圆的基本性质中考题.doc

合集下载

中考数学复习之圆的基本性质(含答案)

中考数学复习之圆的基本性质(含答案)

中考数学复习之圆的基本性质(含答案)1.如图,点A、B、C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A. 30°B. 35°C. 45°D. 70°2.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A. 58°B. 60°C. 64°D. 68°3.如图,⊙O的弦AC与半径相等,点B是优弧上一点,则∠ABC的度数为()A. 20°B. 30°C. 45°D. 60°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5 cm,CD=8 cm,则AE=()A. 8 cmB. 5 cmC. 3 cmD. 2 cm5.如图,⊙A过点O(0,0),C(3,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A. 15°B. 30°C. 45°D. 60°6.如图,⊙O 的半径为5,AB 为弦,点C 为AB ︵的中点.若∠ABC =30°,则弦AB 的长为( ) A. 12 B. 5 C. 532 D. 5 37. 如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、O C.若∠BAC 与∠BOC 互补,则弦BC 的长为( )A. 3 3B. 4 3C. 5 3D. 6 38.已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M , 且AB =8 cm ,则AC 的长为( )A. 2 5 cmB. 4 5 cmC. 2 5 cm 或4 5 cmD. 2 3 cm 或43cm 9.如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_______°.10. 如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E ,∠ACE 的度数为________.11. 如图,AB 是半圆O 的直径,E 是半圆上一点,且OE ⊥AB ,点C 为BE ︵的中点,则∠A =________°.12.如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,F C.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.参考答案:1-4 BABA 5-8 BDBC9.n10. 30°11. 22.512. (1)证明:∵AB为半圆的直径,∴∠AEB=90°,∵AB=AC,∴CE=BE,又∵EF=AE,∴四边形ABFC是平行四边形,又∵AB=AC,(或∠AEB=90°)∴平行四边形ABFC是菱形;(2)解:∵AD=7,BE=CE=2,设CD=x,则AB=AC=7+x,如解图,连接BD,∵AB为半圆的直径,∴∠ADB=90°,∴AB2-AD2=CB2-CD2,∴(7+x)2-72=42-x2,解得x1=1或x2=-8(舍去).。

中考数学复习《圆的基本性质》练习题含答案

中考数学复习《圆的基本性质》练习题含答案

中考数学复习 圆的基本性质一、选择题1.如图,点A ,B ,C 是⊙O 上的三点,若∠OBC =50°,则∠A 的度数是( A ) A .40° B .50° C .80° D .100°【解析】∠A =12∠COB =12(180°-2∠OBC )=12(180°-2×50°)=40°.,第1题图) ,第2题图)2.如图为4×4的网格,A ,B ,C ,D ,O 均在格点上,则点O 是( B ) A .△ACD 的外心 B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心3.如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB =12,OM ∶MD =5∶8,则⊙O 的周长为( B )A .26πB .13π C.96π5 D.3910π5【解析】连结OA ,∵CD 为⊙O 的直径,弦AB ⊥CD ,∴AM =12AB =6,∵OM ∶MD =5∶8,∴设OM =5x ,DM =8x ,∴OA =OD =13x ,∴AM =12x =6,∴x =12,∴OA =132,∴⊙O 的周长=2OA ·π=13π.故选B.,第3题图) ,第4题图)4.如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则∠ACB =( D ) A .110° B .120° C .122° D .119°【解析】因为同弧所对的圆周角等于它所对的圆心角的一半,所以与∠AOB 所对同弧的圆周角度数为12∠AOB =61°,由圆内接四边形对角互补,得∠ACB =180°-61°=119°,故选D.5.如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是( C )【解析】设运动员的速度为v ,则运动的路程为v t ,设∠BOC =α,当点C 从B 运动到M 时,∵v t =α·π·50180=5πα18,∴α=18v t 5π,在直角三角形中,∵d =50sin α=50sin 18v t5π,∴d 与t之间的关系d =50sin 18v t 5π,当点C 从M 运动到A 时,d 与t 之间的关系d =50sin(180-18v t5π),故C 正确.二、填空题6.如图,在⊙O 中,AB 是弦,C 是AB ︵上一点.若∠OAB =25°,∠OCA =40°,则∠BOC 的大小为__30__度.【解析】∵∠BAO =25°,∠ACO =40°,OA =OC ,∴∠C =∠CAO =40°,∴∠CAB =∠CAO -∠BAO =15°,∴∠BOC =2∠BAC =30°.,第6题图) ,第7题图)7.如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为__70°__.【解析】∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,∴∠DOE =180°-40°=140°,∴∠P =12∠DOE =70°.8.如图,AB 是⊙O 的弦,AB =5,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是__522__.,第8题图) ,第9题图)9.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为__76__.【解析】连结OD ,∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD=∠BHD =90°,∵cos ∠CDB =DH BD =45,BD =5,∴DH =4,∴BH =BD 2-DH 2=3,设OH=x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得x 2+42=(x +3)2,解得x =76,∴OH=76. 若点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为__2-3或2+3__.【解析】存在两种情况,当△ABC 为钝角三角形时,连结OB ,OC ,∵点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,OB =OC ,∴△OBC 为等边三角形,OB =OC =BC =2,OA ⊥BC 于点D ,∴CD =1,OD =22-12=3,∴S △ABC =BC ·AD 2=2×(2-3)2=2-3;当△ABC 为锐角三角形时,连结OB ,OC ,∵点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,OB =OC ,∴△OBC 为等边三角形,OB =OC =BC =2,OA ⊥BC 于点D ,∴CD =1,OD =22-12=3,∴S △ABC =BC ·DA 2=2×(2+3)2=2+3,由上可得,△ABC 的面积为2-3或2+ 3.三、解答题11.如图,AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.(1)求∠EBC 的度数; (2)求证:BD =CD .解:(1)∠EBC =22.5° (2)证明略12.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,求AB 的长.解:如图,作直径AE ,连结CE ,∴∠ACE =90°,∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB ,∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AHAC,∵AC =24,AH =18,AE =2OC =26,∴AB =18×2624=39213.如图,A ,P ,B ,C 是圆上的四个点,∠APC =∠CPB =60°,AP ,CB 的延长线相交于点D .(1)求证:△ABC 是等边三角形;(2)若∠P AC =90°,AB =23,求PD 的长. 解:(1)∵∠ABC =∠APC ,∠BAC =∠BPC ,∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 是等边三角形 (2)∵△ABC 是等边三角形,AB =23,∴AC =BC =AB =23,∠ACB =60°.在Rt △PAC 中,∠PAC =90°,∠APC =60°,AC =2 3.∴AP =2.在Rt △DAC 中,∠DAC =90°,AC =23,∠ACD =60°,∴AD =6.∴PD =AD -AP =6-2=414. 如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠CPB =60°. (1)判断△ABC 的形状;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.解:(1)等边三角形(2)PA +PB =PC.证明:如图,在PC 上截取PD =PA ,连结AD.∵∠APC =60°, ∴△PAD 是等边三角形,∴PA =AD ,∠PAD =60°.又∵∠BAC =60°, ∴∠PAB =∠DAC. ∵AB =AC, ∴△PAB ≌△DAC ,∴PB =DC. ∵PD +DC =PC, ∴PA +PB =PC(3)当点P 为AB ︵的中点时,四边形APBC 面积最大.理由:如图,过点P 作PE ⊥AB ,垂足为E, 过点C 作CF ⊥AB ,垂足为F .∵S △PAB =12AB·PE ,S △ABC =12AB·CF ,∴S 四边形APBC=12AB (PE +CF ).∵当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 直径,∴四边形APBC 面积最大.又∵⊙O 的半径为1,∴其内接正三角形的边长AB =3,∴S 四边形APBC =12×2×3=3。

中考数学分类(含答案)圆的有关性质.docx

中考数学分类(含答案)圆的有关性质.docx

中考数学分类(含答案)的有关性一、1 .( 2010 安徽省中中考 ) 如 ,⊙ O 点 B 、 C 。

心 O 在等腰直角△ ABC 的内部, ∠ BAC = 90 0 ,OA =1 , BC = 6 , ⊙ O 的半径 ⋯⋯⋯⋯⋯⋯( )A )10 B )2 3C )3 2D ) 13【答案】 C2 .( 2010 安徽蚌埠二中)以半 的一条弦BC (非直径) 称 将弧BC 折叠后与直径 AB 交于点 D ,若AD2,且AB 10, CB 的DB3 A .45 B .4 3C .4 2D .4【答案】 A3 .(2010 安徽 湖 )如 所示,在 ⊙ O 内有折 OABC ,其中 OA = 8 ,AB = 12 ,∠ A =∠ B = 60 °,BC 的 ()A .19B .16C .18D .20【答案】 D4 .( 2010 甘 州) 有下列四个命 :①直径是弦;② 三个点一定可以作 ;③三角形的外心到三角形各 点的距离都相等;④半径相等的两个半 是等弧.其中正确的有 A .4个B .3个C .2个D . 1个【答案】B5 .( 2010甘肃兰州)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、 B 的读数分别为86 °、 30 °,则∠ACB的大小为A.15 B .28C.29 D .34【答案】B6 .( 2010江苏南通)如图,⊙ O 的直径 AB =4,点 C 在⊙ O 上,∠ ABC =30°,则 AC的长是A. 1 B . 2C .3D . 2【答案】 D7 .( 2010山东烟台)如图,△ABC 内接于⊙ O , D 为线段 AB 的中点,延长OD 交⊙ O于点 E ,连接AE , BE ,则下列五个结论①AB ⊥ DE, ② AE=BE, ③ OD=DE,④∠ AEO=∠C, ⑤,正确结论的个数是A、2B、3C、4D、5【答案】 B8 .( 2010台湾)如图(二),AB为圆O的直径,C、D两点均在圆上,其中OD 与 AC 交于E 点,且 OD AC 。

浙教版数学九年级上册 第3章 圆的基本性质(含答案)

浙教版数学九年级上册  第3章 圆的基本性质(含答案)

第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O的直径,弦CD⊥AB于点H,∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图,△ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以C 为旋转中心旋转180°,得到△A₁B₁C,请画出△A₁B₁C;(2)平移△ABC,使点 A的对应点.A₂的坐标为(−2,−6),请画出平移后对应的图形△A₂B₂C₂;(3)若将△A₁B₁C绕某一点旋转可得到△A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB是⊙O的直径,C是圆周上的动点,P 是ABC的中点.(1)求证:OP//BC;(2)如图,连结PA,PC交直径AB于点D,当(OC=DC时,求∠A的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离如图(1)中的 OC,OC′,弦心距也可以说成圆心到弦的垂线段的长度 l请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O是∠EPF的平分线上一点,以点O为圆心的圆与角的两边分别交于点A,B,C,D.(1)求证:AB=CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt△AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC−m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB DF,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°−60°−55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°−∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM⊥AB.过点 O 作OD⊥MN 于点 D,由垂径定理,得 MD =12MN =23cm,在Rt△ODM 中,OM=4cm, MD =23cm,∴OD =OM 2−MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH⊥AC,∵A B 是⊙O 的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OA C= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OP C=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM⊥AB 于点M,ON⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠EPF,∴O M=ON,∵OM⊥AB,ON⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM⊥PB,ON⊥PD,垂足分别为M,N,∵PC平分∠EPF,∴OM=ON,∵OM⊥AB,ON⊥CD,∴PB=PD;当点P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。

中考复习讲义 圆的基本概念与性质含答案.doc

中考复习讲义 圆的基本概念与性质含答案.doc

圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径 ( ) (3)半圆是弧 ( ) (4)弧是半圆( ) (5)长度相等的两条弧是等弧 ( ) (6)等弧的长度相等( )中考说明自检自查必考点中考必做题(7)两个劣弧之和等于半圆 ( ) (8)半径相等的两个圆是等圆 ( ) (9)两个半圆是等弧( ) (10)圆的半径是R ,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】 如图,点A D G M 、、、在半圆O 上,四边形ABOC DEOF HMNO 、、均为矩形,设BC a =,EF b =,NH c =则下列格式中正确的是( )A .a b c >>B .a b c ==C .c a b >>D .b c a >>ON MHGFE DC B A【答案】B【例3】 如图,直线12l l ∥,点A 在直线1l 上,以点A 为圆心,适当长为半径画弧,分别交直线12l l 、于B 、C 两点,连接AC BC 、.若54ABC ∠=︒,则∠1的大小为________【答案】72°【例4】 如图,ABC ∆内接于O e ,84AB AC D ==,,是AB 边上一点,P 是优弧¼BAC 的中点,连接PA 、PB 、PC 、PD ,当BD 的长度为多少时,PAD ∆是以AD 为底边的等腰三角形?并加以证明.【答案】解:当4BD =时,PAD ∆是以AD 为底边的等腰三角形.证明:∵P 是优弧¼ABC 的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )A .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )AA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )BAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1B C .2D .【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2BC .D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD==,由勾股定理得半径OA =ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE5. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )ABCDA .5米B . 8米C .7米 D.米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______OBA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》好题集锦一、圆的有关线段和角1.如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数; (2)求证:△ABC 为等边三角形.2.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ;(2)若AB =24,ON =1,求⊙O 的半径.3.已知,在⊙O 中,AB 是⊙O 的直径,点C .、P 在AB 的两侧,AC =21AB ,连接CP ,BP . (Ⅰ)如图①,若CP 经过圆心,求∠P 的大小;(Ⅱ)如图②,点D 是PB 上一点,CD ⊥PB ,若CP ⊥AB ,求∠BCD 的大小.4.如图,⊙P 的圆心的坐标为(2,0),⊙P 经过点)25,4(B .(1)求⊙P 的半径r ;(2)⊙P 与坐标轴的交点A ,E ,C ,F 的坐标;(3)点B 关于x 轴的对称点D 是否在⊙P 上,请说明理由.5.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD =6,AC =8,求CE 的长.6.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)连接CD ,若CD =3,BD =4,求⊙O 的半径和DE 的长.7.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).二、圆与四边形8.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC 的外接圆O于点E,连结A E.(1)求证:四边形AECD为平行四边形;(2)连结CO,求证:CO平分∠BCE.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有________.(2)如图1,在四边形ABCD中,AB=AD,且CB=CD①证明:四边形ABCD是“十字形”;②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.三、圆的综合运用12.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD┴OP交圆O于点D.(1)如图1,当PD∥AB时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.13.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围(用含r的代数式表示).14.如图,有两条公路OM、ON相交成 30°角,沿公路OM方向离O点 80 米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心 50 米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为 18 千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.《圆的基本知识好题》参考答案1.解:(1)∵BD是⊙O的直径,∴∠BAD=90°(直径所对的圆周角是直角).(2)证明:∵∠BOC =120°,∴∠BAC =21∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形. 2.(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD , ∴∠BAM =∠BAD ,,∴△ANE ≌△ADE (A S A ),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,解图,连接AO ,则AO =OD =2x -1,第2题解图3.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =21AB ,∴∠ABC =30°,∴∠A =90°-∠ABC =60°, ∴∠P =∠A =60°;(Ⅱ) ∵AB 是⊙O 的直径,AC =21AB , ∴∠A =60°,∴∠BPC =∠A =60°, ∵CD ⊥PB ∴∠PCD =90°-BPC =30°,∵CP ⊥AB ,AB 是⊙O 的直径, ∴BC =BP ,∴∠P =∠BCP =60°,∴∠BCD =∠BCP -∠PCD =60°-30°=30°.4..解:(1)过点B 作x 轴的垂线,交x 轴于点G ,连接BP . 则点G 坐标为(4,0).在Rt △PBG 中,PG =4-2=2,BG =25,斜边PB =241∴⊙P 的半径r =241.(2)点E 坐标为(2-241,0),点F 坐标为(2+241,0)∵点A 坐标的y 值=25,∴点A 坐标为(0,25).点C 坐标为(0,-25). (3)∵⊙P 关于x 轴对称,又∵B 与D 关于x 轴对称,∴D 在⊙P 上.5.证明:如图.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵CE ⊥AB ,∴∠CEB =90°.∴∠2=90°-∠ACE =∠A . 又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2,∴ CF =BF .(2)此时,CE =5246.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°,∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2, ∴PD =P A ,∵∠4+∠2=∠1+∠3=90°,且∠ADB =90°,∴∠3=∠4, ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点;(3)解:连接CD , ∵∠CBD =∠DBA ,∴CD =AD ,∵CD =3,∴AD =3, ∵∠ADB =90°,AB =5,⊙O 的半径为2.5,∵DE ×AB =AD ×BD ,∴5DE =3×4, ∴DE =2.4.即DE 的长为2.4.7.(1)证明:∠ABF =∠ADC =120°﹣∠ACD =120°﹣∠DEC =120°﹣(60°+∠ADE )=60°﹣∠ADE , 而∠F =60°﹣∠ACF , 因为∠ACF =∠ADE ,所以∠ABF =∠F ,所以AB =AF .(2)证明:四边形ABCD 内接于圆,所以∠ABD =∠ACD , 又DE =DC ,所以∠DCE =∠DEC =∠AEB , 所以∠ABD =∠AEB , 所以AB =AE . ∵AB =AF ,∴AB =AF =AE ,即A 是三角形BEF 的外心.8.(1)根据圆周角定理知∠E =∠B , 又∵∠B =∠D ,∴∠E =∠D .∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形. (2)如图,连结OE ,OB ,由(1)得四边形AECD 为平行四边形, ∴AD =EC .又∵AD =BC ,∴EC =BC . ∵OC =OC ,OB =OE , ∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠BCE .9.11.解:连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°,∴∠BPC =21∠BOC =45°;(2)解:过点O 作OE ⊥BC 于点E , ∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE ,∵OE 2+BE 2=OB 2 , ∴BE = 24 ∴BC =2BE =2810.解析:(1)∵A B 是直径, ∴∠AEB =90°,∴AE ⊥BC , ∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°, ∴AB2﹣AD2=CB2﹣CD2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=157822=-, ∴S 菱形ABF C=158. ∴S 半圆=ππ84212=⨯11.15. (1)菱形,正方形(2)解:①如图1,连接AC ,BD∵AB =AD ,且CB =CD∴AC 是BD 的垂直平分线,∴AC ⊥BD ,∴四边形ABCD 是“十字形”②如图,设AC 与BD 交于点O∵AB =AD ,AC ⊥BD∴∠BAO =∠BAD =30°同理可证∠BCO =45°在Rt △ABO 中,OB =1AO =AB ×cos30°=3OB =OC =1∴AC =AO +CO =1+3, BD =2∴ 四边形ABCD 的面积=21×AB ×BD =21×2×(1+3)=1+3(3)解:如图2∵∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CDB =∠CAB ,∴∠ADB +∠CAD =∠ABD +∠CAB ,∴180°﹣∠AED =180°﹣∠AEB ,∴∠AED =∠AEB =90°,∴AC ⊥BD ,过点O 作OM ⊥AC 于M ,ON ⊥BD 于N ,连接OA ,OD ,∴OA =OD =1,OM 2=OA 2﹣AM 2 , ON 2=OD 2﹣DN 2 , AM =21AC ,DN = 21BD ,四边形OMEN 是矩形,∴ON =ME ,OE 2=OM 2+ME 2 ,∴OE 2=OM 2+ON 2=2﹣41(AC 2+BD 2) 设AC =m ,则BD =3﹣m ,∵⊙O 的半径为1,AC +BD =3,∴1≤m≤2,∴41423≤≤OE由图可知:以 50m 为半径画圆,分别交 ON 于 B ,C 两点,AD ⊥BC ,BD =CD =21BC ,OA =80m , ∵在 Rt △AOD 中,∠AOB =30°,AD = 21OA = 21×80=40m , 在 Rt △ABD 中,AB =50,AD =40,由勾股定理得:BD =30m , 故BC =2×30=60 米,即重型运输卡车在经过 BC 时对学校产生影响.∵重型运输卡车的速度为 18 千米/小时,即300 米/分钟,∴重型运输卡车经过 BC 时需要 60÷300=0.2(分钟)=12(秒).答:卡车 P 沿道路 ON 方向行驶一次给学校 A 带来噪声影响的时间为 12 秒.15.(1)连接PA ,如图1所示.∵PO ⊥AD ,∴AO =DO .∵AD =2,∴OA =.点P 坐标为(﹣1,0),∴OP =1.∴PA ==2.∴BP =CP =2. ∴B (﹣3,0),C (1,0). (2)连接AP ,延长AP 交⊙P 于点M ,连接MB 、MC .如图2所示,线段MB 、MC 即为所求作. 四边形AC MB 是矩形.理由如下∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH ⊥BC ,垂足为H ,如图2所示.在△MHP 和△AOP 中,∵∠MHP =∠AOP ,∠HPM =∠OPA ,MP =AP ,∴△MHP ≌△AOP .∴MH =OA =,PH =PO =1.∴OH =2.∴点M 的坐标为(﹣2,).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,BMC =90°.EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE =90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG .∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图3所示.∴∠MQG =2∠MBG .∵∠COA =90°,OC =1,OA =,∴tan ∠OCA =.∴∠OCA =60°.∴∠MBC =∠BCA =60°.MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.16.(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,∵CF ⊥BD ,∴∠BEF =90°,∵∠ABD +∠ADB =90°,∠ABD +∠BFE =90°,∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(2)解:连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,∵BD =10,∴CD =8在Rt △BCE 中,BE=518,CE =524,56 EF , ,∴AF =AB -BF =1059。

中考总复习数学第1节 圆的基本性质

中考总复习数学第1节 圆的基本性质

∴C6E=160. ∴CE=3.6. ∵OC=12AB=5, ∴OE=OC-EC=5-3.6=1.4.
B 卷(30 分)
四、填空或选择题(每小题 4 分,共 20 分)
11.(2020·凉山州)如图,等边三角形
ABC 和正方形 ADEF 都内接于⊙O,则
AD∶AB=( B )
A.2 2∶ 3
B. 2∶ 3
C. 3∶ 2
D. 3∶2 2
12.(2020·荆州)如图,在 6×6 的正方 形网格中,每个小正方形的边长都是 1,点 A,B,C 均在网格交点上,⊙O 是△ABC 的外接圆,则 cos∠BAC 的值为( B )
5
25
1
3
A. 5
B. 5
C.2
D. 2
13.(2020·武汉)如图,在半径为 3 的⊙O
10.(本题满分 18 分)(2020·衢州)如 图,△ABC 内接于⊙O,AB 为⊙O 的直径, AB=10,AC=6.连接 OC,弦 AD 分别交 OC,BC 于点 E,F,其中点 E 是 AD 的中 点.
(1)求证:∠CAD=∠CBA; (2)求 OE 的长.
解:(1)证明:∵AE=DE,OC 是半径, ∴A︵C=C︵D. ∴∠CAD=∠CBA. (2)∵AB 是直径,∴∠ACB=90°. ∵AE=DE,∴OC⊥AD. ∴∠AEC=90°.∴∠AEC=∠ACB. ∴△AEC∽△BCA.∴CACE=AACB.
4 ∴AB=
3× 3
2 2 =4
2
2,2R=4 33=8. 2
过点 B 作 BH⊥AC 于点 H,
∵∠AHB=∠BHC=90°,
∴AH=AB·cos60°=4 2×21=2 2, CH= 22BC=2 6.

中考数学 专题17 圆的基本性质(解析版)

中考数学 专题17  圆的基本性质(解析版)

备战2020年中考二轮复习必考专题水平测试题专题17 圆的基本性质一.选择题(共4小题)1.(2019•广元)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为( )A .2B .4C .2D .4.8513【点拨】先根据圆周角定理得∠ACB =90°,则利用勾股定理计算出BC =6,再根据垂径定理得到CD=AD AC =4,然后利用勾股定理计算BD 的长.=12【解析】解:∵AB 为直径,∴∠ACB =90°,∴BC 6,=AB 2‒AC 2=102‒82=∵OD ⊥AC ,∴CD =AD AC =4,=12在Rt △CBD 中,BD 2.=42+62=13故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.2.(2019•眉山)如图,⊙O 的直径AB 垂直于弦CD ,垂足是点E ,∠CAO =22.5°,OC =6,则CD 的长为( )A .6B .3C .6D .1222【点拨】先根据垂径定理得到CE =DE ,再根据圆周角定理得到∠BOC =2∠A =45°,则△OCE 为等腰直角三角形,所以CE OC =3,从而得到CD 的长.=222【解析】解:∵CD ⊥AB ,∴CE =DE ,∵∠BOC =2∠A =2×22.5°=45°,∴△OCE 为等腰直角三角形,∴CE OC 6=3,=22=22×2∴CD =2CE =6.2故选:A .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.3.(2019•遂宁)如图,△ABC 内接于⊙O ,若∠A =45°,⊙O 的半径r =4,则阴影部分的面积为( )A .4π﹣8B .2πC .4πD .8π﹣8【点拨】根据圆周角定理得到∠BOC =2∠A =90°,根据扇形的面积和三角形的面积公式即可得到结论.【解析】解:∵∠A =45°,∴∠BOC =2∠A =90°,∴阴影部分的面积=S 扇形BOC ﹣S △BOC 4×4=4π﹣8,=90⋅π×42360‒12×故选:A .【点睛】本题考查了三角形的外接圆与外心,圆周角定理,扇形的面积的计算,熟练掌握扇形的面积公式是解题的关键.4.(2019•乐山)如图,抛物线y x 2﹣4与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径=14的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B .C .D .441272【点拨】连接BP ,如图,先解方程x 2﹣4=0得A (﹣4,0),B (4,0),再判断OQ 为△ABP 的中位14线得到OQ BP ,利用点与圆的位置关系,BP 过圆心C 时,PB 最大,如图,点P 运动到P ′位置=12时,BP 最大,然后计算出BP ′即可得到线段OQ 的最大值.【解析】解:连接BP ,如图,当y =0时,x 2﹣4=0,解得x 1=4,x 2=﹣4,则A (﹣4,0),B (4,0),14∵Q 是线段PA 的中点,∴OQ 为△ABP 的中位线,∴OQ BP ,=12当BP 最大时,OQ 最大,而BP 过圆心C 时,PB 最大,如图,点P 运动到P ′位置时,BP 最大,∵BC 5,=32+42=∴BP ′=5+2=7,∴线段OQ 的最大值是.72故选:C .【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.二.填空题(共4小题)35.(2019•宜宾)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O的面积是 4π .【点拨】由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角3形,又AC=2,从而求得半径,即可得到⊙O的面积.【解析】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,3∵AC=2,∴圆的半径为2,∴⊙O的面积是4π,故答案为:4π.【点睛】本题考查了圆周角定理,解题的关键是能够求得圆的半径,难度不大.6.(2019•雅安)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则∠A的度数为 69° .【点拨】直接利用圆周角定理得出∠BCD =90°,进而得出答案.【解析】解:∵△ABC 内接于⊙O ,BD 是⊙O 的直径,∴∠BCD =90°,∵∠CBD =21°,∴∠A =∠D =90°﹣21°=69°.故答案为:69°【点睛】此题主要考查了三角形的外接圆与外心,正确掌握圆周角定理是解题关键.7.(2019•凉山州)如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于H ,∠A =30°,CD =2,则⊙O 的半3径是 2 .【点拨】连接BC ,由圆周角定理和垂径定理得出∠ACB =90°,CH =DH CD ,由直角三角形=12=3的性质得出AC =2CH =2,AC BC =2,AB =2BC ,得出BC =2,AB =4,求出OA =2即可.3=33【解析】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD ⊥AB 于H ,∴∠ACB =90°,CH =DH CD ,=12=3∵∠A =30°,3∴AC=2CH=2,在Rt△ABC中,∠A=30°,=33∴AC BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点睛】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.8.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠3BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是 6+3 .【点拨】过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC 距离的最大值=PM,解直角三角形即可得到结论.【解析】解:过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC的距离最大,且点P到AC距离的最大值=PM,∵OM ⊥AC ,∠A =∠BPC =60°,⊙O 的半径为6,∴OP =OA =6,∴OM OA 6=3,=32=32×3∴PM =OP +OM =6+3,3∴则点P 到AC 距离的最大值是6+3,3故答案为:6+3.3【点睛】本题考查了三角形的外接圆与外心,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.三.解答题(共3小题)9.(2019•绵阳)如图,AB 是⊙O 的直径,点C 为的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,BD 连接BD 交CF 于点G ,连接CD ,AD ,BF .(1)求证:△BFG ≌△CDG ;(2)若AD =BE =2,求BF 的长.【点拨】(1)根据AAS 证明:△BFG ≌△CDG ;(2)解法一:连接OF ,设⊙O 的半径为r ,由CF =BD 列出关于r 的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt △AHC ≌Rt △AEC (HL ),得AE =AH ,再证明Rt △CDH ≌Rt △CBE (HL ),得DH =BE =2,计算AE 和AB 的长,证明△BEC ∽△BCA ,列比例式可得BC 的长,就是BF 的长.解法三:连接OC ,根据垂径定理和三角形的中位线定理可得OH =1,证明△COE ≌△BOH ,并利用勾股定理可得结论.【解析】证明:(1)∵C 是的中点,BD ∴,CD =BC ∵AB 是⊙O 的直径,且CF ⊥AB ,∴,BC =BF ∴,CD =BF ∴CD =BF ,在△BFG 和△CDG 中,∵,{∠F =∠CDG ∠FGB =∠DGC BF =CD∴△BFG ≌△CDG (AAS );(2)解法一:如图,连接OF ,设⊙O 的半径为r ,Rt △ADB 中,BD 2=AB 2﹣AD 2,即BD 2=(2r )2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,CD=BC=BF∵,BD=CF∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,3∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,CD=BC∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH =CE ,CD =CB ,∴Rt △CDH ≌Rt △CBE (HL ),∴DH =BE =2,∴AE =AH =2+2=4,∴AB =4+2=6,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACB =∠BEC =90°,∵∠EBC =∠ABC ,∴△BEC ∽△BCA ,∴,BC AB =BE BC∴BC 2=AB •BE =6×2=12,∴BF =BC =2.3解法三:如图,连接OC ,交BD 于H ,∵C 是的中点,BD ∴OC ⊥BD ,∴DH =BH ,∴OH AD =1,=12∵OC =OB ,∠COE =∠BOH ,∠OHB =∠OEC =90°,∴△COE ≌△BOH (AAS ),∴OH =OE =1,∴CE =EF 2,=32‒12=2∴BF 2.=BE 2+EF 2=22+(22)2=3【点睛】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.(2019•自贡)如图,⊙O 中,弦AB 与CD 相交于点E ,AB =CD ,连接AD 、BC .求证:(1);(2)AE =CE .AD =BC【点拨】(1)由AB =CD 知,即,据此可得答案;AB =CD AD +AC =BC +AC (2)由知AD =BC ,结合∠ADE =∠CBE ,∠DAE =∠BCE 可证△ADE ≌△CBE ,从而得出答AD =BC 案.【解析】证明(1)∵AB =CD ,∴,即,AB =CD AD +AC =BC +AC ∴;AD =BC (2)∵,AD =BC又∵∠ADE =∠CBE ,∠DAE =∠BCE ,∴△ADE ≌△CBE (ASA ),∴AE =CE .【点睛】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.11.(2019•达州)如图,⊙O 是△ABC 的外接圆,∠BAC 的平分线交⊙O 于点D ,交BC 于点E ,过点D作直线DF ∥BC .(1)判断直线DF 与⊙O 的位置关系,并说明理由;(2)若AB =6,AE ,CE ,求BD 的长.=1235=475【点拨】(1)连接OD ,根据角平分线的定义得到∠BAD =∠CAD ,求得,根据垂径定理得到BD =CD OD ⊥BC ,根据平行线的性质得到OD ⊥DF ,于是得到DF 与⊙O 相切;(2)根据相似三角形的判定和性质即可得到结论.【解析】解:(1)DF 与⊙O 相切,理由:连接OD ,∵∠BAC 的平分线交⊙O 于点D ,∴∠BAD =∠CAD ,∴OD ⊥BC ,∵DF ∥BC ,∴OD ⊥DF ,∴DF 与⊙O 相切;(2)∵∠BAD =∠CAD ,∠ADB =∠C ,∴△ABD ∽△AEC ,∴,AB AE =BD CE ∴,61235=BD475∴BD .=2213【点睛】本题主要考查的是直线与圆的位置关系,相似三角形的性质和判定、等腰三角形的性质、切线的判定,证得∠BAD =∠DAC 是解题的关键.。

圆的基本性质(含答案).docx

圆的基本性质(含答案).docx

.圆的基本性质基础知识回放考点 1对称性圆既是① _____对称图形,又是______②对称图形。

任何一条直径所在的直线都是它的____③。

它的对称中心是 _____④。

同时圆又具有旋转不变性。

温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。

考点 2垂径定理定理:垂直于弦的直径平分⑤并且平分弦所对的两条___⑥。

常用推论:平分弦(不是直径)的直径垂直于⑦,并且平分弦所对的两条_____⑧。

温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。

在这里总结一下:( 1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;( 2)常用的辅助线:连接半径;过顶点作垂线;( 3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;( 4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点 3圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧⑨,所对的弦也 _____⑩。

常用的还有:( 1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角○,所对的弦___11○。

_____12( 2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角○,所对的弧○____13______14。

方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。

温馨提示:(1)上述定理中不能忽视“在同圆或等圆中”这个条件。

否则,虽然圆心角相等,但是所对的弧、弦也不相等。

以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的弧与弦都不相等。

中考数学复习圆的基本性质练习题含答案解析

中考数学复习圆的基本性质练习题含答案解析

第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6.(2019西安高新一中模拟)如图,四边形ABCD内接于⊙O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O中,弦AB∥CD,连接BC,OA,OD.若∠BCD=25°,CD=OD,则∠AOD的度数是()A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 32第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O 中,弦BC 、DE 所对的圆周角分别是∠A 、∠F ,且∠A +∠F =90°.若BC =4,则DE 的长为( )A. 13B. 4C. 5D. 25第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°. 9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE=360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB = OA 2+OB 2=52+52=5 2.第4题解图5. 174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图。

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》中考集锦(含答案)

初中数学《圆的基本性质》好题集锦一、圆的有关线段和角1.如图所示,已知△ABC 内接于⊙O ,AB =AC ,∠BOC =120°,延长BO 交⊙O 于D 点.(1)试求∠BAD 的度数; (2)求证:△ABC 为等边三角形.2.如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ;(2)若AB =24,ON =1,求⊙O 的半径.3.已知,在⊙O 中,AB 是⊙O 的直径,点C .、P 在AB 的两侧,AC =21AB ,连接CP ,BP . (Ⅰ)如图①,若CP 经过圆心,求∠P 的大小;(Ⅱ)如图②,点D 是PB 上一点,CD ⊥PB ,若CP ⊥AB ,求∠BCD 的大小.4.如图,⊙P 的圆心的坐标为(2,0),⊙P 经过点)25,4(B .(1)求⊙P 的半径r ;(2)⊙P 与坐标轴的交点A ,E ,C ,F 的坐标;(3)点B 关于x 轴的对称点D 是否在⊙P 上,请说明理由.5.如图,AB 是⊙O 的直径,C 是BD 的中点,CE ⊥AB 于 E ,BD 交CE 于点F . (1)求证:CF =BF ;(2)若CD =6,AC =8,求CE 的长.6.已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD . (1)求证:∠DAC =∠DBA ; (2)求证:P 是线段AF 的中点;(3)连接CD ,若CD =3,BD =4,求⊙O 的半径和DE 的长.7.如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F,且∠CAD =60°,DC=DE.求证:(1)AB=AF;(2)A为△BEF的外心(即△BEF外接圆的圆心).二、圆与四边形8.如图,在四边形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,过点C作CE∥AD交△ABC 的外接圆O于点E,连结A E.(1)求证:四边形AECD为平行四边形;(2)连结CO,求证:CO平分∠BCE.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)在平行四边形、矩形、菱形、正方形中,一定是“十字形”的有________.(2)如图1,在四边形ABCD中,AB=AD,且CB=CD①证明:四边形ABCD是“十字形”;②若AB=2.∠BAD=60°,∠BCD=90°,求四边形ABCD的面积.(3)如图2.A、B、C、D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,若∠ADB﹣∠CDB=∠ABD﹣∠CBD.满足AC+BD=3,求线段OE的取值范围.三、圆的综合运用12.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD┴OP交圆O于点D.(1)如图1,当PD∥AB时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.13.如图,点E为⊙O的直径AB上一个动点,点C、D在下半圆AB上(不含A、B两点),且∠CED=∠OED=60°,连OC、OD(1)求证:∠C=∠D;(2)若⊙O的半径为r,请直接写出CE+ED的变化范围(用含r的代数式表示).14.如图,有两条公路OM、ON相交成 30°角,沿公路OM方向离O点 80 米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心 50 米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为 18 千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.(1)求证:∠BFC=∠ABC.(2)若⊙O的半径为5,CF=6,求AF长.《圆的基本知识好题》参考答案1.解:(1)∵BD是⊙O的直径,∴∠BAD=90°(直径所对的圆周角是直角).(2)证明:∵∠BOC =120°,∴∠BAC =21∠BOC =60°.又∵AB =AC ,∴△ABC 是等边三角形. 2.(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD , ∴∠BAM =∠BAD ,,∴△ANE ≌△ADE (A S A ),∴AN =AD ;(2)解:∵AB =42,AE ⊥CD ,∴AE =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,解图,连接AO ,则AO =OD =2x -1,第2题解图3.解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =21AB ,∴∠ABC =30°,∴∠A =90°-∠ABC =60°, ∴∠P =∠A =60°;(Ⅱ) ∵AB 是⊙O 的直径,AC =21AB , ∴∠A =60°,∴∠BPC =∠A =60°, ∵CD ⊥PB ∴∠PCD =90°-BPC =30°,∵CP ⊥AB ,AB 是⊙O 的直径, ∴BC =BP ,∴∠P =∠BCP =60°,∴∠BCD =∠BCP -∠PCD =60°-30°=30°.4..解:(1)过点B 作x 轴的垂线,交x 轴于点G ,连接BP . 则点G 坐标为(4,0).在Rt △PBG 中,PG =4-2=2,BG =25,斜边PB =241∴⊙P 的半径r =241.(2)点E 坐标为(2-241,0),点F 坐标为(2+241,0)∵点A 坐标的y 值=25,∴点A 坐标为(0,25).点C 坐标为(0,-25). (3)∵⊙P 关于x 轴对称,又∵B 与D 关于x 轴对称,∴D 在⊙P 上.5.证明:如图.∵AB 是⊙O 的直径,∴∠ACB =90°,又∵CE ⊥AB ,∴∠CEB =90°.∴∠2=90°-∠ACE =∠A . 又∵C 是弧BD 的中点,∴∠1=∠A .∴∠1=∠2,∴ CF =BF .(2)此时,CE =5246.(1)证明:∵BD 平分∠CBA , ∴∠CBD =∠DBA ,∵∠DAC 与∠CBD 都是弧CD 所对的圆周角, ∴∠DAC =∠CBD , ∴∠DAC =∠DBA ;(2)证明:∵AB 为直径, ∴∠ADB =90°,∵DE ⊥AB 于E , ∴∠DEB =90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2, ∴PD =P A ,∵∠4+∠2=∠1+∠3=90°,且∠ADB =90°,∴∠3=∠4, ∴PD =PF ,∴P A =PF ,即P 是线段AF 的中点;(3)解:连接CD , ∵∠CBD =∠DBA ,∴CD =AD ,∵CD =3,∴AD =3, ∵∠ADB =90°,AB =5,⊙O 的半径为2.5,∵DE ×AB =AD ×BD ,∴5DE =3×4, ∴DE =2.4.即DE 的长为2.4.7.(1)证明:∠ABF =∠ADC =120°﹣∠ACD =120°﹣∠DEC =120°﹣(60°+∠ADE )=60°﹣∠ADE , 而∠F =60°﹣∠ACF , 因为∠ACF =∠ADE ,所以∠ABF =∠F ,所以AB =AF .(2)证明:四边形ABCD 内接于圆,所以∠ABD =∠ACD , 又DE =DC ,所以∠DCE =∠DEC =∠AEB , 所以∠ABD =∠AEB , 所以AB =AE . ∵AB =AF ,∴AB =AF =AE ,即A 是三角形BEF 的外心.8.(1)根据圆周角定理知∠E =∠B , 又∵∠B =∠D ,∴∠E =∠D .∵AD ∥CE ,∴∠D +∠DCE =180°, ∴∠E +∠DCE =180°,∴AE ∥DC ,∴四边形AECD 为平行四边形. (2)如图,连结OE ,OB ,由(1)得四边形AECD 为平行四边形, ∴AD =EC .又∵AD =BC ,∴EC =BC . ∵OC =OC ,OB =OE , ∴△OCE ≌△OCB (SSS ),∴∠ECO =∠BCO ,即OC 平分∠BCE .9.11.解:连接OB ,OC ,∵四边形ABCD 为正方形,∴∠BOC =90°,∴∠BPC =21∠BOC =45°;(2)解:过点O 作OE ⊥BC 于点E , ∵OB =OC ,∠BOC =90°,∴∠OBE =45°,∴OE =BE ,∵OE 2+BE 2=OB 2 , ∴BE = 24 ∴BC =2BE =2810.解析:(1)∵A B 是直径, ∴∠AEB =90°,∴AE ⊥BC , ∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形, ∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°, ∴AB2﹣AD2=CB2﹣CD2, ∴(7+x )2﹣72=42﹣x 2, 解得x=1或﹣8(舍弃)∴AC=8,BD=157822=-, ∴S 菱形ABF C=158. ∴S 半圆=ππ84212=⨯11.15. (1)菱形,正方形(2)解:①如图1,连接AC ,BD∵AB =AD ,且CB =CD∴AC 是BD 的垂直平分线,∴AC ⊥BD ,∴四边形ABCD 是“十字形”②如图,设AC 与BD 交于点O∵AB =AD ,AC ⊥BD∴∠BAO =∠BAD =30°同理可证∠BCO =45°在Rt △ABO 中,OB =1AO =AB ×cos30°=3OB =OC =1∴AC =AO +CO =1+3, BD =2∴ 四边形ABCD 的面积=21×AB ×BD =21×2×(1+3)=1+3(3)解:如图2∵∠ADB +∠CBD =∠ABD +∠CDB ,∠CBD =∠CDB =∠CAB ,∴∠ADB +∠CAD =∠ABD +∠CAB ,∴180°﹣∠AED =180°﹣∠AEB ,∴∠AED =∠AEB =90°,∴AC ⊥BD ,过点O 作OM ⊥AC 于M ,ON ⊥BD 于N ,连接OA ,OD ,∴OA =OD =1,OM 2=OA 2﹣AM 2 , ON 2=OD 2﹣DN 2 , AM =21AC ,DN = 21BD ,四边形OMEN 是矩形,∴ON =ME ,OE 2=OM 2+ME 2 ,∴OE 2=OM 2+ON 2=2﹣41(AC 2+BD 2) 设AC =m ,则BD =3﹣m ,∵⊙O 的半径为1,AC +BD =3,∴1≤m≤2,∴41423≤≤OE由图可知:以 50m 为半径画圆,分别交 ON 于 B ,C 两点,AD ⊥BC ,BD =CD =21BC ,OA =80m , ∵在 Rt △AOD 中,∠AOB =30°,AD = 21OA = 21×80=40m , 在 Rt △ABD 中,AB =50,AD =40,由勾股定理得:BD =30m , 故BC =2×30=60 米,即重型运输卡车在经过 BC 时对学校产生影响.∵重型运输卡车的速度为 18 千米/小时,即300 米/分钟,∴重型运输卡车经过 BC 时需要 60÷300=0.2(分钟)=12(秒).答:卡车 P 沿道路 ON 方向行驶一次给学校 A 带来噪声影响的时间为 12 秒.15.(1)连接PA ,如图1所示.∵PO ⊥AD ,∴AO =DO .∵AD =2,∴OA =.点P 坐标为(﹣1,0),∴OP =1.∴PA ==2.∴BP =CP =2. ∴B (﹣3,0),C (1,0). (2)连接AP ,延长AP 交⊙P 于点M ,连接MB 、MC .如图2所示,线段MB 、MC 即为所求作. 四边形AC MB 是矩形.理由如下∵△MCB 由△ABC 绕点P 旋转180°所得,∴四边形ACMB 是平行四边形.∵BC 是⊙P 的直径,∴∠CAB =90°.∴平行四边形ACMB 是矩形.过点M 作MH ⊥BC ,垂足为H ,如图2所示.在△MHP 和△AOP 中,∵∠MHP =∠AOP ,∠HPM =∠OPA ,MP =AP ,∴△MHP ≌△AOP .∴MH =OA =,PH =PO =1.∴OH =2.∴点M 的坐标为(﹣2,).(3)在旋转过程中∠MQG 的大小不变.∵四边形ACMB 是矩形,BMC =90°.EG ⊥BO ,∴∠BGE =90°.∴∠BMC =∠BGE =90°.∵点Q 是BE 的中点,∴QM =QE =QB =QG .∴点E 、M 、B 、G 在以点Q 为圆心,QB 为半径的圆上,如图3所示.∴∠MQG =2∠MBG .∵∠COA =90°,OC =1,OA =,∴tan ∠OCA =.∴∠OCA =60°.∴∠MBC =∠BCA =60°.MQG =120°.∴在旋转过程中∠MQG 的大小不变,始终等于120°.16.(1)证明:连结AD ,∵BD 是⊙O 的直径,∴∠BAD =90°,∵CF ⊥BD ,∴∠BEF =90°,∵∠ABD +∠ADB =90°,∠ABD +∠BFE =90°,∴∠BFC =∠ADB ,∵AB =AC ,∴∠ABC =∠ACB ,∵∠ACB =∠ADB ,∴∠BFC =∠ABC .(2)解:连结CD ,∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠BFC =∠ABC ,∴BC =CF =6,∵BD =10,∴CD =8在Rt △BCE 中,BE=518,CE =524,56 EF , ,∴AF =AB -BF =1059。

圆的有关性质(共30道)—2023年中考数学真题(全国通用)(解析版)

圆的有关性质(共30道)—2023年中考数学真题(全国通用)(解析版)

圆的有关性质(30道)一、单选题 为O 的两条弦,的中点,O 的 【答案】D 【分析】连接,,OA OB AB ,圆周角定理得到290AOB C ∠=∠=︒,勾股定理求出AB ,三角形的中位线定理,即可求出DG 的长.【详解】解:连接,,OA OB AB ,∵O 的半径为2.45C ∠=︒,∴2,290OA OB AOB C ==∠=∠=︒,∴AB ∵D ,G 分别为,AC BC 的中点,∴DG 为ABC 的中位线,∴12DG AB ==故选D .【点睛】本题考查圆周角定理和三角形的中位线定理.熟练掌握相关定理,并灵活运用,是解题的关键.2.(2023·辽宁阜新·统考中考真题)如图,A ,B ,C 是O 上的三点,若9025AOC ACB ∠=︒∠=︒,,则BOC ∠的度数是( )A .20︒B .25︒C .40︒D .50︒【答案】C 【分析】先利用圆周角定理求出50AOB ∠=︒,然后利用角的和差关系进行计算,即可解答.【详解】解:∵25ACB ∠=︒,∴250AOB ACB ∠=∠=︒,∵=90AOC ∠︒,∴40BOC AOC AOB ∠=∠−∠=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.3.(2023·黑龙江哈尔滨·统考中考真题)如图,AB 是O 的切线,A 为切点,连接OA ﹐点C 在O 上,OC OA ⊥,连接BC 并延长,交O 于点D ,连接OD .若65B ∠=︒,则DOC ∠的度数为( )A .45︒B .50︒C .65︒D .75︒【答案】B 【分析】利用垂线的性质及切线的性质得到90OAB ∠=︒和=90AOC ∠︒,再利用四边形的内角和为360︒进而可求得65OCD ∠=︒,再利用等边对等角及三角形的内角和即可求解.【详解】解:OC OA ⊥Q ,90AOC ∴∠=︒,又AB 是O 的切线,OA AB ∴⊥,90OAB ︒∴∠=,又65B ∠=︒,360115OCB OAB AOC B ∴∠=︒−∠−∠−∠=︒,18065OCD OCB ∴∠=︒−∠=︒,又OC OD =,65ODC OCD ∴∠=∠=︒,180250DOC ODC ∴∠=︒−∠=︒,故选B .【点睛】本题考查了圆的切线的性质,四边形内角和是360︒,等腰三角形的性质及三角形的内角和,熟练掌握其基本知识是解题的关键. 是O 的一部分,,则O 的半径 A .13cmB .16cmC .17cmD .26cm【答案】A 【分析】首先利用垂径定理的推论得出OD AB ⊥,1122AC BC AB cm ===,再设O 的半径OA 为cm R ,则()8cmOC R =−.在Rt OAC 中根据勾股定理列出方程22212(8)R R =+−,求出R 即可. 【详解】解:AB 是O 的一部分,D 是AB 的中点,24cm AB =,OD AB ∴⊥,112cm 2AC BC AB ===. 设O 的半径OA 为cm R ,则(8)cm OC OD CD R =−=−.在Rt OAC 中,90OCA ∠=︒,222OA AC OC ∴=+,22212(8)R R ∴=+−,13R ∴=,即O 的半径OA 为13cm .故选:A .【点睛】本题考查了垂径定理、勾股定理的应用,设O 的半径OA 为cm R ,列出关于R 的方程是解题的关键. 在O 上,∠.若O 的 【答案】D 【分析】先利用圆周角定理求出AOC ∠的度数,然后利用扇形面积公式求解即可.【详解】解:∵40ABC ∠=︒,∴280AOC ABC ∠=∠=︒,又O 的半径为3,∴扇形AOC (阴影部分)的面积为28032360ππ⨯=.故选:D .【点睛】本题考查的是圆周角定理,扇形面积公式等,掌握“同弧所对的圆周角是它所对的圆心角的一半”是解题的关键.6.(2023·湖南娄底·统考中考真题)如图,正六边形ABCDEF 的外接圆O 的半径为2,过圆心O 的两条直线1l 、2l 的夹角为60︒,则图中的阴影部分的面积为( )A .433π−B .【答案】C【分析】如图,连接AO ,标注直线与圆的交点,由正六边形的性质可得:A ,O ,D 三点共线,COD △为等边三角形,证明扇形AOQ 与扇形COG 重合,可得COD COD S S S =−阴影扇形,从而可得答案.【详解】解:如图,连接AO ,标注直线与圆的交点,由正六边形的性质可得:A ,O ,D 三点共线,COD △为等边三角形,∴AOQ DOH ∠=∠,60COD GOH ∠=∠=︒,∴COG DOH AOQ ∠=∠=∠,∴扇形AOQ 与扇形COG 重合,∴COD COD S S S =−阴影扇形,∵COD △为等边三角形,2OC OD ==,过O 作OK CD ⊥于K ,∴60COD ∠=︒,1CK DK ==,OK∴260212236023COD COD S S S ππ⨯=−==⨯=阴影扇形故选C【点睛】本题考查的是正多边形与圆,扇形面积的计算,勾股定理的应用,熟记正六边形的性质是解本题的关键.内接于O ,O 的半径为 A .π【答案】C 【分析】根据圆内接四边形的性质得到=60B ∠︒,由圆周角定理得到120AOC ∠=︒,根据弧长的公式即可得到结论.【详解】解:四边形ABCD 内接于O ,120D ∠=︒,60B ∴∠=︒,2120AOC B ∴∠=∠=︒,AC ∴的长12032180ππ⨯==. 故选:C .【点睛】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.A .225πm 3B .2125πm 3【答案】B【分析】种草区域的面积等于大扇形面积减去小扇形面积,利用利用扇形的面积公式计算即可.【详解】解∶∵120AOB ∠=︒,15m OA =,10m OC =,∴种草区域的面积为2221201512010125(m )3603603πππ⋅⋅−=,故选:B . 【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式:扇形面积2360n r π=. 如图,O 是ABC 的外接圆, 【答案】C【分析】先根据等腰三角形的性质以及三角形内角和定理求得180302120BOC ∠=︒−︒⨯=︒,再根据扇形的面积公式即可求解.【详解】解:∵OC OB =,OA =,40CAO ∠=︒,∴40OCA OAC ∠=∠=︒,OCB OBC ∠=∠,∵70ACB ∠=︒,∴704030OBC OCB ACB ACO ∠=∠=∠−∠=︒−︒=︒,∴180302120BOC ∠=︒−︒⨯=︒,∴22120116ππ4π36033S r ︒=⨯=⨯⨯=︒阴影,故选:C .【点睛】本题考查等腰三角形的性质、三角形内角和定理以及扇形的面积公式等知识,求出120BOC ∠=︒是解答的关键.10.(2023·山东泰安·统考中考真题)如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是( )A .25︒B .30︒C .35︒D .40︒【答案】A 【分析】根据圆内接四边形对角互补和直径所对圆周角等于90度求解即可.【详解】解:∵115ADC ∠=︒,∴65B ∠=︒,∵AB 是O 的直径,∴90ACB ∠=︒,∴180906525BAC ∠=︒−︒−︒︒=,故选:A .【点睛】本题考查圆的性质,涉及到圆内接四边形对角互补和直径所对圆周角等于90度,熟记知识点是关键.11.(2023·黑龙江牡丹江·统考中考真题)如图,A ,B ,C 为O 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BAC ∠的度数是( )A .20︒B .18︒C .15︒D .12︒【答案】C 【分析】由60ACB ∠=︒,可得2120AOB ACB ∠=∠=︒,结合4AOB BOC ∠=∠,可得1120304BOC ∠=⨯︒=︒,再利用圆周角定理可得答案.【详解】解:∵60ACB ∠=︒,∴2120AOB ACB ∠=∠=︒,∵4AOB BOC ∠=∠, ∴1120304BOC ∠=⨯︒=︒, ∴1152BAC BOC ∠=∠=︒,故选C .【点睛】本题考查的是圆周角定理的应用,熟记圆周角定理的含义是解本题的关键. 统考中考真题)如图,等圆1O 和2O 相交于两点,1O 经过2O 的圆心 A .2πB .43π 【答案】D【分析】先证明12ACO BCO ≌,再把阴影部分面积转换为扇形面积,最后代入扇形面积公式即可.【详解】如图,连接2O B ,1O B ,∵等圆1O 和2O 相交于A ,B 两点 ∴12O O AB ⊥,AC BC = ∵1O 和2O 是等圆 ∴11212O A O O O B O B === ∴12O O B 是等边三角形∴1260O O B ∠=︒∵1290ACO BCO ∠=∠=︒,AC BC =,21O A B O =∴12ACO BCO ≌ ∴121211*********ACO BCO BCO BCO BO O S S S S S S ππ=+=+===图形图形扇形.故选:D .【点睛】本题考查了相交弦定理,全等的判定及性质,扇形的面积公式,转化思想是解题的关键. 13.(2023·辽宁营口·统考中考真题)如图所示,AD 是O 的直径,弦BC 交AD 于点E ,连接AB AC ,,若30BAD ∠=︒,则ACB ∠的度数是( )A .50︒B .40︒C .70︒D .60︒【答案】D 【分析】如图所示,连接CD ,先由同弧所对的圆周角相等得到30BCD BAD ∠=∠=︒,再由直径所对的圆周角是直角得到=90ACD ∠︒,则60ACB ACD BCD =−=︒∠∠∠.【详解】解:如图所示,连接CD ,∵30BAD ∠=︒,∴30BCD BAD ∠=∠=︒,∵AD 是O 的直径,∴=90ACD ∠︒,∴60ACB ACD BCD =−=︒∠∠∠,故选D .【点睛】本题主要考查了同弧所对的圆周角相等,直径所对的圆周角是直角,正确求出ACD BCD ∠,∠的度数是解题的关键. 统考中考真题)如图,在ABC 中,ACA .3533π−B .【答案】C 【分析】连接OD ,BD ,作OH CD ⊥交CD 于点H ,首先根据勾股定理求出BC 的长度,然后利用解直角三角形求出BD 、CD 的长度,进而得到OBD 是等边三角形,60BOD ∠=︒,然后根据30︒角直角三角形的性质求出OH 的长度,最后根据ACB COD ODB S S S S =−−形阴影扇进行计算即可.【详解】解:如图所示,连接OD ,BD ,作OH CD ⊥交CD 于点H∵在ABC 中,90ABC ∠=︒,30ACB ∠=︒,4AB =,∴tan tan 30AB AB BC ACB ===∠︒, ∵点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,∴BC 是半圆的直径,∴90CDB ∠=︒,∵30ACB ∠=︒,∴12BD BC ==cos 6CD BC BCD =⋅∠==,又∵12OB OC OD BC ==== ∴OB OD BD ==,∴OBD 是等边三角形,∴60BOD ∠=︒,∵OH CD ⊥,30OCH ∠=︒,∴12OH OC ==∴(2601146222360ACB COD ODB S S S S ππ∆∆⨯=−−=⨯⨯−=形阴影扇.故选:C . 【点睛】本题考查了30︒角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键. 15.(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA OB =;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a b ∥.按以上作图顺序,若35MNO ∠=︒,则AOC ∠=( )A .35︒B .30︒C .25︒D .20︒【答案】A 【分析】证明35NMO MNO ∠=∠=︒,可得23570AOB ∠=⨯︒=︒,结合OA OB =,C 为AB 的中点,可得35AOC BOC ∠=∠=︒.【详解】解:∵35MNO ∠=︒,MO NO =,∴35NMO MNO ∠=∠=︒,∴23570AOB ∠=⨯︒=︒,∵OA OB =,C 为AB 的中点,∴35AOC BOC ∠=∠=︒,故选A .【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键. 16.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是( )A .25︒B .30︒C .35︒D .40︒【答案】A 【分析】根据圆内接四边形对角互补得出18010575A ∠=︒−︒=︒,根据圆周角定理得出2150BOD A ∠=∠=︒,根据已知条件得出1503COD BOD ∠=∠=︒,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,105BCD ∠=︒,∴18010575A ∠=︒−︒=︒∴2150BOD A ∠=∠=︒∵2BOC COD ∠=∠∴1503COD BOD ∠=∠=︒,∵CD CD =∴11502522CBD COD ∠=∠=⨯︒=︒,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.17.(2023·内蒙古·统考中考真题)如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为( )A .8B .4C .3.5D .3【答案】B 【分析】根据三角形外接圆的性质得出点D 、E 、F 分别是AB BC AC 、、的中点,再由中位线的性质及三角形的周长求解即可.【详解】解:∵O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,∴点D 、E 、F 分别是AB BC AC 、、的中点, ∴111,,222DF BC DE AC EF AB ===,∵ 6.5,DE DF ABC +=△的周长为21,∴21CB CA AB ++=即22221DF DE EF ++=,∴4EF =,故选:B .【点睛】题目主要考查三角形外接圆的性质及中位线的性质,理解题意,熟练掌握三角形外接圆的性质是解题关键. 18.(2023·湖南·统考中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA '的长为( )A .4πB .6πC .8πD .16π【答案】C 【分析】根据底面周长等于AA '的长,即可求解.【详解】解:依题意,AA '的长2π48π=⨯=,故选:C .【点睛】本题考查了圆锥的侧面展开图的弧长,熟练掌握圆锥底面周长等于AA '的长是解题的关键. 19.(2023·吉林·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒B .105︒C .125︒D .155︒【答案】D 【分析】根据圆周角定理得出2140BOC BAC ∠=∠=︒,进而根据三角形的外角的性质即可求解.【详解】解:∵BC BC =,70BAC ∠=︒,∴2140BOC BAC ∠=∠=︒,∵140BPC BOC PCO ∠=∠+∠≥︒,∴BPC ∠的度数可能是155︒故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.A .26π+B .【答案】A 【分析】由于AD l 是定值,只需求解AC CD +的最小值即可,作点D 关于OB 对称点D ¢,连接AD '、CD '、OD ',则AC CD +最小值为AD '的长度,即阴影部分周长的最小最小值为AD AD l '+.利用角平分线的定义可求得90AOD '∠=︒,进而利用勾股定理和弧长公式求得AD '和AD l 即可.【详解】解:如图,作点D 关于OB 对称点D ¢,连接AD '、CD '、OD ',则CD CD '=,OD OD '=,DOB BOD '∠=∠,∴AC CD AC CD AD ''+=+≥,当A 、C 、D ¢共线时取等号,此时,AC CD +最小,即阴影部分周长的最小,最小值为AD AD l '+.∵OD 平分AOB ∠,60AOB ∠=︒, ∴1302AOD DOB AOB ∠=∠=∠=︒, ∴90AOD '∠=︒,在Rt OAD '中,1OA OD '==,∴AD '== 又30π1π1806AD l ⨯==,∴阴影部分周长的最小值为π6AD AD l '+=,故选:A . 【点睛】本题考查弧长公式、勾股定理、角平分线的定义、轴对称性质,能利用轴对称性质求解最短路径问题是解答的关键.二、填空题 21.(2023·江苏·统考中考真题)如图,AD 是O 的直径,ABC 是O 的内接三角形.若DAC ABC ∠=∠,4AC =,则O 的直径AD = .【答案】【分析】连接CD ,OC ,根据在同圆中直径所对的圆周角是90︒可得=90ACD ∠︒,根据圆周角定理可得COD COA ∠=∠,根据圆心角,弦,弧之间的关系可得AC CD =,根据勾股定理即可求解.【详解】解:连接CD ,OC ,如图:∵AD 是O 的直径,∴=90ACD ∠︒,∵DAC ABC ∠=∠,∴COD COA ∠=∠,∴AC CD =,又∵4AC =,∴4CD =,在Rt ACD △中,AD ,故答案为:【点睛】本题考查了在同圆中直径所对的圆周角是90︒,圆周角定理,圆心角,弦,弧之间的关系,勾股定理,熟练掌握以上知识是解题的关键. 22.(2023·江苏南通·统考中考真题)如图,AB 是O 的直径,点C ,D 在O 上.若66DAB ∠=︒, 则ACD ∠= 度.【答案】24【分析】连接BC ,根据直径所对的圆周角是直角,同弧所对的圆周角相等,可得90ACB ∠=︒,66DCB DAB ∠=∠=︒,进而即可求解.【详解】解:如图所示,连接BC ,∵AB 是直径,∴90ACB ∠=︒,∵BD BD =,66DAB ∠=︒,∴66DCB DAB ∠=∠=︒,∴906624ACD ACB DCB ∠=∠−∠=︒−︒=︒,故答案为:24.【点睛】本题考查了直径所对的圆周角是直角,同弧所对的圆周角相等,熟练掌握圆周角定理的推论是解题的关键. 23.(2023·山东济南·统考中考真题)如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为 (结果保留π).【答案】65π【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A ∠的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和()52180540=−⨯︒=︒,5401085A ︒∴∠==︒, 2108263605ABE S ππ∴==扇形,故答案为:65π.【点睛】本题考查了扇形面积和正多边形内角和的计算,熟练掌握扇形面积公式和正多边形内角和公式是解答本题的关键. 24.(2023·宁夏·统考中考真题)如图,四边形ABCD 内接于O ,延长AD 至点E ,已知140AOC ∠=︒,那么CDE ∠= ︒.【答案】70【分析】根据圆周角定理得到70B ∠=︒,再根据圆内接四边形性质和平角的定义即可得解.【详解】解:∵140AOC ∠=︒,∴7201B AOC ∠∠=︒=,∵四边形ABCD 内接于O ,∴180B ADC ∠+∠=︒,∵180CDE ADC ∠+∠=︒,∴70CDE B ∠=∠=︒,故答案为:70.【点睛】此题考查了圆内接四边形的性质、圆周角定理,熟记圆内接四边形的性质、圆周角定理是解题的关键.25.(2023·湖南·统考中考真题)如图,点A ,B ,C 在半径为2的O 上,60ACB ∠=︒,OD AB ⊥,垂足为E ,交O 于点D ,连接OA ,则OE 的长度为 .【答案】1【分析】连接OB ,利用圆周角定理及垂径定理易得60AOD ∠=︒,则30OAE ∠=︒,结合已知条件,利用直角三角形中30︒角对的直角边等于斜边的一半即可求得答案.【详解】解:如图,连接OB ,∵60ACB ∠=︒,∴2120AOB ACB ∠=∠=︒,∵OD AB ⊥,∴AD BD =,90OEA ∠=︒, ∴1602AOD BOD AOB ∠=∠=∠=︒,∴906030OAE ∠=︒−︒=︒, ∴112122OE OA ==⨯=,故答案为:1.【点睛】本题考查圆与直角三角形性质的综合应用,结合已知条件求得60AOD ∠=︒是解题的关键. 26.(2023·江苏徐州·统考中考真题)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥母线l =6,扇形的圆心角120θ=°,则该圆锥的底面圆的半径r 长为 .【答案】2【分析】结合题意,根据弧长公式,可求得圆锥的底面圆周长.再根据圆的周长的公式即可求得底面圆的半径长.【详解】∵母线l 长为6,扇形的圆心角120θ=°,∴圆锥的底面圆周长12064180ππ⨯==,∴圆锥的底面圆半径422r ππ==.故答案为:2. 【点睛】本题考查圆锥的侧面展开图的相关计算,弧长公式等知识.掌握圆锥侧面展开图的弧长等于圆锥底面圆的周长是求解本题的关键. 27.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是 寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由6AB =可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA ,AB CD ⊥,且10AB =寸,5AE BE ∴==寸,设圆O 的半径OA 的长为x ,则OC OD x ==,1CE =Q ,1OE x ∴=−,在直角三角形AOE 中,根据勾股定理得:222(1)5x x −−=,化简得:222125x x x −+−=,即226x =,26CD ∴=(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形. 28.(2023·内蒙古·统考中考真题)如图,正方形ABCD 的边长为2,对角线,AC BD相交于点O ,以点B 为圆心,对角线BD 的长为半径画弧,交BC 的延长线于点E ,则图中阴影部分的面积为 .【答案】π【分析】根据正方形的性质得出阴影部分的面积为扇形BED 的面积,然后由勾股定理得出BD =再由扇形的面积公式求解即可.【详解】解:正方形ABCD ,∴,,AO CO BO DO AD CD ===,45DBE ∠=︒,∴(SSS)AOD COB ≌,∵正方形ABCD 的边长为2,∴BD ==∴阴影部分的面积为扇形BED 的面积,即(245360ππ⨯⨯=,故答案为:π. 【点睛】题目主要考查正方形的性质及扇形的面积公式,理解题意,将阴影部分面积进行转化是解题关键. 29.(2023·吉林·统考中考真题)如图①,A ,B 表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O 是圆心,半径r 为15m ,点A ,B 是圆上的两点,圆心角120AOB ∠=︒,则AB 的长为 m .(结果保留π)【答案】10π 【分析】利用弧长公式π180n r l =直接计算即可.【详解】∵半径15m OA =,圆心角120AOB ∠=︒,∴AB l 120π1510π180⨯⨯==,故答案为:10π. 【点睛】本题考查了弧长计算,熟练掌握弧长公式π180n r l =,并规范计算是解题的关键. 30.(2023·广东深圳·统考中考真题)如图,在O 中,AB 为直径,C 为圆上一点,BAC ∠的角平分线与O 交于点D ,若20ADC ∠=︒,则BAD ∠= °.【答案】35【分析】由题意易得90ACB ∠=︒,20ADC ABC ∠=∠=︒,则有70BAC ∠=︒,然后问题可求解.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵AC AC =,20ADC ∠=︒,∴20ADC ABC ∠=∠=︒,∴70BAC ∠=︒,∵AD 平分BAC ∠,∴1352BAD BAC ∠∠==︒;故答案为35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.。

中考数学考点29圆的基本性质总复习(原卷版)

中考数学考点29圆的基本性质总复习(原卷版)

圆的基本性质【命题趋势】圆的基本性质是中考考查的重点,常以选择题,填空题和解答题考查为主;其中选择题和填空题的难度不会太大,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活。

【中考考查重点】一、运用垂径定理及其推论进行计算二、运用圆周角定理及其推论进行计算三、垂径定理雪与圆周角定理结合考点:圆的有关概念圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心,线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。

圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。

确定圆的条件:1)圆心;2)半径。

备注:圆心确定圆的位置,半径长度确定圆的大小。

【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。

圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

⏜,弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。

以A、B为端点的弧记作AB读作圆弧AB或弧AB。

等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

弦心距概念:从圆心到弦的距离叫做弦心距。

1.(2021秋•顺义区期末)如图,在⊙O中,如果=2,则下列关于弦AB与弦AC 之间关系正确的是()A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC 2.(2021秋•平原县期末)下列语句,错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦3.(2021秋•玉林期末)如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定考点:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

中考复习+九年级数学基础测试——(圆的基本性质)

中考复习+九年级数学基础测试——(圆的基本性质)

中考复习九年级数学基础测试——(圆的基本性质)一.选择题(共5小题)1.如图,O 的直径CD 垂直弦AB 于点E ,且2CE =,8DE =,则AB 的长为()A .2B .4C .6D .82.如图,已知A ,B ,C 在O 上,ACB 为优弧,下列选项中与AOB ∠相等的是()A .2C ∠B .4B ∠C .4A ∠D .B C∠+∠3.如图,CD 是O 的直径,弦AB CD ⊥于E ,连接BC 、BD ,下列结论中不一定正确的是()A .AE BE =B . AD BD =C .OE DE =D .90DBC ∠=︒4.如图是以ABC ∆的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos 5ACD ∠=,4BC =,则AC 的长为()A .1B .203C .3D .1635.如图,已知A ,B ,C 三点在O 上,AC BO ⊥于O ,55B ∠=︒,则BOC ∠的度数为()A .45︒B .35︒C .70︒D .80︒二.填空题(共6小题)6.如图,在半径为6cm 的O 中,点A 是劣弧 BC的中点,点D 是优弧 BC 上一点,且30D ∠=︒,下列四个结论:①OA BC ⊥;②63BC cm =;③3sin 2AOB ∠=;④四边形ABOC 是菱形.其中正确结论的序号是.7.如图,在O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为.8.如图,已知A 、B 、C 三点在O 上,AC BO ⊥于D ,55B ∠=︒,则BOC ∠的度数是.9.如图,AB 半圆的直径,点O 为圆心,5OA =,弦8AC =,OD AC ⊥,垂足为E ,交O 于D ,连接BE .设BEC α∠=,则tan α的值为.10.如图,OAC=,点P是O上的直径,C是O的半径为5,AB是O上一点,且6一个动点,点P与点C在直径AB的两侧(与A、B不重合),CQ PC⊥,交PB的延长线于点Q,则线段CQ长的取值范围是.11.如图,半径为6cm的O中,C、D为直径AB的三等分点,点E、F分别在AB两侧cm.的半圆上,60∠=∠=︒,连接AE、BF,则图中两个阴影部分的面积为2BCE BDF三.解答题(共3小题)12.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC BD=;(2)若大圆的半径10r=,且圆O到直线AB的距离为6,求AC的长.R=,小圆的半径813.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度3EF m=,=,弓形的高1AB m现计划安装玻璃,请帮工程师求出 AB所在圆O的半径r.14.如图所示,O上一点,OD AC⊥,∆的外接圆,AB是O是ABC的直径,D为O垂足为E,连接BD.(1)求证:BD平分ABC∠;(2)当30=.ODB∠=︒时,求证:BC OD中考复习九年级数学基础测试——(圆的基本性质)参考答案与试题解析一.选择题(共5小题)1.如图,O 的直径CD 垂直弦AB 于点E ,且2CE =,8DE =,则AB 的长为()A .2B .4C .6D .8【分析】根据2CE =,8DE =,得出半径为5,在直角三角形OBE 中,由勾股定理得BE ,根据垂径定理得出AB 的长.【解答】解:2CE = ,8DE =,5OB ∴=,3OE ∴=,AB CD ⊥ ,∴在OBE ∆中,得4BE =,28AB BE ∴==.故选:D .2.如图,已知A ,B ,C 在O 上, ACB 为优弧,下列选项中与AOB ∠相等的是()A .2C ∠B .4B ∠C .4A ∠D .B C∠+∠【分析】根据圆周角定理,可得2AOB C ∠=∠.【解答】解:如图,由圆周角定理可得:2AOB C ∠=∠.故选:A .3.如图,CD 是O 的直径,弦AB CD ⊥于E ,连接BC 、BD ,下列结论中不一定正确的是()A .AE BE =B . AD BD =C .OE DE =D .90DBC ∠=︒【分析】根据垂径定理及圆周角定理对各选项进行逐一分析即可.【解答】解:CD 是O 的直径,弦AB CD ⊥于E ,AE BE ∴=, AD BD=,故A 、B 正确;CD 是O 的直径,90DBC ∴∠=︒,故D 正确.故选:C .4.如图是以ABC ∆的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .已知3cos 5ACD ∠=,4BC =,则AC 的长为()A .1B .203C .3D .163【分析】由以ABC ∆的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD AB ⊥交AB 于D .易得ACD B ∠=∠,又由3cos 5ACD ∠=,4BC =,即可求得答案.【解答】解:AB 为直径,90ACB ∴∠=︒,90ACD BCD ∴∠+∠=︒,CD AB ⊥ ,90BCD B ∴∠+∠=︒,B ACD ∴∠=∠,3cos 5ACD ∠= ,3cos 5B ∴∠=,4tan 3B ∴∠=,4BC = ,tan AC B BC ∴∠=,∴443AC =,163AC ∴=.故选:D .5.如图,已知A ,B ,C 三点在O 上,AC BO ⊥于O ,55B ∠=︒,则BOC ∠的度数为()A .45︒B .35︒C .70︒D .80︒【分析】根据三角形的内角和得到35A ∠=︒,根据圆周角定理即可得到结论.【解答】解:AC BO ⊥ 于O ,55B ∠=︒,35A ∴∠=︒,270BOC A ∴∠=∠=︒,故选:C .二.填空题(共6小题)6.如图,在半径为6cm 的O 中,点A 是劣弧 BC的中点,点D 是优弧 BC 上一点,且30D ∠=︒,下列四个结论:①OA BC ⊥;②63BC cm =;③3sin AOB ∠=;④四边形ABOC 是菱形.其中正确结论的序号是①②③④.【分析】分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可.【解答】解: 点A 是劣弧 BC的中点,OA 过圆心,OA BC ∴⊥,故①正确;30D ∠=︒ ,30ABC D ∴∠=∠=︒,60AOB ∴∠=︒,点A 是劣弧 BC的中点,2BC CE ∴=,OA OB = ,6OA OB AB cm ∴===,cos3062BE AB ∴=︒=⨯= ,2BC BE ∴==,故②正确;60AOB ∠=︒ ,sin sin 602AOB ∴∠=︒=,故③正确;60AOB ∠=︒ ,AB OB ∴=,点A 是劣弧 BC的中点,AC AB ∴=,AB BO OC CA ∴===,∴四边形ABOC 是菱形,故④正确.故答案为:①②③④.7.如图,在O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为3.【分析】作OC AB ⊥于C ,连接OA ,根据垂径定理得到142AC BC AB ===,然后在Rt AOC ∆中利用勾股定理计算OC 即可.【解答】解:作OC AB ⊥于C ,连结OA ,如图,OC AB ⊥ ,118422AC BC AB ∴===⨯=,在Rt AOC ∆中,5OA =,3OC ∴==,即圆心O 到AB 的距离为3.故答案为:3.8.如图,已知A 、B 、C 三点在O 上,AC BO ⊥于D ,55B ∠=︒,则BOC ∠的度数是70︒.【分析】根据垂直的定义得到90ADB ∠=︒,再利用互余的定义计算出9035A B ∠=︒-∠=︒,然后根据圆周角定理求解.【解答】解:AC BO ⊥ ,90ADB ∴∠=︒,90905535A B ∴∠=︒-∠=︒-︒=︒,270BOC A ∴∠=∠=︒.故答案为:70︒.9.如图,AB 半圆的直径,点O 为圆心,5OA =,弦8AC =,OD AC ⊥,垂足为E ,交O 于D ,连接BE .设BEC α∠=,则tan α的值为32.【分析】首先连接BC ,由AB 半圆的直径,可得90C ∠=︒,然后由勾股定理求得BC 的长,又由OD AC ⊥,利用垂径定理可求得CE 的长,继而求得答案.【解答】解:连接BC ,AB 半圆的直径,5OA =,90C ∴∠=︒,210AB OA ==,弦8AC =,6BC ∴==,OD AC ⊥ ,142CE AC ∴==,63tan 42BC CE α∴===.故答案为:32.10.如图,O 的半径为5,AB 是O 的直径,C 是O 上一点,且6AC =,点P 是O 上一个动点,点P 与点C 在直径AB 的两侧(与A 、B 不重合),CQ PC ⊥,交PB 的延长线于点Q ,则线段CQ 长的取值范围是4083CQ < .【分析】连接BC ,运用勾股定理求BC ,再利用直径所对的圆周角是直角和同弧所对的圆周角相等,可证明BAC QPC ∆∆∽,再由CP 的范围可得CQ 的范围.【解答】解:如图,连接BC ,AB 是直径90ACB ∴∠=︒8BC ∴===,CQ PC⊥ 90PCQ ∴∠=︒BCBC =BAC QPC∴∠=∠BAC QPC∴∆∆∽∴AC CP BC CQ =43CQ CP ∴= 点P 与点C 在直径AB 的两侧(与A 、B 不重合),610CP ∴< 4083CQ ∴< .故答案为:4083CQ < .11.如图,半径为6cm 的O 中,C 、D 为直径AB 的三等分点,点E 、F 分别在AB 两侧的半圆上,60BCE BDF ∠=∠=︒,连接AE 、BF ,则图中两个阴影部分的面积为2cm .【分析】作三角形DBF 的轴对称图形,得到三角形AGC ,三角形AGE 的面积就是阴影部分的面积.【解答】解:如图作DBF ∆的轴对称图形CAG ∆,作AM CG ⊥,ON CE ⊥,DBF ∆ 的轴对称图形CAG ∆,由于C 、D 为直径AB 的三等分点,ACG BDF ∴∆≅∆,60ACG BDF ∴∠=∠=︒,60ECB ∠=︒ ,G ∴、C 、E 三点共线,AM CG ⊥ ,ON CE ⊥,//AM ON ∴,∴AM AC ON OC=,在Rt ONC ∆中,60OCN ∠=︒,sin 2ON OCN OC OC ∴=∠=,123OC OA == ,2ON ∴==,AM ∴=ON GE ⊥ ,12NE GN GE ∴==,连接OE ,在Rt ONE ∆中,NE =2GE NE ∴==,1122AGE S GE AM ∆∴==⨯= ,∴图中两个阴影部分的面积为,故答案为:.三.解答题(共3小题)12.已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D (如图).(1)求证:AC BD =;(2)若大圆的半径10R =,小圆的半径8r =,且圆O 到直线AB 的距离为6,求AC 的长.【分析】(1)过O 作OE AB ⊥,根据垂径定理得到AE BE =,CE DE =,从而得到AC BD =;(2)由(1)可知,OE AB ⊥且OE CD ⊥,连接OC ,OA ,再根据勾股定理求出CE 及AE 的长,根据AC AE CE =-即可得出结论.【解答】(1)证明:过O 作OE AB ⊥于点E ,则CE DE =,AE BE =,BE DE AE CE ∴-=-,即AC BD =;(2)解:由(1)可知,OE AB ⊥且OE CD ⊥,连接OC ,OA ,6OE ∴=,CE ∴==,8AE ==,8AC AE CE ∴=-=-13.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度3AB m =,弓形的高1EF m =,现计划安装玻璃,请帮工程师求出 AB 所在圆O 的半径r .【分析】根据垂径定理可得12AF AB =,再表示出AO 、OF ,然后利用勾股定理列式进行计算即可得解.【解答】解: 弓形的跨度3AB m =,EF 为弓形的高,OE AB ∴⊥于F ,1322AF AB m ∴==, AB 所在圆O 的半径为r ,弓形的高1EF m =,AO r ∴=,1OF r =-,在Rt AOF ∆中,由勾股定理可知:222AO AF OF =+,即2223()(1)2r r =+-,解得13()8r m =.答: AB 所在圆O 的半径为138m .14.如图所示,O 是ABC ∆的外接圆,AB 是O 的直径,D 为O 上一点,OD AC ⊥,垂足为E ,连接BD .(1)求证:BD 平分ABC ∠;(2)当30ODB ∠=︒时,求证:BC OD =.【分析】(1)根据垂径定理、圆周角定理证明;(2)根据直角三角形的性质、等边三角形的判定和性质证明.【解答】证明:(1)AB 是O 的直径,OD AC ⊥,∴ CDAD =,CBD ABD ∴∠=∠,即BD 平分ABC ∠;(2)连接AD ,OB OD = ,30OBD ODB ∴∠=∠=︒,由圆周角定理得,260DOA ADB ∠=∠=︒,AOD ∴∆为等边三角形,OD OA ∴=,60DOA ∠=︒ ,90C ∠=︒,12BC AB OD ∴==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的基本性质中考题
例1 (2009年四川省内江市)
如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上,AB=AD, ZBFC=Z BAD=2NDFC.
求证:(1) CD1DF;(2) BC=2CD.
例2 (2009年广州市)
如图,在。

中,ZACB=ZBDC = 60° , AC= 2^icm,
(1)求ZB AC的度数;(2)求。

0的周长
例3 (2009年中山)
(1)如图1,圆心接△ ABC中,AB = BC = CA, OD、0/为。

O 的半径,OD1BC 于点F, OEA.AC于点G,
求证:阴影部分四边形OFCG的面积是△ABC的面积的上.
3
(2)如图2,若ZDOE保持120。

角度不变,
求证:当ZDOE绕着。

点旋转时,由两条半径和△ ABC的两条边围成的图形(图中阴影部分)
面积始终是△A3C的面积的
3
1. (2009年广西钦州)
如图2, OOi与坐标轴交于A (1, 0)、B (5, 0)两点,点0的纵坐标为右,求。

Oi的半
2. (2009年哈尔滨)
如图,在。

中,D、E分别为半径0A、0B上的点,且AD=BE・
点 C 为弧AB 上一点,连接CD、CE、CO, ZA0C=ZB0C.求证:CD=CE.
3. (2009年株洲市)
如图,点A、B、C是。

上的三点,AB//OC.
(1)求证:AC平分ZOAB.
(2)过点。

作OEA.AB于点E,交AC于点F.若AB = 2, ZAOE = 30°,求PE的长.
4. (2009年潍坊)
如图所示,圆。

是△ ABC的外接圆,ABAC与ZABC的平分线相交于点/,延长A/交圆。

于点。

,连结8£>、DC.
(1)求证:BD = DC = DI;
(2)若圆。

的半径为10cm, ZBAC = 120°,求左BDC的面积.
A
5. (09湖北宜昌)
如图,。

0 的直径AD=2, 3C =&=0E, ZBAE=90° .
⑴求ZXCAD的面积;
(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?
6. (2010年金华)
如图,47是。

的直径,。

、是命的中点,CEVAB于E, BD交CE于点、F.
(1)求证:CF= BF・,
2
(2)若CD = 6, AC = 8,求。

的半径和必的长.。

相关文档
最新文档