高等数学第12章习题课

合集下载

高数3(第十二章第5、6、7节)

高数3(第十二章第5、6、7节)
说明: 说明:
(1) 函数 P, Q, R 中变量 x, y, z 不独立 受到 不独立, 曲面∑方程的限制 方程的限制; 曲面∑方程的限制; (2)
Pdydz + Qdzdx + Rdxdy = ∫∫ Σ Σ r 其中 V = {P , Q , R }, v dS = {dydz , dzdx , dxdy } 为有向面积元素
2011年3月28日 高等数学 A(三) 7
记作
∫∫Σ R( x, y, z)dxdy = lim ∑ R(ξ i ,ηi ,ζ i )( ∆Si ) xy λ →0
i =1
n
类似可定义: 类似可定义: P(x, y, z) 在有向曲面∑上对坐标 y, z 的曲面积分 在有向曲面∑
n
∫∫Σ P( x, y, z)dydz = lim ∑ P (ξ i ,ηi ,ζ i )(∆Si ) yz λ →0 i =1
解:曲面向 yoz平面投影时 平面投影时, 平面投影时 z
2
Σ : x = ± 1 − y2
− 1 ≤ y ≤ 1 (前后曲面 D y z : 前后曲面) 前后曲面 0≤ z≤2
平面投影时, 曲面向 xoy平面投影时 平面投影时
1
x
y
投影为曲线, 投影为曲线 无 Dx y ,

∫∫ Σ
e x sin y dxdy = 0 .
2011年3月28日
高等数学 A(三)
20
§6 高斯公式 通量与散度
2011年3月28日
高等数学 A(三)
21
一、高斯(Gauss)公式 高斯(Gauss)
格林公式表达了平面闭区域上的 二重积分与其边界曲线上的曲线积分 之间的关系, 之间的关系, 而高斯公式表达了空间 闭区域上的三重积分与其边界曲面上 的曲面积分之间的关系。 的曲面积分之间的关系。

高等数学第七版教材答案详解

高等数学第七版教材答案详解

高等数学第七版教材答案详解1. 课后习题答案1.1 第一章:函数与极限1.1.1 习题1解答1.1.2 习题2解答...1.2 第二章:导数与微分1.2.1 习题1解答1.2.2 习题2解答...1.3 第三章:微分中值定理与导数的应用1.3.1 习题1解答1.3.2 习题2解答...2. 课后思考题答案2.1 第一章:函数与极限2.1.1 思考题1解答2.1.2 思考题2解答...2.2 第二章:导数与微分2.2.1 思考题1解答2.2.2 思考题2解答...2.3 第三章:微分中值定理与导数的应用2.3.1 思考题1解答2.3.2 思考题2解答...3. 课后习题详解3.1 第一章:函数与极限3.1.1 习题1详解3.1.2 习题2详解...3.2 第二章:导数与微分3.2.1 习题1详解3.2.2 习题2详解...3.3 第三章:微分中值定理与导数的应用3.3.1 习题1详解3.3.2 习题2详解...在这篇文章中,我将给出《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。

为了方便阅读,我将按章节划分答案,并提供习题和思考题的解答。

如果你在学习过程中遇到了困惑,希望这些答案能够帮助你更好地理解相关的数学概念和解题方法。

首先,我将给出每章节的课后习题答案。

在习题解答中,我将详细解释每个题目的解题思路和步骤,并给出最终答案。

你可以根据自己的需要,选择性地查看想要解答的习题。

接下来是课后思考题答案的解析。

这些思考题往往比较有挑战性,需要一定的思考和推导。

我将为每个思考题提供解答,希望能够帮助你在思考和解决问题时找到正确的方向。

最后,我将给出课后习题的详细解析。

在这一部分中,我将逐题逐题地分析解题思路,并给出详细的步骤和推导过程。

通过仔细研究这些解析,你可以更好地理解每个题目的解法,并且提高自己的解题能力。

总之,在这篇文章中,我将为你提供《高等数学第七版》教材的习题答案和课后思考题答案的详细解析。

高等数学(复旦大学版)第十二章 无穷级数

高等数学(复旦大学版)第十二章 无穷级数

第十二章 无穷级数无穷级数是数与函数的一种重要表达形式,也是微积分理论研究与实际应用中极其有力的工具. 无穷级数在表达函数、研究函数的性质、计算函数值以及求解微分方程等方面都有着重要的应用. 研究级数及其和,可以说是研究数列及其极限的另一种形式,但无论在研究极限的存在性还是在计算这种极限的时候,这种形式都显示出很大的优越性. 本章先讨论数项级数,介绍无穷级数的一些基本内容,然后讨论函数项级数,并着重讨论如何将函数展开成幂级数与三角级数的问题.第一节 常数项级数的概念和性质教学目的:1、理解无穷级数的概念;2、理解级数的收敛或发散的概念;3、掌握等比级数和p 级数等特殊级数的敛散性;4、了解无穷级数的基本性质。

教学重点:级数收敛或发散的判定 教学难点:级数收敛或发散的判定 教学内容:一、常数项级数的概念定义1 给定数列{}n u ,则称12n u u u ++++L L为常数项无穷级数,简称级数,记做1n n u ¥=å,即121n n n u u u u ¥==++++åL L式子中每一项都是常数,称作常数项级数,第n 项称为级数的一般项(或通项)。

级数1n n u ¥=å的前n 项和称为级数的部分和,记做n s ,即12n n s u u u =+++L级数的所有前n 项部分和n s 构成一个数列{}n s ,称此数列为级数1n n u ¥=å的部分和数列。

定义2 若级数1n n u ¥=å的部分和数列{}n s 收敛于s ,则称级数1n n u ¥=å收敛,或称1nn u ¥=å为收敛级数,称s 为这个级数的和,记作121n n n s u u u u ¥==++++=åL L而12n n n n r s s u u ++=-=++L称为级数的余项,显然有lim lim()0n n nnr s s =-=若{}n s 是发散数列,则称级数1n n u ¥=å发散,此时这个级数没有和。

高等数学(第六版)课后习题(完整版)及答案

高等数学(第六版)课后习题(完整版)及答案

高等数学课后答案习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性: (1)x x y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x xx x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x xy +-=;(4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11;解 由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为xx y +-=11.(3)dcx b ax y ++=(ad -bc ≠0);解 由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=.(4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin3x 的反函数为2arcsin 31x y =.(5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x xy .解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2) y =sin u , u =2x , 81π=x ,42π=x ;解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y . (4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1. 解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1]. (2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) . (3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ]. (4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形. 解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin hDC AB ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.091100090x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限: (1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=;解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ;解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim2=∞→n n .(2)231213lim =++∞→n n n ;分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞). 习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ,所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x ,所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x xx ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有 ε<-+212133x x , 所以2121lim 33=+∞→x xx . (2)0sin lim =+∞→xx x .分析 因为x xx x x 1|s i n |0s i n≤=-.所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x . 证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0s i n xx , 所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X . 5. 证明函数f (x )=|x |当x →0时极限为零. 证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有 |f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε , 即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x xy 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数x x y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xxx --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .5. 根据函数极限或无穷大定义, 填写下表:f (x )→Af (x )→∞f (x )→+∞f (x )→-∞x→x 0 ∀ε>0, ∃δ>0, 使 当0<|x -x 0|<δ时,有恒|f (x )-A |<ε.x →x 0+x →x 0-x →∞∀ε>0, ∃X >0, 使当|x |>X 时,有恒|f (x )|>M .x →+∞x →-∞解 f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当时, 有恒|f (x )-A |<ε.0<|x -x 0|<δ时, 有恒|f (x )|>M .0<|x -x 0|<δ时, 有恒f (x )>M .0<|x -x 0|<δ时, 有恒f (x )<-M .x→x 0+ ∀ε>0, ∃δ>0,使当0<x -x 0<δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x -x 0<δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )<-M .x →x 0- ∀ε>0, ∃δ>0,使当0<x 0-x <δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x 0-x <δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )<-M .x →∞∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )<-M .x →+∞∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )<-M .x →-∞∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )<-M .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M . 习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(limnn n n n +++∞→; 解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x .2. 计算下列极限:(1)2232)2(2lim -+→x x x x ;解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x xx ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零).或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x .(9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x . 2. 计算下列极限:(1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2limx x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x x x x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2xx -.证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0), 所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1s e c2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~s i n ~1s i n 1s i n 1s i n1++=-+(x →0),所以 33121l i m )1s i n 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11l i m )(l i m 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 并且1l i m )(l i m 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x xy , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x xy x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的.(2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim 0=→x x x ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点; 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Q x x x x x f)(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim)(lim 33-=-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;。

高等数学 第十二章 常微分方程 习题课

高等数学 第十二章 常微分方程 习题课
(5)式n的 个根 (3)之 对通 应 n项 解 : 的
1 4x41 2x2y21 4y4
(0,0) (x,0)
1 4x41 2x2y21 4y4c 为原方程的隐式通解.
例 5. (x3x2y)dx(x2yy3)dy0
又.解dy dx
x3xy2 x2yy3
1
y x
y2
x2 y3 x3
齐次方程
设 u x y,则 y x u ,d d x y u x d d u x .
P y(xys(xiyyn ) syi(y x n )2 coy)s
Q x
例 6. dy3(x1)2(y1)2 dx 2(x1)(y1)
解 .令 u x 1 ,v y 1 ,
则dyd(v1) d v dx d(u1) d u
dv 3u2 v2 du 2uv
3
2
v u v u
x
du dx
1 cosu
,
cousdudxx, xcesinxy .
例 3.(cx o )d dx s yysixn 1 解 . d dx y(tax)n ysexc 一阶线性方程
ye ta xd nx se xe c ta xd nd x x c
e lc n x o ss x e e lc c n x d o c s x
uxd du x1 u u u2 3, xd d u x 1 2 u u 2 u 3 u 4 1 u u 2, 1uduu2 dxx, 1 2ln 1u (2) ln xln c,
ln 1 u (2 ) 2 ln x 2 lc n ,
x2(1u2)2c, x2y2c2.
例 5 .( x 3 x 2 ) d y ( x 2 y y 3 ) d 0 y 事 ,x ( x 实 2 y 2 ) d 上 y x ( x 2 y 2 ) d 0 y

高等数学科学出版社下册课后答案第十二章 微分方程 习题简答

高等数学科学出版社下册课后答案第十二章 微分方程 习题简答

习题 12.11. (1) 是一阶线性微分方程; (2) 是一阶非线性微分方程; (3) 是二阶非线性微分方程; (4)是二阶非线性微分方程.2. (1) 是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证略,所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.(1) 2y x y '=+,00x y==(2)xy y '-=以及初值条件23x y ==。

习 题 12-21.( 1) C x y =+-1010; (2); C x y +=a r c s i n a r c s i n (3) C e e y x =-+)1)(1(; (4) C x y +-=sin 1C x a a y+--=)1ln(1;2.(1) 2)(arctan 21x y =; (2)0)cos 2(cos =-y x ; (3) )4(412--=x y ; (4) y e xcos 221=+;(5) 0322=+-y y x ; (6) )2(ln 222+=x x y ; 3. (物体冷却的数学模型))20(--=T k dtdT. 4. ).310107(265.45335h h gt +-⨯=π5. 6分钟后,车间内2CO 的百分比降低到%.056.0习题12-31. (1) x C x y sin e )(-+=;(2) x x C y 2cos 2cos -=;(3) 1sin esin -+=-t C s t; (4) 2e 2x C y -+=; (5) )2()2(3-+-=x C x y ;(6))||(ln 12C y yx +=2. (1) 412e e 22++-=x y xx; (2) 11332e 2--=x x x y ; (3) x x y sec =; (4) )cos 1(1x xy --π=; (5) 1e5sin cos =+xx y ; (6).ln 1ln 21⎪⎭⎫ ⎝⎛+=x x y 3.⎰-=dx dx d e y ϕ⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰C dx e dxd x dx dx d ϕϕϕ)(⎰+=-])([)()(C d e x e x x ϕϕϕϕ.1)()(x Ce x ϕϕ-+-= 4. ,62320⎪⎪⎭⎫⎝⎛-=T t t m F x .0T t ≤≤5 ..224⎪⎭⎫⎝⎛+=C x x y 6. yx ⎥⎦⎤⎢⎣⎡-2)(l n 2x a C .1= 习题12-41. (1) Cxy x =-331; (2) x sin y +y cos x =C ; (3) xe y -y 2=C ;(4) .132C yx y =+- (5)不是全微分方程;(6) 不是全微分方程.2. (1) y x +1, x -y =ln(x +y )+C ; (2) 21y , C x y x =+22.(3) 21y , Cxy y x =--3122; (4) 221y x +为, x 2+y 2=Ce 2x ; (5) 21x , x ln x +y 2=Cx ; (6) 2y x , 032=-x y x .3. (1)2212yx e Cy x =; (2) C y y x y x =++||ln 3113322.4. (1)21ln 2x C x y +-=; (2) x C x x y cos 1tan ++=. 习 题12-51、(1)21c x c e y x ++=(2)21212x y x x c e c =--++(3)12ln y C x C =+ (4)12arcsin()xy c e c =+(5).3231C x x C y +⎪⎪⎭⎫ ⎝⎛+=(6)221121()c y c x c -=+ 2、(1).4521cos 412-++=x x e y x (2) .133++=x x y (3)x y 11+= (4)11y x=-(5) ).4tan(π+=x y3、 .212+=x y 4、2)1()(-=x x f5 、.2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x ach y 这曲线叫做悬链线.习题12-61. (1) 线性相关(2) 线性无关(3) 线性无关(4) 线性无关2. 略.3. (1) y x x x x e C e C e xe -+++=2202x x x e C e C xe -++=221,其中.101C C += (2) ;22x x xe e y y y -=-'-''(3) .342x x x xe e e y ++=- 4. .33221x C x C y ++=习题12-71.(1) y =C 1e -x+C 2e-2x;(2)=C 1e 0x +C 2e-2/3x=C 1+C 2e-2/3x ;(3) y =C 1cos2x +C 2sin2x .(4)x =(C 1+C 2t) e 5t/2;(5) .321x x e C e C y +=-(6).)(221x e x C C y -+=(7)).2sin 2cos (21x C x C e y x +=-(8))3sin 3cos (212x C x C e y x +=.(9) y =C 1cosx +C 2sinx +C 3e x +C 4e -x;(10)).2sin 2cos (4321x C x C e x C C y x +++=(11)w ⎪⎪⎭⎫⎝⎛+=x C x C ex 2sin 2cos 212βββ.2sin 2cos 432⎪⎪⎭⎫⎝⎛++-x C x C ex βββ(12) .sin )(cos )(54321x x C C x x C C C y ++++= (13) x x xxe C e C e C eC y --+++=432221.sin cos 65x C x C ++(14) y =C 1+C 2x +(C 3+C 4x)e x. 2. ϕ(x)=1/2(cosx +sinx +e x).3. ,04852)4(=+'-''+'''-y y y y y .2sin 2cos )(4321x C x C e x C C y x +++=4.略.习题12-81. (1) ;30*x e b y =(2) ;)(210*x e b x b x y -+=(3) .)(21202*x e b x b x b x y -++=(4) *(c o s 2s i n 2).xy x e a xb x =+2.(1).31*+-=x y (2)*y **21y y +=.3)221(22++-=x e x x x 3. (1) .)121(2221x x x e x x e C e C y -++=(2) y .21s i n c o s 21x e x x C x C +++=(3) y *y Y +=.81)(2321x x e e x C x C C +++=-(4) .cos 2sin cos 21x x x C x C y -+=(5).2sin 942cos 31sin cos 21x x x x C x C y +-+=4. y =-1/16 sin2x +1/8 x(1+sin2x) 5..32cos cos 3sin )(++-=x x x x y 6. .221x x x xe e C e C y ++=7.y .1)(ln ln 321xx x C C -++=8. y .2123321x x C x C C -++= 9. .)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=本章复习题A1.(1)二;(2);(3)ln(ln )xy x x e=+;(4)''2'50y y y -+=;(5)2()x Ax B x e -+. 2. (1) A (2) (A)(3)(C )(4) (B )(5)(C ) 3. (1));(12x x e Ce xy +=(2)3221Cy y x += (3)C x xy +=2;(4)x Ce x y tan 1tan -+-=(5)13423++=x Cx y (6)22)1(1-=-x C y (7)31)1(tan x e C y -=- (8)221ln xCx y +-=(9)C x e x x +=+2)1(;(10)C xy x =-4. (1)322142224181C x C x C x e y x +++-=; (2)2212C x C e xe y x x ++-= (3)21|)cos(|ln C C x y ++-= (4))sin cos (e 212x C x C y x+=x x x2cos e 412-5. (1))1(ln 222+=x x y (2))2sin 22(cos x x e y x +=- (3)x x x y 2sin 31sin 31cos +--= (4)2135672--+=-x e e y x x . 6. 2231()()4f x x x=- 7. 可知当敌舰行245个单位距离时,将被鱼雷击中。

大学第四版高等数学教材答案

大学第四版高等数学教材答案

大学第四版高等数学教材答案【前言】在大学学习的过程中,高等数学是一门非常重要的课程。

为了更好地帮助同学们进行学习,提供一个参考,下面是大学第四版高等数学教材的答案。

【第一章微分学】1.1 导数与微分练习题答案:1. 求函数f(x) = 3x^2 - 2x的导数。

答:f'(x) = 6x - 2.2. 计算函数f(x) = x^3 - 2x^2 + 4x - 1在x = 2处的导数。

答:f'(2) = 6.1.2 函数的凹凸性和拐点练习题答案:1. 求函数f(x) = x^3 - 3x^2 + 2x的凹凸性和拐点。

答:f''(x) = 6x - 6,令f''(x) = 0,解得x = 1。

当x小于1时,f''(x)小于0,函数凹;当x大于1时,f''(x)大于0,函数凸。

所以在x = 1处有拐点。

2. 设函数f(x) = x^4 - 8x^2 + 12x,求其在[-2, 4]上的最大值和最小值。

答:首先求f'(x) = 4x^3 - 16x + 12,求解得到导数的零点x = -2, 1, 2。

然后求解f''(x) = 12x^2 - 16,代入得到f''(-2) = 20, f''(1) = -4, f''(2) = 20。

通过计算得知,在x = -2处为极小值,x = 1处为极大值。

所以最小值为f(-2) = 20,最大值为f(1) = 5。

【第二章积分学】2.1 不定积分练习题答案:1. 求函数f(x) = 3x^2 - 2x + 1的不定积分。

答:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C,其中C为常数。

2. 计算不定积分∫(4x^3 - 6x^2 + 2x + 5)dx。

答:∫(4x^3 - 6x^2 + 2x + 5)dx = x^4 - 2x^3 + x^2 + 5x + C,其中C为常数。

高等数学课件--第十二章 微分方程12-4 一阶线性微分方程

高等数学课件--第十二章 微分方程12-4 一阶线性微分方程
2
解 n 2,令
则原方程化为
z y
1 n

1 y
,
dz dx
z (cos x sin x ),
所以
1 y
2
dx dx z e (sin x cos x )e dx C
e [ (sin x cos x ) e
x
代入原方程 ,得 yf ( v ) dx g ( v )( dv ydx ) 0 ,
P ( x ) dx
P ( x ) dx
y u( x )e

u( x )[ P ( x )]e

,
将 y 和 y 代入原方程得
u ( x )e

P ( x ) dx
Q ( x ),
积分得 u( x ) Q( x )e
P ( x ) dx
dx C ,
0
x
ydx x y ,
y f (x)
P
两边求导得 y y 3 x 2 ,
o
x
x
解此微分方程
y y 3 x
y e
dx
2

C
3x e
2
dx
dx

Ce
x
3 x 6 x 6,
2
由 y |x0 0, 得 C 6,
yf ( x ) dx [ 2 xf ( x ) x ]dy 在右半平面
2
( x 0 )内与路径无关
, 其中 f ( x ) 可导 , 且 f ( 1 ) 1 , 求 f ( x ).
[解答]
4 求下列伯努利方程的通

同济高等数学下册课后题答案详解

同济高等数学下册课后题答案详解

第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。

高等数学第12章课后习题答案(科学出版社)

高等数学第12章课后习题答案(科学出版社)

习题 12.11. 判断下列方程是几阶微分方程:;)1(2y x dxdy +=;042)2(2=+-⎪⎭⎫⎝⎛x dx dy dx dy x;052)3(322=+⎪⎭⎫⎝⎛-xy dx dy dx y d x 2334(4)2()1xy x y x y x '''++=+.解 (1)是一阶线性微分方程; (2)是一阶非线性微分方程; (3)是二阶非线性微分方程; (4)是二阶非线性微分方程.2. 指出下列各题中的函数是否为所给微分方程的解:(1)2xy y '=,25y x =; (2)0y y ''+=,3sin 4cos y x x =-; (3)20y y y '''-+=,2e x y x =; (4)2()0xy x y yy ''''++=,y x =. 解 (1)是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π .42π-=C从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.写出由下列条件确定的曲线所满足的微分方程.(1) 一曲线通过原点,并且它在(,)x y 处的切线斜率等于2x y +; (2) 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分.解:由题意,2y x y '=+,00x y==解:设该曲线的方程为()y f x =,(,)x y 为其上任意一点,该点处的切线斜率为y ',过该点的切线方程为()Y y y X x '-=-。

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(无穷级数 下)【圣才出品】

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(无穷级数 下)【圣才出品】

k∈Z)
2.将下列函数 f(x)展开成傅里叶级数:
(1)f(x)=2sin(x/3)(-π≤x≤π) ;
(2)
f
(x)
ex ,
1,
x 0 0 x 。
解:(1)设φ(x)是 f(x)经周期延拓而得的函数,φ(x)在(-π,π)内连续,x
=±π是φ(x)的间断点。又φ(x)满足收敛定理的条件,故在(-π,π)内,它的傅里
cosnxdx
0
n
00
ab n
(1) n1
1 sin n
nx
0
a
n
b
(1) n1(
n 1, 2,
)
f(x)满足收敛定理的条件,而在 x=(2k+1)π(k∈z)处不连续,故
f
(x)
4
(a
b)
n1
1
(1)n n2
(b
a)
cos
nx
(1) n 1 (a n
b)
sin
nx
(x≠(2k+1)π,
an
n(1)n n2
e2 e2 4
(n 1, 2,)
f(x)满足收敛定理的条件,而在 x=(2k+1)π(k∈Z)处不连续,故
f
(x)
e2
e2
1
4
n1
(1)n n2 4
(2
cos
nx
n
sin
nx)
(x≠(2k+1)π,k∈Z)

3

a0
1
0 bxdx
axdx
(a b)
圣才电子书 十万种考研考证电子书、题库视频学习平台

同济大学数学系《高等数学》第 7 版笔记和课后习题含考研真题详解 第 12 章 无穷级数 下

在线MOOC教材《高等数学》教材课后习题参考解答

在线MOOC教材《高等数学》教材课后习题参考解答

第一本在线课程配套教材,“十三五”普通高等教育本科国家级规划教材,国防科技大学朱健民、李建平主编,高等教育出版社出版的 《高等数学》教材课后习题解答.这些课后习题都是非常经典的,学习高数课程应知应会,必须熟练掌握的基本典型练习题,不管是对于课程学习、还是考研、竞赛等相关内容的学习、复习、备考,都应该逐题过关!参考习题解答列表第一章 映射与函数习题1.1 《集合与映射》部分练习参考解答习题1.2 《函数》部分练习参考解答习题1.3 《曲线的参数方程与极坐标方程》部分练习参考解答第二章 数列极限与数值级数习题2.1 《数列极限的概念与性质》部分练习参考解答习题2.2 《数列收敛的判定方法》部分练习参考解答习题2.3 《数值级数的基本概念与性质》部分练习参考解答习题2.4-《同号级数的敛散性判别方法》部分习题参考解答习题2.5-《变号级数收敛性判别方法》部分习题参考解答第三章 函数极限与连续习题3.1-《函数极限的概念》部分习题参考解答习题3.2-《函数极限运算法则及存在性的判定准则》部分习题及参考解答 习题3.3-《无穷小的比较与渐近线》练习题及参考解答习题3.4-《函数的连续性与间断点》练习题及参考解答第四章 导数与不定积分习题4.1 《导数的概念及基本性质》练习题及参考解答习题4.2-《导数的计算》专题练习及参考解答习题4.3-《一元函数的微分》专题练习与参考解答习题4.4-《变化率与相关变化率》专题练习与参考解答习题4.5-《不定积分基本概念、性质和基本计算》专题练习与参考解答 第五章 导数的应用习题5.1-《极值与最优化》专题练习专题练习与参考解答习题5.2-《微分中值定理及其应用》专题练习专题练习与参考解答习题5.3-《泰勒公式及其应用》专题练习与参考解答习题5.4-《函数单调性与凹凸性及其应用》专题练习及参考解答习题5.5-《曲率》专题练习及参考解答第六章 定积分及其应用习题6.1-《定积分基本概念与性质》专题练习及参考解答习题6.2-《变限积分及其应用》专题练习及参考解答习题6.3-《不定积分与定积分》专题练习及参考解析习题6.4 -《定积分的应用》专题练习及其参考解析习题6.5 -《反常积分》专题练习及其参考解析第七章 常微分方程习题7.1-《微分方程的基本概念》专题练习与参考解答习题7.2-《一阶微分方程》专题练习及参考解答习题7.3 -《可降阶微分方程》专题练习及参考解答习题7.4 -《线性微分方程》专题练习及参考解答第八章 空间解析几何习题08-01 《向量及其运算》专题练习与参考解答习题08-02 《空间平面与直线》专题练习与参考解答习题08-03-《空间曲面及其方程》专题练习与参考解答习题08-04-《空间曲线及其方程》专题练习与参考解答第九章 向量值函数的导数与积分习题09-123-《向量值函数》专题练习与参考解析第十章 多元函数的导数及其应用习题10-01-《多元函数基本概念与性质》专题练习与参考解答习题10-02《偏导数与全微分》专题练习与参考解答习题10-03 《多元复合函数和隐函数求偏导》专题练习与参考解答习题10-04 《方向导数与梯度、泰勒公式》专题练习与参考解析习题10-05《多元函数的极值与最值》专题练习,知识点与典型习题视频解析 第十一章 重积分习题11-01 《重积分基本概念与性质》专题练习与参考解答习题11-02 《重积分直角坐标计算法》专题练习及典型习题视频解析习题11-03 《重积分的柱坐标、球坐标、换元法》专题练习与参考解答 习题11-04 《重积分的应用》专题练习与参考解答第十二章 曲线积分与曲面积分习题12-01《曲线积分的基本概念与计算》专题练习及参考解答习题12-02《格林公式、积分与曲线无关》专题练习与参考解答习题12-03 《曲面积分的基本概念、基本计算》专题练习与参考解答习题12-04 《高斯公式与斯托克斯公式》专题练习与参考解答第十三章 幂级数与傅里叶级数习题13-01《幂级数及其展开》专题练习与参考解答习题13-02 《傅里叶级数及其收敛性》内容总结、视频解析与专题练习。

《高等数学CII》课程教学大纲

《高等数学CII》课程教学大纲
难点:多元函数连续、可导与可微的关系;方程组确定的隐函数的导数。
课堂讲授
习题9.3:1、2、3、4、7;
习题9.4:8、11、12(3)(4);
习题9.5:2、4、6、10(1)(2)
5
§9.6多元函数微分学在几何中的应用;§9.7方向导数与梯度
§9.8多元函数的极值
6
重点:曲线上一点处的切向量;
曲面上一点处切平面的法向
6
重点:常数项级数的性质;正项级数的审敛法。
难点:常数项正项级数的审敛法;绝对收敛与条件收敛。
课堂讲授
习题12.1:2、3;
习题12.2:1、2、4、5
15
§12.3幂级数;§12.4函数展成幂级数
6
重点:幂级数的收敛域与收敛半径;函展成幂级数。
难点:用间接法将函数展开为幂级数;幂级数的和函数的求法;泰勒级数。
4.培养学生综合运用所学知识去分析问题和解决问题的能力。
理论教学进程表
周次
教学主题
教学时长
教学的重点与难点
教学方式
作业安排
1
第8章§8.1向量及其线性运算;§8.2向量的数量积与向量积;
§8.3平面及其方程
6
重点:向量的数量积与向量积;平面的点法式方程。
难点:向量的向量积。
课堂讲授
习题8.1:15、17;习题8.2:1、2、3、9;
17
第12章习题 课;全面总复习
6
课堂讲授;第12章习题讨论课
合计:
102
成绩评定方法及标准
考核内容
评价标准
权重
完成作业
分A 、B、 C三级;缺交一次扣2分,最多扣20分
10%
到堂情况

高等数学课件微分方程D12习题课2

高等数学课件微分方程D12习题课2
习题课 (二)
第十二章
二阶微分方程的
解法及应用
一、两类二阶微分方程的解法 二、微分方程的应用
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
一、两类二阶微分方程的解法
1. 可降阶微分方程的解法 — 降阶法

d2 y dx2

f
(x)
逐次积分求解

d2y dx2

f
(x,dy) dx
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
P327 题4(2) 求解
yay20

yx00,
y x01
提示: 令 yp(x),则方程变为 d p a p 2
dx
积分得

1 p

ax C1,
利用
px 0 yx 0 1得C11
再解
(x)ex(x)
(x)(x)ex
解初值问题: (0)0, (0)1
答案: (x)1ex(2x1)1ex
4
4
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
例3. 设函数 yy(x)在 (, ) 内具有连续二阶导
数, 且 y 0 ,xx(y)是 yy(x)的,函数
x 2 y pxy qy f(x)
令xet ,D d dt
D (D 1 ) p D q y f (et)
练习题: P327 题 2 ;
3 (6) , (7) ;
4(2); 8
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
解答提示
P327 题2 求以 yC 1exC 2e2x为通解的微分方程 . 提示: 由通解式可知特征方程的根为 r11,r22,

(完整版)高等数学第六版(同济大学)上册课后习题答案解析

(完整版)高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1—11. 设A=(-, —5)(5, +),B=[-10, 3), 写出A B,A B, A\B及A\(A\B)的表达式。

解A B=(-, 3)(5, +),A B=[-10,—5),A\B=(—, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合,证明对偶律: (A B)C=A C B C。

证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C。

3. 设映射f : X Y, A X, B X。

证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f(A B)x A B, 使f(x)=y(因为x A或x B) y f(A)或y f(B)y f(A)f(B),所以f(A B)=f(A)f(B).(2)因为y f(A B)x A B, 使f(x)=y(因为x A且x B) y f(A)且y f(B)yf (A )f (B ),所以 f (A B )f (A )f (B )。

4。

设映射f : XY , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y 。

证明:f 是双射, 且g 是f 的逆映射: g =f —1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、一阶微分方程的解法
(1) 可分离变量的微分方程
形如 g( y)dy f ( x)dx
解法 g( y)dy f ( x)dx
分离变量法
(2) 齐次方程 形如 dy f ( y) dx x
解法 作变量代换 u y x
(3) 可化为齐次的方程
形如 dy f ( ax by c )
dy
4、线性微分方程解的结构
(1) 二阶齐次方程解的结构:
形如 y P( x) y Q( x) y 0
(1)
定理 1 如果函数 y1( x)与 y2 ( x)是方程(1)的两个
解,那末 y C1 y1 C2 y2 也是(1)的解.(C1, C2 是常 数)
定理 2:如果 y1( x)与 y2 ( x)是方程(1)的两个线性
x
x
x
x
解 原方程可化为
dy dx
y x
cos y
(
y
x sin
y sin x
y cos
y
x y
),
xx x
令 u y , y ux, y u xu. 代入原方程得 x
无关的特解, 那么 y C1 y1 C2 y2 就是方程(1)的通 解.
(2)二阶非齐次线性方程的解的结构:
形如 y P( x) y Q( x) y f ( x)
(2)
定理 3 设 y*是(2)的一个特解, Y 是与(2)对应
的齐次方程(1)的通解, 那么 y Y y* 是二阶
非齐次线性微分方程(2)的通解.
6、二阶常系数非齐次线性微分方程解法
y py qy f ( x) 二阶常系数非齐次线性方程 解法 待定系数法.
(1) f ( x) ex Pm ( x) 型
0 不是根 设 y xkexQm ( x) , k 1 是单根 ,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn( x)sinx] 型
dx
a1 x b1 y c1
当c c1 0时, 齐次方程.否则为非齐次方程.
解法 令 x X h, y Y k, 化为齐次方程.
(其中h和k是待定的常数)
(4) 一阶线性微分方程
形如 dy P( x) y Q( x) dx
当Q( x) 0,
上方程称为齐次的.
当Q( x) 0,
定理 4 设非齐次方程(2)的右端 f ( x)是几个函
数之和, 如 y P( x) y Q( x) y f1( x) f2 ( x)

y* 1

y
*分别是方程,
2
y P( x) y Q( x) y f1( x)
y P( x) y Q( x) y f2 ( x)
的特解,
那么
y* 1
y(n) P1 y(n1) Pn1 y Pn y 0 特征方程为 r n P1r n1 Pn1r Pn 0
特征方程的根 通解中的对应项
若是k重根r
(C0 C1 x Ck1 xk1 )erx
若是k重共轭
复根 i
[(C0 C1x Ck1xk1)cos x (D0 D1x Dk1xk1)sin x]ex

y
x
k
e
x
[
R(1) m
(
x
)
cos
x
R(2 m
)
(
x
)
sin
x
],
其中
R(1) m
(
x),
R(2) m
(
x)是m次多项式,m
maxl
,
n
0 i不是特征方程的根时; k 1 i是特征方程的单根时.
二、典型例题
例1 求通解
y( x cos y y sin y )dx x( y sin y x cos y )dy.
y py qy 0
特征方程为 r 2 pr q 0
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
y C1e r1 x C2e r2 x y (C1 C2 x)e r2 x
y ex (C1 cos x C2 sin x)
推广:n 阶常系数齐次线性方程解法
上方程称为非齐次的.
解法 齐次方程的通解为 y Ce P( x)dx .
(使用分离变量法)
非齐次微分方程的通解为
y [ Q( x)e P( x)dxdx C ]e P( x)dx
(常数变易法)
3、可降阶的高阶微分方程的解法
(1) y(n) f ( x) 型
解法 接连积分n次,阶常系数齐次线性方程解法
形如 y(n) P1 y(n1) Pn1 y Pn y f ( x)
n阶常系数线性微分方程
y py qy 0 二阶常系数齐次线性方程 y py qy f ( x) 二阶常系数非齐次线性方程
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
微分方程的解 代入微分方程能使方程成为恒等 式的函数称为微分方程的解.
通解 如果微分方程的解中含有任意常数,并且 任意常数的个数与微分方程的阶数相同,这样的 解叫做微分方程的通解.
特解 确定了通解中的任意常数以后得到的解, 叫做微分方程的特解.
初始条件 用来确定任意常数的条件.
初值问题 求微分方程满足初始条件的解的问题, 叫初值问题.
(2) y f ( x, y) 型
特点 不显含未知函数 y. 解法 令 y P( x), y P, 代入原方程, 得 P f ( x, P( x)).
(3) y f ( y, y) 型
特点 不显含自变量 x. 解法 令 y P( x), y P dp ,
dy 代入原方程, 得 P dp f ( y, P).
一、主要内容
一阶方程
基本概念
高阶方程
类型
1.直接积分法 2.可分离变量 3.齐次方程 4.可化为齐次 方程 5.全微分方程 6.线性方程
7.伯努利方程
二阶常系数线性 方程解的结构
特征方程法
待 特征方程的根 定 及其对应项
系 数
法 f(x)的形式及其 特解形式
可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
习题课
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
作变换
分离变量法
非非
全微分方程
变全 量微
积分因子 可 分
常数变易法
分方
离程
特征方程法
幂级数解法 待定系数法
1、基本概念
微分方程 凡含有未知函数的导数或微分的方程 叫微分方程. 微分方程的阶 微分方程中出现的未知函数的最 高阶导数的阶数称为微分方程的阶.
相关文档
最新文档