )时→曲线12、略13.解:1211t q h h σλ∆=++=18(10)45.9210.361870.61124--=++2W m111()f w q h t t =-⇒ 11137.541817.5787w f q t t h =-=-=℃222()w f q h t t =-⇒ 22237.54109.7124w f q t t h =+=-+=-℃ 45.92 2.83385.73q A W φ=⨯=⨯⨯= 14. 解:40.27.407104532t K R W A HL λσσλλ-====⨯⨯⨯30.2 4.4441045t R λσλ-===⨯2m K W • 3232851501030.44.44410t KW q m R λ--∆-==⨯=⨯ 3428515010182.37.40710t t KW R λφ--∆-==⨯=⨯ 15.()i w f q h t h t t =∆=-⇒i w f qt t h=+51108515573=+=℃0.05 2.551102006.7i Aq d lq W φππ===⨯⨯=16.解:12441.2 1.2()()100100w w t t q c ⎡⎤=-⎢⎥⎣⎦ 44227350273203.96()()139.2100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦12''441.21.2()()100100w w t t qc ⎡⎤=-⎢⎥⎢⎥⎣⎦442273200273203.96()()1690.3100100W m ++⎡⎤=⨯-=⎢⎥⎣⎦'21.2 1.2 1.21690.3139.21551.1Wq q q m ∆=-=-=17.已知:224A m =、215000()Wh m K =•、2285()Wh m K =•、145t =℃2500t =℃、'2285()Wk h m K ==•、1mm σ=、398λ=()W m K •求:k 、φ、∆解:由于管壁相对直径而言较小,故可将此圆管壁近似为平壁即:12111k h h σλ=++=3183.5611101500039085-=⨯++2()W m k • 383.5624(50045)10912.5kA t KW φ-=∆=⨯⨯-⨯= 若k ≈2h'100k k k -∆=⨯%8583.561.7283.56-==% 因为:1211h h =,21h σλ= 即:水侧对流换热热阻及管壁导热热阻远小于燃气侧对流换热热阻,此时前两个热阻均可以忽略不记。

导热微分方程式及单值性条件

导热微分方程式及单值性条件
vqvdxdydzd
3、微元体在d时
间内能的增加量 ct dxdydzd
dv=
Heat Transfer
一 、导热微分方程 将以上各式代入热平衡关系式,并整理得:
c t x( x t) y( y t) z( z t) q v
非稳态项
扩散项
源项
这是笛卡尔坐标系中三维非稳态导热微分方程的一般表达式。 其物理意义:反映了物体的温度随时间和空间的变化关系。
d 时间内、沿 x 轴方向导入与导出微元体净热量
d xd xdx q xxdxdydzd
d 时间内、沿 y 轴方向导入与导出微元体净热量
dydydyqyydxdydzd
d 时间内、沿 z 轴方向导入与导出微元体净热量
d zd zdz q zzdxdydzd
Heat Transfer
一 、导热微分方程
Heat Transfer
一 、导热微分方程
1)对上式化简:
①导热系数为常数
·
t
a(x22t
y2t2
z22t)c
式中,a/,(c称)为热扩散率。
②导热系数为常数 、无内热源
t
2t 2t 2t
a(x2 y2 z2)
Heat Transfer
一 、导热微分方程
③导热系数为常数 、稳态
·
2t x2
y2t2
一 、导热微分方程
假设:(1) 所研究的物体是各向同性的连续介质 (2) 热导率、比热容和密度均为已知
(3) 物体内具有均匀分布内热源;强度 qv [W/m3]; qv 表示单位体积的导热体在单
位时间内放出的热量 导热体内取一微元体,根据能量守恒定律, 单位时间净导入微元体的热量 d 加上微元体内热 源生成的热量 v应等于微元体内能的增加量

传热学习题答案

传热学习题答案

第一章 导热理论基础1. 按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。

答:铜>铝>黄铜>碳钢;隔热保温材料导热系数最大值为0.12W/(m •K )膨胀珍珠岩散料:25℃ 60-300Kg/m 3 0.021-0.062 W/(m •K ) 矿渣棉: 30℃ 207 Kg/m 3 0.058 W/(m •K )软泡沫塑料: 30℃ 41-162 Kg/m 3 0.043-0.056 W/(m •K ) 2. 推导导热微分方程式的已知前提条件是什么? 答:导热物体为各向同性材料。

3.(1)m k xt /2000=∂∂ , q=-2×105(w/m 2). (2)m k xt /2000-=∂∂, q=2×105(w/m 2). 4. (1),00==x q 3109⨯==δx q w/m 2 (2) 5108.1⨯=νq w/m 35. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导圆柱坐标系的导热微分方程式。

答:2222211[()]t t t t a r r r r r zτφ∂∂∂∂∂=++∂∂∂∂∂ 6. 已知物体的热物性参数是λ、ρ和c ,无内热源,试推导球坐标系的导热微分方程式。

答:2222222111[()(sin )]sin sin t t t ta r r r r r r θτθθθθϕ∂∂∂∂∂∂=++∂∂∂∂∂∂ 7. 一半径为R的实心球,初始温度均匀并等于t 0,突然将其放入一温度恒定并等于t f 的液体槽内冷却。

已知球的热物性参数是λ、ρ和c ,球壁表面的表面传热系数为h ,试写出描写球体冷却过程的完整数学描述。

答:2201[()],0,00,0,0,,()f r R r Rt t r r R c r r r r R t t tr R h t t rλττρττλ==∂∂∂=><<∂∂∂=≤≤=∂>=-=-∂0,0dtr dr== 8. 从宇宙飞船伸出一根细长散热棒,以辐射换热将热量散发到外部空间去,已知棒的发射率(黑度)为ε,导热系数为λ,棒的长度为l ,横截面面积为f ,截面周长为U,棒根部温度为T0。

传热学复习 (1)

传热学复习 (1)
导热机理、变化规律及相对大小
单值性条件(定解条件)(思考题8)
几何条件、物理条件、 初始条件 边界条件
第一类、第二类、第三类(思考题9、10) 第四类边界条件
热扩散系数 a
c
物性参数、物理意义 与导热系数的联系与区别(思考题17)
保温材料(思考题4)
2-2 物质的导热特性
不同物质的导热系数相差很大
一般情况下, 固体 > 液体 > 气体
同一种物质 晶体>非晶体
同一种物质 固态 > 液态 > 气态
0.0183
各向异性材料——木材、石墨、云母、动植物的肌肉和纤维组织等。
直角坐标系中导热微分方程的简化处理
t t t 一般形式 ( ct ) ( ) ( ) ( ) x x y y z y
变导热系数 ( 0 1 bt)
算术平均温度:tm
tw1 tw 2 2 平均导热系数:m 0 (1btm )
(习题3-5、3-9、3-11)
多层壁: t w1 twn 1
i i 1 i A
n
l
tw1 twn 1 n ri 1 1 ln ri i 1 2i
一般情况下,
固体 液体 气体
金属 非金属
金属 2.3~430 W (m K)
液体 0.07~0.7 W (m K)
气体 0.006~0.6 W (m K)
纯金属 合金
晶体 非晶体
20C常温下
空气 =0.0259 水 =0.599
物体的发射率 (物性参数)
2 传热系数k W/(m K)
传热过程
kA(t f 1 t f 2 ) q k (t w t f )

高等传热学

高等传热学

如果
0
常数
Dvi p 1 div(V ) fi 2vi D xi 3 xi
§1-2 基本守恒方程式
不可压缩流体,二维稳定流动,直角坐标系下
常数
u 2u 2u u p u v f x 2 2 y x y x x 2v 2v v v p u x v y f y y x 2 y 2
流体位移结果+控制体内流体动量的时间变化率=体积力+表面力
§1-2 基本守恒方程式
v n vi dA
A

v i d f i d jj n j dA A
根据散度定理,
div v v v i i d f i d jj n j dA A
§1-1导热基本定律
Fourier定律 内容:热流密度在任一方向上的分量与该方向上 的温度变化率成正比。 dt 表达式: q n grad (t ) ▽t
dn
An

dt n dn t t q y q x y x
§1-3 正交坐标系中的基本方程式
第三节 正交坐标系中的基本方程式 一、正交坐标系
概念:三个坐标曲面相互正交,两个坐标曲面交线为坐标曲线或坐标轴。 推导:正交坐标的弧微分与正交坐标之间的关系 正交坐标系(u1,u2,u3),直角坐标系空间一点M(x,y,z)
dsi dx dy dz
( H H1 H 2 H3 )
dV ds1 ds2 ds3 H1 H 2 H3 du1du2du3 H du1du2du3

传热学-1

传热学-1

第一章导热的理论基础物体的温度场通常用等温面或等温线表示注:傅立叶定律只适用于各向同性材料各向同性材料:热导率在各个方向是相同的有些天然和人造材料,如:石英、木材、叠层塑料板、叠层金属板,其导热系数随方向而变化——各向异性材料傅立叶定律的适用条件傅里叶定律只适用于稳态及弱瞬态热过程傅立叶定律的建立隐含了一个假设:在物体内热扰动的传播速率无限大,即:在任何瞬间τ,温度梯度和热流密度都是相互对应的,或者说:与热的扰动相对应,热流矢量和温度梯度的建立是不需时间的对于大多数工程实践问题(稳态及弱瞬态热过程),这个假设已经可以得出足够精确的解。

但是,对于快速的瞬态热过程,这个条件不能满足——非傅里叶效应2-1 导热的基本定律热流线:温度场中热流密度矢量的切线构成的曲线,与等温线垂直。

相邻热流线间通过的热流量处处相等,构成热流通道。

傅立叶定律几点说明:1.温度梯度是引发物体内部及物体间热量传递的根本原因。

2.热量传递的方向垂直于等温线,指向温度降低的方向。

3.热量传递的大小(热流量、热流密度)取决于温度分布(温度梯度)。

4.傅立叶导热基本定律普遍适用。

5.传热学研究中通过导热微分方程得到温度分布后,即可由傅立叶定律求解热流量或热流密度。

金属非金属液体气体分子质量小的气体(H2、He)热导率较大—分子运动速度高传热学Heat Transfer2、固体的热导率纯金属的导热:依靠自由电子的迁移和晶格的振动;主要依靠前者(1) 金属的热导率:•12~418W (m C)λ≈金属晶体结构的“小球”模型虽然很直观,但仍然不便于表述晶体内部原子排列顺序规律的细节。

金属材料通常都是晶体材料。

金属的晶体结构指的是金属材料内部原子排列的规律。

它决定着材料的显微组织和材料的宏观性能晶体里面的原子(或)离子都是在它的平衡位置上不停地振动着,但在讨论晶体结构时可以假设它们是一些静止不动的小球。

各种晶体结构就可以看成是这些小球按一些几何方式紧密排列堆积而成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律及导热问题的基本分析方法。

物质内部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。

物质内部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。

导热理论从宏观研究问题,采用连续介质模型。

第一节 基本概念及傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体内各点温度分布的总称,称为即为温度场(标量场)。

它是空间坐标和时间坐标的函数。

在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:① 稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。

(如设备正常运行工况) 稳态导热:发生于稳态温度场中的导热。

② 非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。

(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。

2.从空间坐标分: ① 三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ② 二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τ∆tgrad t③ 一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体内温度相同的点连成的面即为等温面。

2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。

为了直观地表示出物体内部的温度分布,可采用图示法,标绘出物体中的等温面(线)。

3.等温面(线)的特点:① 不同的等温面(线)之间是不可能相交的。

图1-1所示的即为一维大平壁和一维圆筒壁内的等温面(线)的示意图。

② 在连续介质的假设条件下,等温面(线)可以是物体中闭合的曲面或曲线,或者终止在物体的边界,不可能在物体中中断。

③ 等温线的疏密可直观反映出不同区域温度梯度的相对大小,若每条等温线间的温度间隔相等时,即t ∆相等,则等温线越疏,表明该区域热流密度越小;反之,越大。

④ 沿等温面(等温线)无热量传递三、温度梯度(temperature gradient)从一个等温面上的某点出发,到达另一个等温面,可以有不同的路径,不同路径上的温度变化率是不同的,温度变化率最大的路径位于该点的法线方向上。

为了表示沿等温面法线方向的温度变化率,引入温度梯度的概念。

梯度(最大的方向导数):指向变化最剧烈的方向。

(向量)温度变化率是标量,温度梯度是矢量。

温度梯度:定义沿法线方向的温度变化率(沿等温面法线方向上的温度增量与法向距离比值的极限)为温度梯度,以gradt 表示。

nt n t grad n t ∂∂=∆∆=→∆→0lim (1-2) 式中,——等温面法线方向的单位矢量;n t ∂∂——温度在等温面法线方向的导数。

温度梯度的方向(正向):是沿等温面法线由低温指向高温。

温度梯度的数值大小:等于温度梯度方向上的导数。

在直角坐标系:z t y t x t gradt ∂∂+∂∂+∂∂= (1-3) 式中,i ,j ,k 分别表示x 轴、y 轴及z 轴方向上的单位矢量。

温度降度:温度梯度的负值,gradt -,沿温度降低的方向。

四、热流密度矢量热流密度:它指单位时间单位面积上所传递的热量。

在不同方向上,热流密度的大小是不同的。

1.热流线(heat flux lines):在温度场中,作与各等温线一一正交的一组曲线,这组曲线称为热流线。

热流线是表示热流方向的线。

在热流线上各点做切线,则热流方向就在该切线上,而某点热流线的切线方向与该点等温线的法线方向是一致的。

所以热流方向是在等温线的法线方向上。

由于热流是从高温处流向低温处,所以热流方向与温度梯度的方向相反。

可见,热流既有大小,也有方向。

为此引入热流密度矢量来对热流进行描述。

2.热流密度矢量:等温面上某点,以通过该点最大热流密度的方向为方向,数值上,等于沿该方向的热流密度的矢量,称为热流密度矢量,简称热流矢量。

其他方向的热流密度都是热流矢量在该方向的分量。

在直角坐标系中,热流矢量可表示为:k q j q i q q z y x ++= (1-4)式中z y x q q q ,,为沿三个坐标轴方向的分热流。

1-2.傅立叶定律(Fourier’s law of heat conduction )傅里叶于1822 年在对固体导热实验进行总结的基础上,提出了著名的傅里叶定律,它是导热的基本定律。

1.傅立叶定律的表达式nt t grad ∂∂-=-=λλ 式中的比例系数λ即为材料的导热系数(或称热导率),单位)(C m W ︒⋅。

负号“-”表示热流密度矢量与温度梯度的方向刚好相反(是热力学第二定律的体现)。

在直角坐标系,傅立叶定律可以展开为:)(zt y t x t q q q z y x ∂∂+∂∂+∂∂-=++=λ (1-7) 对应可写出各个方向上的分热流密度为:x t q x ∂∂-=λ,yt q y ∂∂-=λ,z t q z ∂∂-=λ 工程上,一般考虑简单几何形状物体的导热。

这时,热流密度常垂直于物体表面,分析问题时,常将坐标轴垂直于表面,这样,热流密度的方向就与坐标轴重合,热流密度可以不写成矢量形式,而只按坐标轴方向考虑热流密度的正负。

即热流密度与坐标轴同向时为正,反向时为负。

傅立叶定律指出了导热热流密度矢量与温度梯度之间的关系。

2.傅里叶定律的适用范围:适用于各向同性连续介质的稳态和非稳态导热过程。

(适用 q 不很高,而作用时间长。

不适用于时间极短,热流密度极大或者温度极低时的导热)问:傅里叶定律并不显含时间,为什么能用于计算非稳态导热的热量?答:q 是瞬时热流密度,不同瞬时,q 可能是不同的,q 与时间有关。

由傅里叶定律可知, 要计算导热热流量, 需要知道材料的导热系数, 还必须知道温度场。

所以求解温度场是导热分析的主要任务。

(温度场——温度梯度——热流矢量)第二节 导热系数一、导热系数的定义:gradtq -=λ (1-8) 物理意义:单位温度梯度下物体内产生的热流密度。

它表征物质导热能力的大小,导热能力是物质的固有的物理性质,所以导热系数是物性参数。

单位:W/(m ·K )或W/(m ·℃)各种材料的导热系数一般是通过实验来测定的。

二、影响材料导热系数的因素材料的导热系数与物质种类及物质的温度,密度、湿度、压力等有关。

不同物质导热系数的数值是不同的。

一般情况是,纯金属的导热系数很高,气体的导热系数很小,液体的数值介于金属和气体之间。

1.气体(1)导热机理:靠分子热运动时的相互碰撞。

(2)各种气体的导热系数的范围:0.006~0.6 W/(m·K),其中以氢的导热系数为最大,常温下,空气的导热系数约为:0.025 W/(m·K)。

(解释:双层玻璃窗为什么能起到保温作用?)(3)所有气体的导热系数均随温度升高而增大。

(↑t)↑λ,(4)对于空气,其含湿量增加后,湿空气的导热系数将增大。

(5)对气体,除非压力很低(小于2.67×103Pa)或压力很高(大于2×109Pa),可以认为气体的导热系数随压力变化不大。

水蒸汽的导热系数随压力的升高而增大。

(↑p)↑λ,2.液体(1)导热机理:靠不规则的弹性振动(弹性波)。

(2)各种液体的导热系数的范围:0.07~0.7 W/(m·K)。

水的导热系数在所有各种液λ,油类的导热系数值较小,体(不包括金属液体和电解液)中最大,20℃时)W⋅m=.0K60/(水在0.01~0.15 W/(m·K)之间。

(3)大多数液体(水和甘油除外)的导热系数随温度的升高而减小。

(↓t)↑λ,(4)液体的导热系数受压力影响较大,随压力的升高导热系数增大。

(↑↑λ,p)3.固体(1)金属①导热机理:依靠自由电子的迁移。

金属导热与导电机理一致。

良导电体为良导热体。

②各种金属的导热系数的范围:在0℃时12~410 W/(m·K),其中以银的导热系数为最高,纯金属的导热系数为:银—410 W/(m·K),铜—387 W/(m·K),铝—203 W/(m·K),铁—73 W/(m·K)。

纯金属的导热系数值大于合金(依靠自由电子的迁移和晶格的振动;主要依靠后者),且合金中杂质含量越多,导热系数值越小。

(原因:金属中的杂质干扰了自由电子的运动,影响了能量的传递。

)(参见课本330页,附录7)③纯金属的导热系数随温度的升高而减小。

(↓t)(晶格运动的加强,干扰了自↑λ,由电子的运动)一般合金的导热系数随温度的升高而增大。

(↑t)↑λ,(2)非金属①导热机理:依靠晶格的振动。

②大多数建筑材料及隔热保温材料都属于非金属材料,如砖、砂、砂浆、混凝土等。

这类材料的导热系数范围为:0.025~3 W/(m·K)。

非金属材料的导热系数随温度升高而增大。

(↑t)↑λ,(3)保温材料(隔热、绝热材料)(insulating material)①定义:按照国家标准(GB4272-92)的规定,凡平均温度不高于350C︒,导热系数的数值不大于0.12)W⋅的材料称为绝热保温材料(隔热材料或热绝缘材料)。

m/(K②保温材料的特点:保温材料大多是多孔材料(蜂窝状结构),内部有很多细小的空隙,其中充满气体,因而并非为密实固体,严格讲,这些材料已不应视为连续介质。

通常所说的保温材料的导热系数是指表观导热系数,即把保温材料当作连续介质时折算出的值。

③保温材料的热量传递机理:a 蜂窝固体结构的导热b 微小孔隙中气体的导热c 微小孔隙壁间的辐射换热(高温时)④保温材料的导热系数随温度升高而增大。

(↑↑λ,t)⑤密度和湿度对保温材料和建筑材料的导热系数影响较大。

保温材料和建筑材料大多是多孔材料。

如果密度大,意味着材料比较密实,孔隙率低,导热系数就大,多孔材料的密度小,意味着材料的孔隙多,使材料的导热系数小。

但如果密度太小,孔隙尺寸变大或孔隙连通起来,这时气体会在孔隙中发生对流,产生对流换热,反而使导热系数增大。

所以这些材料都对应有最佳的密度,即此时使材料的导热系数最小。

多孔材料如果吸收水分后,导热系数较大的水就会取代孔隙中导热系数较小的空气,使材料的导热系数增大。

相关文档
最新文档