铁矿选矿技术概述(通用版)
铁矿选矿技术概述
铁矿选矿技术概述我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。
1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。
入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。
(一)矿石破碎我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。
粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。
通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。
(二)磨矿工艺我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。
由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。
采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。
磨矿后的分级基本上使用的是螺旋分级机。
为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。
(三)选别技术1.磁铁矿选矿主要用来选别低品位的“鞍山式”磁铁矿。
由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3.2.23)。
我国自己研制的系列化的永磁化,使磁选机实现了永磁化。
70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。
2.弱磁性铁矿选矿主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。
铁矿石的选矿与冶金技术
技术进步与创新
高效节能技术
研发和应用更高效、低能耗的选矿和冶金技术,提高资源利用率 ,降低生产成本。
自动化与智能化
利用先进的信息技术、传感器和人工智能技术,实现选矿和冶金过 程的自动化和智能化,提高生产效率和产品质量。
环保技术
研发和应用环保型的选矿和冶金技术,减少对环境的污染和破坏, 实现绿色生产。
市场需求的多样化
随着经济的发展和技术的进步,铁矿石市场对产品的品质 、规格和用途提出了更高的要求,促使选矿和冶金技术不 断升级和创新。
环保标准的提高
全球范围内的环保法规和标准日益严格,对铁矿石选矿和 冶金技术提出了更高的要求,推动企业加大环保投入和技 术创新。
竞争格局的调整
随着技术的发展和市场需求的多样化,铁矿石选矿和冶金 行业的竞争格局将发生变化,技术创新能力强、环保标准 高的企业将更具竞争力。
铁矿石的选矿与冶金技术
汇报人:可编辑 2024-01-05
目录
• 铁矿石的概述 • 铁矿石的选矿技术 • 铁矿石的冶金技术 • 铁矿石选矿与冶金的环保问题 • 铁矿石选矿与冶金技术的未来发展
01
铁矿石的概述
铁矿石的定义与分类
铁矿石定义
铁矿石是含有铁元素或铁化合物 ,能够经过冶炼提取出铁的天然 矿物的总称。
。
熔融还原法的代表工艺有Corex 、Finex和HIsmelt等。
高炉炼铁法
01
高炉炼铁法是一种传统的炼铁方 法,通过在高炉中加热铁矿石和 焦炭,使铁矿石中的铁氧化物还 原成金属铁。
02
高炉炼铁法具有工艺成熟、产能 大、成本低等优点,但同时也存 在能耗高、污染较严重的问题。
转炉炼铁法
转炉炼铁法是一种以铁水为主 要产品的短流程炼铁方法。
铁矿石的选矿方法
铁矿石的选矿方法
铁矿石选矿是为了提高铁矿石的品位和使用性能,通过物理和化学方法对铁矿石进行处理,以适应不同的工艺要求。
铁矿石的选矿方法主要有重选和磁选两种。
重选法:
重选法是根据铁矿石中的密度差异进行分选的方法。
铁矿石中铁矿石和石英等非金属矿物的密度较大,而黏土、黄土、煤等脆性矿物的密度较小。
因此,重选法将铁矿石分为重型和轻型两个部分,以分离铁矿石和非金属矿物。
重选法包括手选、简单水运选、筛选、重介质选、离心分离、浮选等方法。
重介质选矿是一种常见的重选方法,其基本原理是通过密度的梯度差异,使铁矿石在重介质(如磁性液体、重液体和重气体等)中浮动,从而实现铁矿石和非金属矿物的分离。
浮选法也是一种常见的重选方法,其原理是利用铁矿石和非金属矿物在水中的亲疏性差异,通过气泡吸附,使铁矿石与非金属矿物分离。
磁选法是根据铁矿石中的磁性差异进行分选的方法。
铁矿石是一种含有磁性物质的矿石,主要磁性矿物有磁铁矿、赤铁矿和锰铁矿等。
磁选法利用铁矿石和非磁性矿物的磁性差异,通过磁性场的作用,将铁矿石从非磁性矿物中分离出来。
磁选法包括干法磁选和湿法磁选两种。
干法磁选是在干燥状态下进行的,将铁矿石颗粒放置在磁性场中,通过磁性力将铁矿石分离。
湿法磁选是在水介质中进行的,将磁性液体通过磁性场作用于铁矿石颗粒上,将铁矿石从非磁性矿物中分离。
铁矿石矿石选矿与提纯技术
汽车行业:铁矿石选矿与提纯技术在汽车行业中也有应用,如汽车零部件的生产。
电子行业:铁矿石选矿与提纯技术在电子行业中也有应用,如电子元件的生产。
铁矿石选矿与提纯技术的发展趋势与挑战
PART 05
技术创新与突破
选矿技术的发展趋势:高效、节能、环保
提纯技术的发展趋势:提高纯度、降低成本、减少污染
面临的挑战:资源紧张、环境污染、技术瓶颈
发展趋势:随着科技进步,联合提纯法将不断发展和完善
铁矿石选矿与提纯技术的工业应用
PART 04
钢铁工业
钢铁工业的未来趋势:绿色、环保、智能化
钢铁工业的分类:黑色金属和有色金属
钢铁工业的发展历程:从手工生产到现代化大规模生产
有色金属工业
铁矿石选矿与提纯技术在铜、铝、铅、锌等有色金属生产中的应用
有色金属工业对铁矿石选矿与提纯技术的需求
氧化还原法:通过氧化还原反应,将铁矿石中的铁氧化物转化为铁单质
物理提纯法
磁选法:利用磁性差异,分离铁矿石中的磁性矿物和非磁性矿物
重选法:利用密度差异,分离铁矿石中的不同矿物
浮选法:利用表面性质差异,分离铁矿石中的不同矿物
电选法:利用电性差异,分离铁矿石中的不同矿物
化学提纯法:利用化学反应,去除铁矿石中的有害杂质
国际竞争:面对全球铁矿石市场的竞争,各国在选矿与提纯技术方面展开激烈竞争,推动技术进步和创新。
技术引进与出口:通过引进国外先进技术和设备,提高本国铁矿石选矿与提纯技术水平;同时,积极拓展国际市场,出口技术和设备。
知识产权保护:加强知识产权保护,防止技术泄露和侵权行为,维护自身利益。
THANK YOU
分级方法:手选、重选、磁选、浮选等
重力选矿
铁矿山选矿技术
铁矿山选矿技术铁矿山选矿技术,是指对铁矿石进行分选、提纯和取出有用矿物的技术。
它是铁矿石开采的关键环节之一,也是冶金工业的重要组成部分。
铁矿山选矿技术的发展历程也是人类不断探索和创新的过程。
一、铁矿山选矿技术的发展历程铁矿山选矿技术的发展历程可以追溯到古代。
在中国,晋代就已经开始采铁矿和冶炼铁器。
而早期的选矿技术主要是通过人工手工分选。
直到18世纪,英国才开始使用机械化选矿技术,这使得铁矿山的生产率大幅提高。
19世纪,欧洲的矿业工程师提出了浮选技术,使得铁矿石的提纯效果更佳。
20世纪,随着工业化的加速发展,各国矿业工程师推出了多种新型选矿技术,如重介选矿、离心选矿、强磁选等,使得铁矿山选矿技术水平不断提高,大大促进了铁矿石的开采和冶炼。
二、铁矿山选矿技术的分类1. 重介选矿技术重介选矿是一种传统的选矿方法,主要是利用沉浸在水中的重质选矿介质,来实现铁矿石的分选。
通常一些密度比铁矿石重的钢球、沙子等物质,都可以用作选矿介质。
将铁矿石和选矿介质混合在水中,利用刮板调节介质的密度和粘度,分离出有用矿物。
2. 浮选技术浮选技术,是利用矿物表面性质和密度、络合能等因素的差异,把含有某种有用矿物的矿石,从其他矿物中分离出来的方法。
经过研磨处理后,将选矿浮剂添加进去,提高目标矿物与浮剂的亲和力,使其浮起来,而不浮起来的其他矿物沉下去。
浮选技术广泛应用于铁矿山选矿过程中。
3. 磁选技术磁选技术是一种利用铁矿石和相间物的磁性差异实现分选的方法。
在铁矿石分选中,利用磁性选矿,可以使磁性物质更快速地分离出来,取得更佳的分选效果。
强磁选、弱磁选、高梯度磁选、扑磁选、自然磁选等都是常用的铁矿石分选方法。
三、铁矿山选矿技术发展趋势1. 现代化技术的推广应用现代化技术应用于铁矿山选矿技术已经成为趋势。
数字化、自动化、信息化、新材料等技术的推广应用,通常可以有效降低铁矿山选矿过程中的成本,提高选矿效率,降低污染排放。
2. 精细化选矿随着铁矿石品质的下降,矿石储藏量的减少,精细选矿技术的应用将变得越来越重要。
铁矿的选矿工艺(一)
铁矿的选矿工艺(一)铁矿的选矿工艺什么是铁矿选矿工艺?•铁矿选矿工艺是指通过一系列物理和化学方法,将原始铁矿石中的有用矿物与无用矿物分离出来,以提高铁矿石中铁资源的利用率。
铁矿选矿的重要性•铁矿选矿工艺是冶金工业中的关键环节,直接关系到铁矿石的加工质量和资源利用率,对于保障钢铁工业的健康发展具有重要意义。
铁矿选矿方法的分类1.物理选矿•磁选法:利用铁矿石的磁性差异,通过磁力将磁性矿物与非磁性矿物分离。
•重选法:利用铁矿石中矿物的比重差异,通过以水为媒介的重力分选将矿石分离。
•浮选法:利用矿物与水之间的浸润性差异,通过气泡将矿物与尾矿分离。
2.化学选矿•磷酸盐浸提法:利用磷酸盐与矿物的特殊反应性,在适当条件下将磷酸盐矿物与铁矿石分离。
•氰化法:利用氰化物与矿物的特殊反应性,在适当条件下将含金矿石与铁矿石分离。
铁矿选矿工艺的发展趋势1.高效节能•采用先进的设备和工艺,提高选矿效率,减少能耗。
2.环保可持续•选矿过程中减少对环境的污染,提高资源的可持续利用率。
3.自动化与智能化•引入自动化设备和智能控制系统,提高生产效率和质量,降低人工操作对工艺的影响。
结论•铁矿选矿工艺在钢铁工业中具有重要地位和作用,随着科技的进步和工艺的不断发展,铁矿选矿工艺将变得更加高效、环保和智能化,为钢铁工业的可持续发展做出更大的贡献。
铁矿的选矿工艺什么是铁矿选矿工艺?•铁矿选矿工艺是指通过一系列物理和化学方法,将原始铁矿石中的有用矿物与无用矿物分离出来,以提高铁矿石中铁资源的利用率。
铁矿选矿的重要性•铁矿选矿工艺是冶金工业中的关键环节,直接关系到铁矿石的加工质量和资源利用率,对于保障钢铁工业的健康发展具有重要意义。
铁矿选矿方法的分类1.物理选矿–磁选法•利用铁矿石的磁性差异,通过磁力将磁性矿物与非磁性矿物分离。
–重选法•利用铁矿石中矿物的比重差异,通过以水为媒介的重力分选将矿石分离。
–浮选法•利用矿物与水之间的浸润性差异,通过气泡将矿物与尾矿分离。
铁矿的矿石选矿技术
智能化技术在铁矿选矿中的展望
智能化技术对铁矿选矿行业的影响
智能化技术在铁矿选矿中的应用
智能化技术的发展趋势
新材料和新技术的应用与发展
新型选矿药剂:高效、环保、低毒
绿色选矿技术:减少环境污染,实现可持续发展
选矿工艺优化:提高选矿效率,降低能耗和成本
资源综合利用和环境保护的重视
主要包括破碎、磨矿、选别、脱水等步骤。
目的是提高铁矿石的品质,降低生产成本,提高经济效益。
铁矿选矿技术的发展与铁矿石资源的开发和利用密切相关。
铁矿选矿技术的分类
磁选法:利用磁性差异进行选矿
浮选法:利用矿物表面的物理化学性质进行选矿
重选法:利用矿物密度差异进行选矿
化学选矿法:利用化学反选矿
过程:破碎、磨矿、分级、搅拌、浸出、固液分离、铁离子回收
应用:广泛应用于各种类型的铁矿石选矿,特别是难选矿石和低品位矿石
优点:环保、节能、高效
铁矿选矿技术的应用场景
PART 05
铁矿石的开采场景
铁矿石的加工场景
铁矿石破碎:将大块铁矿石破碎成小块,便于后续处理
磨矿:将破碎后的铁矿石磨成细粉,提高选矿效率
化学反应条件:温度、压力、酸碱度、反应时间等
化学反应产物:生成新的化合物,便于后续分离和提取有用成分
生物选矿原理
生物浸出:微生物对矿物表面的浸出作用
生物沉淀:微生物对矿物表面的沉淀作用
生物吸附与解吸:微生物对矿物表面的吸附与解吸作用
微生物吸附:微生物对矿物表面的吸附作用
生物氧化:微生物对矿物表面的氧化作用
铁矿石选矿过程中产生的噪声、粉尘等污染的防治
铁矿石选矿过程中产生的放射性废物的处理和处置
铁矿选矿技术概述
铁矿选矿技术对生态环境的影响
• 降低资源浪费 • 减少环境污染 • 保护生物多样性
02
铁矿选矿技术的发展历史及趋势
铁矿选矿技术的起源与发展阶段
铁矿选矿技术的起源
• 古代矿业活动 • 自然选矿 • 人工选矿
铁矿选矿技术的发展阶段
• 19世纪中期至20世纪初:物理选矿方法 • 20世纪中期至20世纪末:化学选矿方法 • 21世纪初至今:生物选矿方法与物理化学选矿方法相结合
铁矿选矿技术的新技术研究与应用
铁矿选矿技术的新技术研究
• 高梯度磁选技术 • 离子浮选技术 • 生物选矿技术
铁矿选矿技术的新技术应用
• 案例分析:某铁矿选矿厂高梯度磁选技术应用 • 案例分析:某铁矿选矿厂离子浮选技术应用
铁矿选矿技术的创新方向与潜力
铁矿选矿技术的创新方向
• 绿色环保与可持续发展 • 矿产资源综合利用 • 自动化与智能化控制
06
铁矿选矿技术在实际生产中的应用案例
铁矿选矿技术在不同 类型铁矿中的应用实 例
-不同类型铁矿的特点
- 高品位铁矿
- 低品位铁矿
- 复杂类型铁矿
• 铁矿选矿技术在不同类型铁矿中的应用实例
• 案例分析:某高品位铁矿选矿技术
• 案例分析:某低品位铁矿选矿技术
• 案例分析:某复杂类型铁矿选矿技术
铁矿选矿技术在特定生产条件下的优化应用
现代铁矿选矿技术的特点与优势
现代铁矿选矿技术的特点
• 工艺多样化 • 设备大型化 • 自动化与智能化 • 环保与节能
现代铁矿选矿技术的优势
• 提高选矿效率 • 降低生产成本 • 保护生态环境 • 提高资源利用率
铁矿选矿工艺及铁矿选矿技术
铁矿选矿工艺及铁矿选矿技术铁矿石是钢铁工业生产生铁和钢的重要原料之一,其种类繁多,根据矿石的磁性不同主要分为强磁性和弱磁性。
为提高选矿效率和产能,满足钢铁厂冶炼生产要求,在选矿时要根据不同铁矿石的不同性质选择合适的选矿工艺和技术,以达到较好的选矿效果。
编辑一、强磁性铁矿选矿工艺1、单一磁铁矿矿选矿单一磁铁矿类型的铁矿石组成成分简单,铁矿物中磁铁矿占比非常大,脉石矿物多为石英及硅酸盐矿物,根据生产实践研究,常采用弱磁选方法选别,在大中型磁选厂中,矿石脱磁后进入破碎筛分车间破碎至合格粒度,再给入磨矿车间进行磨矿作业。
若磨矿后矿石粒度大于0.2 mm时,采用一段磨矿磁选工艺流程;若小于0.2 mm时,则采用两段磨矿磁选工艺流程。
为尽可能提高铁矿回收率,可考虑对合格尾矿进行扫选,进一步回收。
在缺乏水资源的地区,可采用干式球磨机和磁选机进行磨矿磁选作业。
编辑因磁铁矿在风化作用下极易贫化,此类矿石一般先用干式磁选机选别以剔除部分脉石矿物,再进行磨矿磁选获得精矿。
2、含多金属磁铁矿选矿多金属磁铁矿石中的磁铁矿为硫化磁铁矿,脉石矿物含有硅酸盐或碳酸盐,还伴有钴黄铁矿、黄铜矿和磷灰石等。
此类矿石一般采用弱磁选与浮选联合工艺流程,以分别回收铁和硫等。
编辑工艺流程:矿石给入磁选机进行弱磁选,得到磁铁矿精矿和弱磁选尾矿,尾矿进入浮选流程浮选得到铁和硫。
二、弱磁性铁矿选矿工艺1、单一弱磁铁矿选矿常见的弱磁性铁矿石有赤铁矿、菱铁矿、褐铁矿和赤铁-菱铁矿等。
根据矿物种类和嵌布粒度,主要有两种常用的方法:(1)焙烧焙烧磁选用来选别矿物组成复杂,其他选别方法效果不好的弱磁性铁矿石。
实际生产中常见工艺流程为:原矿给入竖炉进行焙烧磁化,磁化后给入磁选机进行磁选。
编辑(2)浮选、重选、强磁选或其联合流程浮选多选别细粒到微粒的磁性铁矿石(粒度<0.02 mm)。
重选和磁选主要用于选别粗粒和中粒的弱磁性铁矿石(20~2 mm)。
重选时,粗粒和极粗粒(>20 mm)矿石的重选常用重介质或跳汰选矿法;中到细粒(2~0.2mm)矿石用螺旋溜槽、摇床和离心选矿机等重选方法。
铁矿的产地选择与开采技术
破碎设备:颚式破碎机、圆锥破碎机、 反击式破碎机等
磨矿设备:球磨机、棒磨机、自磨机等
破碎与磨矿的影响因素:矿石硬度、粒 度、湿度等
破碎与磨矿的效果评价:粒度分布、产 量、能耗等
筛分与分级
筛分:根据矿石粒 度大小进行分离
分级:根据矿石品 质进行分类
筛分与分级的目的 :提高矿石品质, 降低生产成本
添加标题
添加标题
添加标题
添加标题
铁矿开采中的职业病:如尘肺病、 噪声聋等
治疗方法:根据病情采取相应的治 疗措施,如药物治疗、手术治疗等
铁矿的市场前景 与趋势
国内外市场现状
全球铁矿需求 持续增长
中国是全球最 大的铁矿消费
国
铁矿价格波动 较大,受国际 市场影响明显
国内铁矿开采 技术不断进步, 提高开采效率 和资源利用率
印度:铁矿储量丰富,品质优良,但开 采成本较高
俄罗斯:铁矿储量丰富,品质优良,但 开采成本较高
南非:铁矿储量丰富,品质优良,但开 采成本较高
选矿试验的重要性
确定矿石的性质和品质
评估矿石的可选性
确定选矿工艺和设备
优化选矿工艺和流程,提 高选矿效率和效益
铁矿的开采技术
露天开采技术
概述:露天开采技术是一种广泛应用于铁矿开采的技术,主要包括钻孔、爆破、装载、运输等环 节。 钻孔:钻孔是露天开采技术的关键环节,通过钻孔设备在矿体上钻出爆破孔,为爆破做准备。
开采技术的优缺点
露天开采:优点是成本低,缺点是破坏环境,影响当地生态 地下开采:优点是保护环境,缺点是成本高,安全风险大 钻探技术:优点是效率高,缺点是成本高,技术要求高 爆破技术:优点是效率高,缺点是安全风险大,对环境有一定影响
铁矿选矿技术概述
铁矿选矿技术概述我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。
1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。
入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。
(一)矿石破碎我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。
粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。
通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。
(二)磨矿工艺我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。
由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。
采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。
磨矿后的分级基本上使用的是螺旋分级机。
为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。
(三)选别技术1.磁铁矿选矿2.弱磁性铁矿选矿3.多金属共(伴)生矿选矿这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选—多梯度磁选、絮凝浮选、弱磁-反浮选-强磁选、弱磁-正浮选、焙烧磁选等不同的工艺流程,以提高铁的回收率,并综合回收稀土氧化物。
攀枝花铁矿通过磁选获得TFe53%左右的钒铁精矿,磁选后的尾矿通过弱磁扫选-强磁选-重选-浮选-干燥电选,获得钛精矿和硫钴精矿,回收钛和钴。
大冶铁矿采用弱磁-强磁和浮选,综合回收铁、铜和钴、硫等元素。
(四)烧结球团技术烧结技术是我国人造富矿的主要手段。
铁矿山特殊选矿新工艺新技术---概述
世上无难事,只要肯攀登铁矿山特殊选矿新工艺新技术---概述特殊选矿包括的内容,是除了拣选、重选、浮选、磁选、电选、化学选诸方法以外的其他选矿方法,或是这些选矿方法的复合方法。
它们是:磁流体选矿、摩擦与弹跳选矿、风力吸选、重力浮选、表层浮选、油膏选矿、油团聚与磁团聚等。
其中:磁流体选矿为磁选与重选的复合;风力吸选为筛分与重选的复合;重力浮选为重选与浮选的复合;摩擦与弹跳选矿、表层浮选、油膏选矿则为单一的特殊选矿方法;而油团聚与磁团聚则既有复合方法,又有单一方法(如果只加入中性油或外磁场磁力进行团聚,则属单一方法;如果磁团聚时再加入絮凝剂,则属复合方法). 磁流体选矿,它既利用外部磁场磁力,又利用重力,使目的矿物在特殊设计的磁极中按磁性强弱和密度大小进行分层悬浮,并与脉石分离。
它主要用于弱磁性矿物和非磁性矿物。
摩擦与弹跳选矿,是利用目的矿物与脉石形状上的差异,并由此导致摩擦系数和弹性恢复系数差异所进行的分选。
它主要用于石棉、云母等特殊形状的矿物。
风力吸选,是在平面摇动筛上,待矿物按密度、形状分层之后,再利用真空抽吸其密度小的或形状特殊的矿物,达到矿物与脉石分离的目的。
它主要用于石棉选矿。
重力浮选,是在重选设备上加入浮选药剂,使目的矿物包裹在气泡四周成为密度小的疏水性团粒之后,再进行重选。
它主要用于不易为泡沫浮选所浮起的粗粒疏水矿物。
表层浮选、油膏选矿和油团聚,则是利用目的矿物与脉石疏水性差异进行的分选。
但它们又不同干一般的泡沫浮选。
在表层浮选中,水流是平稳的,疏水性矿物飘浮于水面之上;在油膏选矿中,疏水性矿物被粘附干油膏中;在油团聚中,疏水性矿物被油液包裹上升至水面。
这些都悬它们的特征。
它们主要用于金刚石等天然疏水性矿物分选,以及某些经过浮选药剂处理成疏水性表面的矿物分选。
特殊选矿方法,大部分都属于古老的方法,例如摩擦与弹跳。
铁矿选矿技术和工艺
铁矿选矿技术和工艺摘要:开采是一项非常重要的工艺,对矿产资源的选择,不仅与矿产资源的品质有关,还与利益有关,而且与企业的经济效益有关,因此,必须科学地选用选矿工艺,采用合理的工艺流程,才能确保矿石的品质和生产效率。
随着选矿工艺技术的进步,许多困难的技术问题都已被解决,我国一直在努力进行着对铁矿进行提纯的研究,但是由于铁矿地质条件复杂,而且丰富多样,要想让铁矿选矿技术得到更好的发展,就必须要提升技术水平和工艺方法。
这篇文章对此进行了讨论,以供参考。
关键词:铁矿;选矿技术;工艺方法引言随着我国铁矿选矿技术的不断发展,许多技术难点得到了解决,为推动我国铁精矿科研工作的开展,为进一步提升我国铁精矿选矿技术水平做出了积极贡献。
我国对铁矿石的选矿进行了大量的研究,针对我国铁矿石矿床的复杂性和多样性,应当将选矿技术和工艺方法进行有效的实施,从而使铁矿石的选矿流程得到改善。
1铁矿选矿概述由于我国目前的铁矿中约有98%都是贫矿,所以铁矿石的选矿规模在某种程度上得到了扩大,选择合适的选矿工艺,依据矿石的矿物质含量、特性和理化特性,选择合适的选矿工艺。
再对铁矿成分进行分析时,可以从选矿工艺的角度进行相应的分析,在此基础上可以分为复合铁矿石以及磁铁矿石等。
混杂铁矿最大的特征就是含有大量的有用的金属和非金属矿物,正因为如此,它们才能单独成矿。
自上世纪70年代以来,国内大多数磁选厂都把重点放在提高铁精矿的效率和效益上,并不断地改进和改进有关的选矿工艺和设备。
2铁矿选矿技术2.1微细粒铁矿选矿技术通过生产实践及科研工作,认为分步磨矿-分步磁选对较小颗粒的磁铁矿具有较好的处理效果;对细粒级的磁赤混铁矿,采用弱磁-强磁-重磨-反浮可以得到较好的指标;对细粒赤铁矿进行分选的方法有强磁脱泥-反浮选。
2.2铁矿的研磨技术近几年,随着研磨技术的发展,开发出一种新型外磁内流式永磁筒式磁选机,国内主要为重磁拉选矿机与磁筒式磁选机两种,两种磁选机可以在抛掉大量合格尾矿的同时,可确保铁的回收率在90%左右,具有良好的预选抛尾性能。
铁矿选矿技术概述
铁矿选矿技术概述
首先,铁矿石的主要成分是铁氧化物,包括赤铁矿(Fe2O3)、磁铁
矿(Fe3O4)和蓝铁矿(FeFe3[OH]6)。
矿石中还含有一些杂质,如硅酸盐、石英、方解石、黄铁矿等。
矿石的性质直接影响选矿工艺的选择。
铁矿选矿的一般流程包括破碎、磨矿、磁选、重选和脱水等步骤。
首先,矿石要经过破碎工艺将其破碎成合适的颗粒大小,以方便后续工艺操作。
然后,矿石经过磨矿处理,将其磨细,以增加矿石与选别介质的接触
面积。
接下来,通过磁选技术对矿石进行磁分离操作,将磁性较强的铁矿
石从非磁性的杂质中分离出来。
在磁选之后,可根据铁矿石的品位进一步
进行重选工艺,如浮选、重力分离等,从而提高铁矿石的回收率和品位。
最后,通过脱水工艺对选矿尾矿进行处理,去除其中的水分。
在铁矿选矿过程中,常用的设备有破碎机、球磨机、磁选机、浮选机、重力分选机、脱水机等。
破碎机可将矿石破碎成所需的颗粒大小;球磨机
可将矿石磨细,提高磁选效果;磁选机利用磁场力将铁矿石与杂质分离;
浮选机通过气泡的作用将铁矿石从杂质中提取出来;重力分选机则利用重
力差异将矿石分离等。
除了上述常规的选矿技术,还有一些新兴的选矿技术正在得到应用。
例如,气固流化床磁选技术与乾湿磁选技术相结合,可以在较低的能耗下
提高选铁效果;高梯度磁选技术通过增加磁场的梯度,提高了磁选的效率
和选择性。
总的来说,铁矿选矿技术在提高铁矿石的品位和回收率方面起着重要
的作用。
随着科学技术的不断进步,铁矿选矿技术也在不断优化和创新,
以适应日益严格的环保要求和工业发展的需要。
铁矿石选矿技术
铁矿石选矿技术1.1 概述铁是最常用的金属,在地壳中含量约5. 8%,原子序数26,相对原子质量55 .847,原子密度7.86g/cm3.常见铁的化合物主要为正二价(Fe2+),正三价(Fe3+),个别为正六价。
其中以正三价化合物最稳定。
铁的熔点为15350C,沸点300们C,单质铁是具有光泽的白色金属,有铁磁性,是最重要的基本结构材料,其化学性质为中等括泼性金属,在高温下易和氧、硫、氯等非金属发生强烈反应,易溶于稀的无机酸溶液和浓盐酸溶液中,金属铁能被浓碱溶液侵蚀。
铁和钢是工业的基本原料,广泛应用于国民经济的各个部门和人民生活的各个方面。
铁矿石可冶炼成生铁、熟铁、铁合金、炭素钢、合金钢、特种钢等。
纯磁铁矿还可作合成氮的催化剂;赤铁矿、镜铁矿、褐铁矿是天然的矿物颜料。
中国铁矿资源储量大-约504亿t,据1996年统计,扣除开采与损失,尚有463亿t,大小产地1834处。
矿床类型多,且资源中贫矿多,富矿少,共生、伴生矿多,矿石组分比较复杂,矿物嵌市粒度大多较细,给选矿带来较大困难。
1 .2 成矿特性与矿床类型铁矿床按地质成因分类是最常用的分类方法之一。
铁在地壳中发生的~切成矿作用遄程中,往往以化合物形式富集而彤成内生、外生和变质矿床。
内生矿床是地球内部热能作用的结果,它是岩浆活动过程中产生的矿床,其形成是岩浆分异作用与从岩浆中析出气体——热液物质集中所致。
外生矿床系发生在地球表面,作用的能源来自太阳能,矿床的形成是暴露在地表的岩石或矿床与大气圈、生物圈和水圈相互作用最终富集而成。
变质矿床是内生或外生矿床经过热力和压力变质作用,特别是区域变质作用,使原来的矿物成分、结构和形态都发生一定程度的变化所形成的矿床。
中国铁矿床成困类型见表1 .2-1,中国铁矿床分布地区见表1. 2-2。
现仅就几类有价值矿床的岩矿特性叙述如下。
1.2.1 沉积变质矿床1.2.1.1 鞍山式铁矿床该类矿床矿物组成简单。
矿层围岩为千枚岩,绿泥片岩、云母片岩、角闪片岩和含有不同硅酸盐的石英片岩。
铁矿石选矿法
铁矿石选矿法自然界中已发现的含铁矿物有300多种,可作为炼铁原材料的铁矿物仅20余种,其中主要的铁矿物类型分别是、、褐铁矿和菱铁矿四种,根据铁矿石的性质不同,其选矿方法也各部相同,下面我们来分别介绍这四种铁矿的选矿方法。
一、磁铁矿选矿方法磁铁矿中主要含的铁矿物为四氧化三铁(Fe3O4),磁铁矿石含铁矿约85%左右,矿石硬度在5.5~6.5之间,比重在4.6~5.2之间,其突出特点是磁性强,因此弱磁选是其主要的选别方法。
弱磁选选别工艺根据其矿物组成,可分为单一弱磁选法、弱磁选-反浮选法和弱磁-强磁-浮选联合选别法。
1、单一弱磁选法主要适于矿物组成简单的单一磁铁矿物。
选矿厂通过粗碎或中碎作业后,利用磁滑轮预先抛尾,将围岩抛出后,可通过连续磨矿-弱磁选流程和阶段磨矿-弱磁选流程两种流程选别磁铁物。
连续磨矿-弱磁选流程:适用于嵌布粒度较粗或铁品位较高的磁铁矿。
阶段磨矿-弱磁选流程:适用于嵌布粒度细的低品位矿石。
磁铁矿磁选现场2、弱磁选-反浮选法弱磁选-反浮选法主要是针对提高精矿品位较难或精矿二氧化硅杂质较多的铁矿。
经过破碎筛分-磨矿分级后,使用弱磁选-阳离子反浮选方法或磁选阴离子反浮选方法进行选别磁铁矿。
3、弱磁-强磁-浮选联合法弱磁-强磁-浮选联合流程多用来处理多金属共生磁铁矿石已经含有赤铁矿、褐铁矿等铁矿的混合铁矿石。
二、赤铁矿选矿方法赤铁矿是一种不含结晶水的三氧化二铁(Fe2O3),褐铁矿矿石含铁35%一40%,硬度为5.5~6.5之间,比重为4.8~5.3之间。
该种铁矿石为弱磁性铁矿。
目前常见的主要有:重选法、磁选法和浮选法三种。
1、赤铁矿重选法赤铁矿重选法可根据其矿物性质,分为单一重选法和螺旋溜槽-摇床联合重选法。
单一重选法:根据矿物粒度条件又分为细粒重选和粗粒重选,其中细粒重选是将破碎后的铁矿进行磨矿,使其单体解离后,再通过重选得到细粒高品位赤铁精矿,该方法适用于嵌布粒度细、含磁性高的赤铁矿;粗粒重选法因其矿物粒度较粗,因此多采用只破不磨法,然后通过重选抛弃破碎后的粗尾矿,多适于粗粒嵌布赤铁矿石。
铁矿石常用的选矿方法
第一章铁矿石常用的选矿方法第一节磁铁矿选矿流程磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱磁选工艺为主的选别流程:1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易选单一磁铁矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。
1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。
根据铁矿无的嵌布粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。
2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。
在一段磨矿石进行磁选粗选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。
如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。
2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精矿中SiO2等杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精矿石中SiO2等杂质组分偏高的问题开发出来的。
4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石,分为三类:1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。
根据矿石性质进一步分为先磁后浮和先浮后磁两种。
2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。
特点是采用弱磁选首先分离弱磁性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。
3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石第二节赤铁矿选矿流程赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物矿物。
与等轴晶系的磁赤铁矿成同质多象。
晶体常呈板状;集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。
呈红褐、钢灰至铁黑等色,条痕均为樱红色。
常用的铁矿石选矿方法
常用的铁矿石选矿方法铁矿石的选矿方法有很多,那么,常见的一些铁矿石选矿方法都有什么,下面就让我们一起来学习一下。
第一节磁铁矿选矿流程磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石,磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱磁选工艺为主的选别流程:1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易选单一磁铁矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。
1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。
根据铁矿无的嵌布粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。
2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。
在一段磨矿石进行磁选粗选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。
如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。
2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精矿中SiO2等杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。
3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精矿石中SiO2等杂质组分偏高的问题开发出来的。
4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石,分为三类:1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。
根据矿石性质进一步分为先磁后浮和先浮后磁两种。
2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。
特点是采用弱磁选首先分离弱磁性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。
3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。
第二节赤铁矿选矿流程赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物矿物。
与等轴晶系的磁赤铁矿成同质多象。
晶体常呈板状;集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。
铁矿选矿技术
(一)磁选矿石1、单一磁铁矿石,主要是沉积变质型磁铁矿石。
矿石中铁矿物绝大部分是磁铁矿,以细粒嵌布为主;脉石矿物主要是石英或角闪石等硅酸盐矿物。
有的含硅酸铁较多,此类矿石选矿生产历史最长,由于矿石组成简单,常采用弱磁选方法。
对于大中型磁选厂,当磨矿粒度大于0.2毫米时,常采用一段磨矿磁先;小于0.2毫米时,则采用两段磨矿磁选。
若在粗磨能分出合格尾矿时,则采用阶段磨矿磁选。
缺水地区,则采用干式磨矿干式磁选,被贫化了富磁铁矿石或贫磁铁矿石,一般用干式磁选剔除脉石,前者得到块状富矿石;后都经磨矿磁选获得精矿。
为了获得高品位精矿,可将磁铁矿精矿用反浮选或击震细筛等方法处理。
为了提高回收率,可考虑尾矿再选等工艺进一步回收。
目前对硅酸铁尚无合理的利用途径,因此,矿石中的硅酸铁在选矿中不强调回收。
用选矿方法虽可回收硅酸铁,但由于含铁硅酸盐矿物中的铁品位低,将会较大幅度地降低总精矿品位,在经济上就显得不合理。
一般说来炉料中含有一定量硅酸铁时,并不影响大中型高炉况顺行,并且硅酸铁中的铁也不会从炉渣中流失;但在小高炉中,由于硅酸铁在冶炼过程中是吸热反应,且融点低。
因之炉料中若含有一定量的硅酸铁时,则会降低炉温使炉况不顺行,并且跑渣。
2、含多金属磁铁矿石,主要是矽卡岩型含硫化物磁铁矿石和少数岩浆型含磷灰石磁铁矿石,矿石中磁铁呈中粒(2~0.2毫米)到细粒嵌布,脉石有硅酸盐或碳酸盐矿物,常伴生蓼铁曆、钴黄铁矿或黄铜矿以及磷灰石等。
此类矿石也有较多的选矿生产实践,一般采用弱磁选与浮选联合流程,即用弱磁选回收铁,浮选回收硫化物或磷灰石等。
原则流程分为弱磁选-浮选和浮选-弱磁选两种,这两种流程的磁铁矿与硫化物的连生体去向不同,前一流程,连生体主要进入铁精矿中;后一流程,主要进入硫化物精矿中,所以,在同样磨矿粒度下,选浮后磁流程可以得到含硫化物较低的铁精矿和回收率较高的硫化物精矿。
贫化矿石也可先用干式磁选剔除脉石,再细筛选别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 安全管理 )
单位:_________________________
姓名:_________________________
日期:_________________________
精品文档 / Word文档 / 文字可改
铁矿选矿技术概述(通用版)
Safety management is an important part of production management. Safety and production are in
the implementation process
铁矿选矿技术概述(通用版)
我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。
1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。
入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。
(一)矿石破碎
我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。
粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。
通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。
(二)磨矿工艺
我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。
由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。
采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。
磨矿后的分级基本上使用的是螺旋分级机。
为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。
(三)选别技术
1.磁铁矿选矿
主要用来选别低品位的“鞍山式”磁铁矿。
由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3.2.23)。
我国自己研制的系列化的永磁化,使磁选机实现了永磁化。
70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%
左右,实现了冶金工业部提出精矿品位达到65%的要求。
2.弱磁性铁矿选矿
主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。
这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。
80年代后,选矿技术方面对焙烧磁选、湿式强磁选、弱磁性浮选和重选等工艺流程、装备和新品种药剂的研究不断改进,使精矿品位、金属回收率不断提高。
如鞍钢齐大山选矿厂采用弱磁—强磁—浮选的新工艺流程(图3.2.24),获得令人鼓舞的成就。
3.多金属共(伴)生矿选矿
这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选—多梯度磁选、絮凝浮选、弱磁-反浮选-强磁选、弱磁-正浮选、焙烧磁选等不同的工艺流程,以提高铁的回收率,并综合回收稀土氧化物。
攀枝花铁矿通过磁选获得TFe53%左右的钒铁精矿,磁选后的尾矿通过弱磁扫选-强磁选-重选-浮选-干燥电选,获得钛精矿和硫钴精矿,回收钛
和钴。
大冶铁矿采用弱磁-强磁和浮选,综合回收铁、铜和钴、硫等元素。
(四)烧结球团技术
烧结技术是我国人造富矿的主要手段。
1996年共生产人造富矿16095.6万t,其中重点企业9485.9万t,占58.9%,地方国营企业6133.7万t,占38.1%。
我国在细精矿烧结的技术上已达到相当水平。
鞍钢早在50年代初就在烧结机上成功地把酸性烧结矿制作方法改为碱性烧结矿制作方法,在世界上第一个用消石灰或生石灰作熔剂解决了细精矿烧结问题。
烧结球团的装备水平也有所提高,全国共有烧结机419台,总面积15522m,其中:130m2级以上的烧结机有22台,合计面积4107m2;24~129m2的烧结机197台,合计面积9387m2;小于24m2的烧结机200台,合计面积2028m2。
1994年2月24日在马鞍山钢铁厂投产的300m2烧结机,是我国除宝钢外自行设计、制造和建设的规模最大的现代化烧结机。
全国1995年烧结的主要技术经济指标为:利用系数1.36t/(m2·h),烧结矿品位53.00%,烧结机日历作业率80.94%,烧结矿合格率为84.92%,工人劳动生产率为2170t/(h·a)。
云博创意设计
MzYunBo Creative Design Co., Ltd.。