几何解析法
高考解析几何方法总结
⾼考解析⼏何⽅法总结⾼考解析⼏何⽅法总结 总结是对某⼀特定时间段内的学习和⼯作⽣活等表现情况加以回顾和分析的⼀种书⾯材料,它能使我们及时找出错误并改正,让我们抽出时间写写总结吧。
总结你想好怎么写了吗?以下是⼩编精⼼整理的预备期间考察情况总结,欢迎阅读与收藏。
⼤家都知道⾼考数学卷中解析⼏何和导数是最不容易的两道⼤题,最近⼏年的数学卷趋向基础,只要细⼼多数同学可以拿到百分之七⼋⼗的分数,⽽想要在数学上⼒争顶尖的同学就要把握好这两道⼤题带来的机会。
然⽽相对于导数需要较强的技巧和想法来讲,解析⼏何更重要考察的是⼼⾥素质。
为什么这样说: 第⼀因为解析⼏何的题型是有规律可循的,只要接触过类似的题型,拿到其他题的时候⼀定不会完全没有思路,但要想了解各个题型是需要不怕难题的勇⽓的。
第⼆是因为解析⼏何要求⼤量的计算,我⾼三学习解析⼏何的时候常常⼀道题写好⼏张草稿纸,要想完美的完成⼀道题需要静下⼼来,需要耐⼼。
第三是因为这个题型作为压轴题位于试卷的末尾,我在做⾼考卷的时候也习惯于先做选做题,再回来做导数和解析⼏何,在考试的最后,时间往往剩下的不多,这往往考察每个同学的定⼒,能不能不紧张,细⼼认真的做完⾃⼰所有会的步骤。
⽏庸置疑,解析⼏何很花费时间,因此在复习的过程中不能“吝啬”,要肯花精⼒与时间,数学是对分析能⼒要求⽐较⾼的学科,复习时着重锻炼⾃⼰的分析能⼒,尽量选择整块的时间解决数学问题,否则思路被打断,效率会⽐较低。
解析⼏何作为⾼考的重点,考查项⽬不仅要求分析,还要求计算能⼒,⼤多数⼈都会觉得解析⼏何⼤题中的式⼦很长,就可能出现⼼烦意乱,懒得算下去的现象,但其实平时就是⼀个积累经验与树⽴信⼼的过程,越是在平⽇⾥认真地、⼀步步地算,才越有可能在考场上快速地,准确地算出结果。
每个⼈的⾃⾝情况都不同,不应该都听⽼师的⽽⾃⼰没有计划与针对性,如果正是在解析⼏何这类题中有所⽋缺,那么每天给⾃⼰定⼀道题的任务,限定⾃⼰在半个⼩时之内完成,如果较快完成,就看看⾃⼰与答案相⽐规范性的问题,如果⽐较慢,就经常练习反思,毕竟⾼考没有那么多的时间去完成⼀道题。
解析几何求轨迹方程的常用方法
解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。
4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
解析几何的基本概念与方法
解析几何的基本概念与方法解析几何是数学中的一个分支,它研究的是几何图形的性质与运算方法,通过使用坐标系和代数方法,以解析的方式对几何问题进行研究和求解。
本文将介绍解析几何的基本概念与方法,包括平面解析几何和空间解析几何。
一、平面解析几何平面解析几何是解析几何的基础,它使用二维坐标系来描述平面内的几何图形。
在平面解析几何中,我们常常使用直角坐标系,即在平面上取定一个原点和两个相互垂直的坐标轴。
坐标轴的长度单位可以任意选择,通常为了方便计算,我们选择单位长度为1。
在平面解析几何中,我们可以通过坐标来表示点、直线和曲线。
例如,对于一个点P,我们可以用有序数对(x,y)来表示其坐标,其中x为点P在x轴上的投影坐标,y为点P在y轴上的投影坐标。
对于直线,我们可以使用线性方程来表示,例如y=kx+b,其中k为直线的斜率,b 为直线与y轴的截距。
平面解析几何的方法主要有两种:坐标法和方程法。
坐标法是通过将几何图形上的点和直线的坐标代入特定的方程中,解方程得出几何问题的解。
方程法是先建立问题的解析方程,然后利用代数运算方法求解问题。
二、空间解析几何空间解析几何是平面解析几何的拓展,它使用三维坐标系来描述空间内的几何图形。
在空间解析几何中,我们使用直角坐标系,该坐标系由三个相互垂直的坐标轴组成,分别称为x轴、y轴和z轴。
类似于平面解析几何,我们可以通过坐标来表示空间中的点、直线和曲面。
例如,对于一个点P,我们可以用有序数组(x,y,z)来表示其坐标,其中x为点P在x轴上的投影坐标,y为点P在y轴上的投影坐标,z为点P在z轴上的投影坐标。
对于直线,我们可以使用参数方程来表示,例如x=a+lt,y=b+mt,z=c+nt,其中(a,b,c)为直线上的一点,l、m、n为方向向量的分量,t为参数。
空间解析几何的方法同样有坐标法和方程法。
不过由于空间中的几何图形更为复杂,解析计算过程也复杂许多。
在研究空间解析几何时,我们常常借助向量运算、矩阵运算和线性代数的方法来求解问题。
解析法在平面解析几何中的应用
解析法在平面解析几何中的应用解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
解析几何的基本内容在解析几何中,首先是建立坐标系。
如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。
利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。
除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。
在空间坐标系中还有球坐标和柱面坐标。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。
用这种方法研究几何学,通常就叫做解析法。
这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。
解析几何在数学发展中起了推动作用。
恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”解析几何的应用解析几何又分作平面解析几何和空间解析几何。
在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。
椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。
比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。
解析几何面积公式
解析几何面积公式
1.解析几何法:由众多三角形的面积公式得出的结果:
(r是三角形内切圆半径)(R是三角形外接圆半径)
其中:
2.向量叉积法:任意两边向量的叉积的绝对值的1/2即为三角形的面积。
Code:
double TriangleArea(V l1,V l2){
return fabs((l1.end-l1.start)^(l2.end-l2.start))/2;}
多边形面积的计算。
现在讨论简单多边形,不考虑自交多边形,计算时采用剖分思想,将其转化为求多个三角形面积的子问题集合。
有三种转化方法:
1.将多边形内的一点与多边形顶点连线,可将多边形划分成多个三角形,分别求出每个三角形的面积,累加起来即为多边形的面积。
如图,J为多边形内一点。
2.采用三角剖分的方法,取多边形的一个顶点作为剖分出的三角形顶点,三角形的其他点作为多边形上相邻的点,
由于叉乘有正有负,所以正好可以抵消掉多余的面积部分。
面积的计算公式为:如图,以A点为剖分顶点。
立体几何解析几何法三要素
ห้องสมุดไป่ตู้
计算的完成是在平面内实现
用定理作辅助线 多 数 题 目 都 要 作 辅 助 线 ,
比如:求直线与平面所成的角,不作出这个角,
就无法证明或计算,作角的方法即角的位置很
多,如果作出这个角后,相关线段的长度很难 确定,计算或证明也会比较困难,因此,作图 的原则是尽可能使作出的线段长度或角容易计 算,而利用判定定理和性质定理作图可以实现 这一目标,作图的策略常常就是解题的思路
性质定理、判定定理
是指线与线、
线与面、面与面平行和垂直的判定定理和 性质定理。证明题离不开判定定理和性质 定理,判定定理和性质定理是证明的工具 甚至是方法;计算题往往是在应用判定定 理和性质定理得到相关结论后,进一步确 定 角 或 者 距 离 的大 小
化为平面问题
计算题只要是计算角和距离的大小,解
题时首先要根据定义找到或作出相关的角或者距离,然后 再求值,而角与距离都是平面图形,因此把空间问题转化
为平面问题是解题的基本方法,计算则往往通过解三角形
来完成。证明一般是证明平行和垂直,证明的方法同样是 空间问题平面化,例如,证明线面平行根据判定定理找线 线的平行也可以面面平行性质定理找面,垂直亦是如此。 有些证明题是通过计算线段长度、角的大小来论证的,而
平面与立体几何的解析几何方法
平面与立体几何的解析几何方法在数学中,平面几何和立体几何是解析几何的重要分支。
解析几何是运用代数和分析工具来研究几何问题的数学学科。
平面几何研究平面上的图形和性质,立体几何则研究三维空间中的图形和性质。
本文将介绍平面与立体几何中常用的解析几何方法。
一、平面几何中的解析几何方法1. 坐标系和坐标表示在平面几何中,我们通常会使用坐标系来描述平面上的点和图形。
一般来说,平面上的点可以用两个坐标值表示,通常以x轴和y轴为基准。
以直角坐标系为例,任意点P的坐标可以表示为P(x, y),其中x 表示距离x轴的水平距离,y表示距离y轴的垂直距离。
2. 距离和中点公式解析几何中,我们可以通过坐标计算两点之间的距离,并且可以得到线段的中点坐标。
对于平面上两点P(x1, y1)和Q(x2, y2),它们之间的距离可以用以下公式表示:d(P, Q) = √((x2 - x1)^2 + (y2 - y1)^2)同样地,线段PQ的中点坐标可以通过以下公式得到:M((x1 + x2)/2, (y1 + y2)/2)3. 直线的斜率和方程在平面几何中,直线是研究的重点之一。
解析几何中,我们可以通过直线上的两个点的坐标来求解直线的斜率。
对于两点P(x1, y1)和Q(x2, y2)所确定的直线,它的斜率可以通过以下公式得出:k = (y2 - y1)/(x2 - x1)另外,在解析几何中,我们还可以通过已知直线上的一点和它的斜率来确定直线的方程。
以点P(x, y)和斜率k为例,直线的方程可以表示为:y - y1 = k(x - x1)二、立体几何中的解析几何方法1. 坐标系和坐标表示与平面几何类似,立体几何中也可以使用坐标系来描述三维空间中的点和图形。
一个常用的坐标系是笛卡尔坐标系,其中三个坐标轴x、y、z相互垂直。
一个点P的坐标可以表示为P(x, y, z),其中x表示距离x轴的水平距离,y表示距离y轴的水平距离,z表示距离z轴的垂直距离。
解析几何十一种方法
解析几何11种方法解析几何是数学的一个重要分支,它使用代数方法来研究几何对象。
以下是11种解析几何的方法:1.坐标法:这是解析几何中最基本的方法,通过引入坐标系,将几何问题转化为代数问题,进而通过代数运算解决几何问题。
2.参数法:当某些几何量(如距离、角度等)不容易直接求出时,可以引入参数,将问题转化为参数的求解问题。
3.向量法:向量是解析几何中的重要工具,它可以表示点、方向、速度等几何概念,通过向量的运算可以方便地解决许多几何问题。
4.极坐标法:在平面几何中,除了直角坐标系外,还可以使用极坐标系。
通过极坐标,可以方便地表示点和线的方程,并解决相关问题。
5.复数法:复数在解析几何中也有广泛应用,例如在解决圆的方程时,可以通过复数的方法简化计算。
6.三角法:在解析几何中,三角函数是重要的工具,它可以用来表示角度、长度等几何量,并解决相关问题。
7.面积法:在解决几何问题时,有时可以通过计算面积来找到解决方案,例如在解决三角形问题时。
8.解析法:通过解析几何的方法,可以将几何问题转化为代数问题,进而通过代数运算解决几何问题。
9.代数法:代数法是解析几何中的一种重要方法,通过代数运算和代数方程的求解,可以解决许多几何问题。
10.对称法:在解析几何中,有时可以通过观察图形的对称性来找到解决方案,例如在解决关于对称点、对称线的问题时。
11.数形结合法:数形结合是解析几何中的一种重要思想,通过将代数与几何相结合,可以更方便地解决许多问题。
以上就是解析几何的11种方法。
需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体的问题选择合适的方法来解决。
几何问题的解析几何解法
几何问题的解析几何解法几何问题是数学中一类常见的问题类型,而解析几何则是解决这类问题的一种有效方法。
解析几何通过运用代数和几何的相互联系,以坐标系为基础,利用代数符号和方程式来研究几何图形的性质和变换。
本文将介绍几何问题的解析几何解法,并提供一些实例来加深理解。
一、直线的解析几何解法直线是几何中最基本的元素之一,通过坐标系的引入,我们可以用解析几何的方法来研究直线的性质和特点。
对于已知两点A(x₁, y₁)和B(x₂, y₂),要确定这两点之间的直线方程,可以使用以下公式:\[\frac{{y-y₁}}{{x-x₁}} = \frac{{y₂-y₁}}{{x₂-x₁}}\]这个公式称为点斜式,其中斜率为 \(\frac{{y₂-y₁}}{{x₂-x₁}}\)。
通过这个方程,我们可以得到直线的斜率、截距等重要信息,从而进一步理解和分析直线的特性。
二、圆的解析几何解法圆是另一类常见的几何图形,在解析几何中也有相应的解法。
已知圆心为C(a, b),半径为r的圆,其方程可以表示为:\[(x-a)^2 + (y-b)^2 = r^2\]在解析几何中,我们可以根据圆心和半径的信息,推导出关于圆的性质和变换的一系列公式。
例如,通过对圆心的平移、旋转和缩放等操作,我们可以得到新的圆的方程和特征。
这些解析几何的方法在实际问题中具有广泛的应用,例如在计算机图形学和物理学领域。
三、多边形的解析几何解法多边形是由多条线段组成的几何图形,其解析几何解法也是基于坐标系的引入和运用。
对于一个n边形,我们可以通过提取顶点的坐标,组成一个由点组成的集合。
通过连接这些顶点,我们可以得到多边形的边界。
进一步,我们可以运用向量加法、平移以及旋转等解析几何的方法来研究多边形的性质和变换。
除了以上提到的几何图形,解析几何还可以用于研究曲线、立体图形等问题。
通过引入坐标系,用代数的方法来解决几何问题,解析几何在数学领域扮演着重要的角色。
解析几何的出现极大地促进了几何学和代数学的发展。
解析几何定点问题解法全解析
解:直接设MN直线方程为 x my n
设M(x1,y1),N(x2,y2),P(t,4)
解法三:直接用两个参数写出直线方程,再研究两个参数之间的关系得出定点
解:直接设MN直线方程为 x my n 因为M,A,P三点共线得 kMA kPA
设M(x1,y1),N(x2,y2),P(t,4)
即 2 y1 2
t
x1
解法三:直接用两个参数写出直线方程,再研究两个参数之间的关系得出定点
解:直接设MN直线方程为 x my n 因为M,A,P三点共线得 kMA kPA 同理N,B,P三点共线得 kNB kPB
设M(x1,y1),N(x2,y2),P(t,4)
即 2 y1 2
x2 1
x2 2
9( y1 2)2 ( y2 2)2
4
y2 1
4
y2 2
9(2 y1) 2 y2 2 y1 2 y2
即 2 y1 2
t
x1
即 6 y2 2
t
x2
解法三:直接用两个参数写出直线方程,再研究两个参数之间的关系得出定点
解:直接设MN直线方程为 x my n
设M(x1,y1),N(x2,y2),P(t,4)
因为M,A,P三点共线得 kMA kPA
即 2 y1 2
t
x1
t
x1
即 6 y2 2
t
x2
解法三:直接用两个参数写出直线方程,再研究两个参数之间的关系得出定点
解:直接设MN直线方程为 x my n 因为M,A,P三点共线得 kMA kPA
同理N,B,P三点共线得 kNB kPB
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
解析几何常用方法
解析几何常用方法解析几何是数学中的一个分支,主要研究空间中的点、线、面以及它们之间的关系。
在解析几何中,我们可以使用代数方法来研究几何问题,这些方法通常需要用到坐标系和方程。
下面将介绍几种常用的解析几何方法。
1.坐标系:坐标系是解析几何中最基本的工具,它用来描述空间中的点的位置。
常用的坐标系有笛卡尔坐标系、极坐标系和球坐标系等。
其中,笛卡尔坐标系是最常用的坐标系,它由直角坐标轴x、y和z组成,用来表示三维空间中的点的位置。
2.向量:向量是一个有大小和方向的量,它可以用来表示两点之间的位移。
在解析几何中,向量可以用坐标表示,例如在笛卡尔坐标系中,一个向量可以表示为一个三维向量。
向量的加法和减法可以用坐标分量的加法和减法来表示,向量的数量积和向量积等可以用坐标计算公式来计算。
3.方程:方程是解析几何中的重要工具,它可以用来表示几何图形的性质和特征。
在解析几何中,常用的方程有直线方程和曲线方程等。
直线方程可以用一般式方程、点斜式方程和两点式方程表示,而曲线方程可以用二次曲线的标准式、一般式和参数方程表示。
4.直线与平面:5.几何变换:几何变换是解析几何研究的另一个重要内容,它包括平移、旋转、缩放和镜像等几何变换。
这些变换可以用矩阵和向量的乘法来表示,通过对坐标的变换,我们可以计算出变换后的几何图形的位置和形状。
6.三角函数:三角函数是解析几何计算中常用的工具,它们可以用来计算角度和距离等问题。
在解析几何中,常用的三角函数有正弦函数、余弦函数和正切函数等。
通过使用三角函数的性质和公式,我们可以解决一些复杂的几何计算问题。
综上所述,解析几何涉及到坐标系、向量、方程、直线与平面、几何变换和三角函数等多个方面的内容。
通过运用这些方法,我们可以进行几何图形的计算、推导和证明,从而解决各种几何问题。
解析几何的方法不仅在数学中有着重要的地位,同时也广泛应用于物理、工程和计算机等领域。
第56讲 解析法证几何题
第56讲 解析法证 几何题解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁.此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”.A 类例题例1.如图,以直角三角形ABC 的斜边AB 及直角边BC 为边向三角形两侧作正方形ABDE 、CBFG .求证:DC ⊥F A .分析 只要证k CD ·k AF =-1,故只要求点D 的坐标.证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a),B(b,0),D(x,y).则直线AB的方程为ax+by-ab=0.故直线BD的方程为bx-ay-(b·b-a·0)=0,即bx-ay-b2=0.ED方程设为ax+by+C=0.由AB、ED距离等于|AB|,得|C+ab|a2+b2=a2+b2,解得C=±(a2+b2)-ab.如图,应舍去负号.所以直线ED方程为ax+by+a2+b2-ab=0.解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果).即D(b-a,-b).因为k AF=b-ab,k CD=-bb-a,而k AF·k CD=-1.所以DC⊥F A.例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角.证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是BH:xb+yh=1AC:xc+ya=1过BH、AC的交点E的直线系为:λ(xb+yh-1)+μ(xc+ya-1)=0.以(0,0)代入,得λ+μ=0.分别取λ=1,μ=-1,有x(1b-1c)+y(1h-1a)=0.所以,上述直线过原点,这是直线DE.同理,直线DF为x(1c-1b)+y(1h-1a)=0.显然直线DE与直线DF的斜率互为相反数,故AD平分ED与DF所成的角.说明写出直线系方程要求其中满足某性质的直线,就利用此性质确定待定系数,这实际上并不失为一种通法.例3.证明:任意四边形四条边的平方和等于两条对角线的平方和再加上对角线中点连线的平方的4倍.证明在直角坐标系中,设四边形四个顶点的坐标为A1(x1,y1),A2(x2,y2),A3(x3,y3),A4(x4,y4).由中点公式知对角中点的坐标为B(x1+x32,y1+y32),C(x2+x42,y2+y42).则4(x1+x32-x2+x42)2+(x1-x3)2+(x2-x4)2x=(x1+x3-x2-x4)2+(x1-x3)2+(x2-x4)2=2(x21+x22+x23+x24-x1x2-x2x3-x3x4-x4x1) =(x1-x2)2+(x2-x3)2+(x3-x4)2+(x4-x1)2,同理有4(y1+y32-y2+y42)2+(y1-y3)2+(y2-y4)2=(y1-y2)2+(y2-y3)2+(y3-y4)2+(y4-y1)2,两式相加得:|A1A2|2+|A2A3|2+|A3A4|2+|A4A1|2=4|BC|2+|A1A3|2+|A2A4|2.说明本题纯几何证法并不容易,而采用解析法,只需要简单的计算便达到目的.另外本例中巧妙地抓住了各点的“对称性”,设了最为一般的形式,简化了计算.情景再现1.如图,⊙O的弦CD平行于直径AB,过C、D的圆的切线交于点P,直线AC、BC分别交直线OP于Q、R.求证:|PQ|=|PR|.2.自圆M外一点E作圆的切线,切点为F,又作一条割线EAB,交圆M于A、B,连结EF的中点O与B,交圆M于D,ED交圆M于C.x求证:AC ∥EF .3.CH 是ΔABC 中边AB 上的高,H 为垂足,点K 、P 分别是H 关于边AC 和BC 的对称点.证明:线段KP 与AC ,BC (或它们的延长线)的交点是ΔABC 高线的垂足.B 类例题例4.P 、Q 在ΔABC 的AB 边上,R 在AC 边上,并且P ,Q ,R 将ΔABC 的周长分为三等分.求证:S ΔPQR S ΔABC >29.证明 如图,以A 为原点,直线AB 为x 轴,建立直角坐标系. 设AB =c ,BC =a ,CA =b ,Q (q ,0),P (p ,0). 则q -p =13(a +b +c ),AR =PQ -AP =q -2p , 从而y R y C =ARAC =q -2p b.由于2S ΔPQR =y R (q -p ),2S ΔABC =x B y C , 所以S ΔPQRS ΔABC =y R (q -p )y C x B =(q -p )(q -2p )bC .注意到p =q -13(a +b +c )<c -13(a +b +c ), 所以q -2p >23(a +b +c )-c >23(a +b +c )-12(a +b +c )=16(a +b +c ),S ΔPQR S ΔABC >29·(a +b +c )24bc >29·(b +c )24bc >29.说明 本题中29是不可改进的,取b =c ,Q 与B 重合,则当a 趋向于0时,p 趋向于13q ,面积比趋向于29. 例5.设H 是锐角三角形ABC 的垂心,由A 向以BC 为直径的圆作切线AP 、AQ ,切点分别为P 、Q .证明:P 、H 、Q 三点共线.(1996年中国数学奥林匹克) 证明 如图以BC 为x 轴BC 中点O 为原点建立直角坐标系. 设B (-1,0),C (1,0),A (x 0,y 0), 则PQ 方程为x 0x +y 0y =1.点H 的坐标为H (x 0,y ),满足yx 0+1·y 0x 0-1=-1, 即 y =1-x 20y 0,显然H 满足PQ 方程,即H 在PQ 上. 从而P 、H 、Q 三点共线.例6.设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的两圆相交于X 和Y ,直线XY 交BC于xyZ .若P 为直线XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N .试证:AM 、DN 、XY 三线共点.分析 只要证明AM 与XY 的交点也是DN 与XY 的交点即可,为此只要建立坐标系,计算AM 与XY 的交点坐标.证明 如图,以XY 为弦的任意圆O ,只需证明当P 确定时,S 也确定.以Z 为原点,XY 为y 轴建立平面直角坐标系,设X (0,m ),P (0,y 0),∠PCA =α,其中m 、y 0为定值.于是有x C =y 0cotα. 但是-x A ·x C =y X2,则x A =-m 2y 0tanα.因此,直线AM 的方程为:y =cotα(x +m 2y 0tanα).令x =0,得y S =m 2y 0,即点S 的坐标为(0,m 2y 0).同理,可得DN 与XY 的交点坐标为(0,m 2y 0).所以AM 、DN 、XY 三线共点.x情景再现4.在RtΔABC中,AD是斜边上的高,M,N分别是ΔABD与ΔACD的内心,连接MN并延长分别交AB、AC于K、L两点.求证:SΔABC≥2SΔAKL.5.已知△ABC中,∠A=α,且1|AB|+1|AC|=m.求证:BC边过定点.6.设△ABC的重心为G,AG、BG、CG的延长线交△ABC的外接圆于P、Q、R.求证:AGGP+BGGQ+CGGR=3.C类例题例7.以ΔABC的边BC为直径作半圆,与AB、AC分别交于D 和E.过D、E作BC的垂线,垂足分别为F、G.线段DG、EF交于点M.求证:AM⊥BC.(1996年国家队选拔题)分析建立以BC为x轴的坐标系,则只要证明点A、M的横坐标相等即可.证明以BC所在的直线为x轴,半圆圆心O为原点建立直角坐标系.设圆的半径为1,则B(-1,0),C(1,0).令∠EBC=α,∠DCB=β,则直线BD的方程为y=cotβ·(x+1).同样,直线CE的方程为y=-cotα·(x-1),联立这两个方程,解得A点的横坐标x A=cotα-cotβcotα+cotβ=sin(α-β)sin(α+β).因为∠EOC=2∠EBC=2α,∠DOB=2β,故E(cos2α,sin2α),D(-cos2β,sin2β),G(cos2α,0),F(-cos2β,0).于是直线DG的方程为y=sin2β-(cos2α+cos2β)·(x-cos2α),直线EF的方程为y=sin2α-(cos2α+cos2β)·(x+cos2β).联立这两个方程,解得M点的横坐标x M=sin2α·cos2β-cos2α·sin2βsin2α+sin2β=sin2(α-β)sin(α+β)cos(α-β)=sin(α-β)sin(α+β)=x A.故AM⊥BC.例8.如图,一条直线l与圆心为O的圆不相交,E是l上一点,OE⊥l,M是l上任意异于E的点,从M作圆O的两条切线分别切圆于A和B,C是MA上的点,使得EC⊥MA,D是MB上的点,使得ED ⊥MB ,直线CD 交OE 于F .求证:点F 的位置不依赖于M 的位置(1994年IMO 预选题) 分析 若以l 为x 轴,OE 为y 轴建立坐标系,则只要证明F 点的纵坐标与点M 的坐标无关即可.证明 建立如图所示的平面直角坐标系,设圆O 的半径为r ,OE =a ,∠OME =α,∠OMA =θ,显然有sinθsinα=ra. y C =MC ·sin(α-θ)=ME ·sin(α-θ)cos(α-θ) =a cotα·sin(α-θ)cos(α-θ),x C =-y C ·tan(α-θ)=-a cotαsin 2(α-θ). 同理,y D =a cotα·sin(α+θ)cos(α+θ),x D =-a cotαsin 2(α+θ).所以,k CD =sin2(α+θ)-sin2(α-θ)2[sin 2(α-θ)-sin 2(α+θ)]=-cot2α.则直线CD 的方程为y -a cotα·sin(α+θ)cos(α+θ)=-cot2α[x +a cotαsin 2(α+θ)]. 令x =0,得y F =a cotα·sin(α+θ)[cos(α+θ)-cot2αsin(α+θ)] =a cotα·sin (α+θ)sin(α-θ)sin2αxl=a ·-cos2α+cos2θ4sin 2θ=a 2(1-sin 2θsin 2α) =a 2-r 22a.由于a 2-r 22a是定值,这就表明F 的位置不依赖于点M 的位置.情景再现7.在筝形ABCD 中,AB =AD ,BC =CD ,经AC 、BD 交点O 作二直线分别交AD 、BC 、AB 、CD 于点E 、F 、G 、H ,GF 、EH 分别交BD 于点I 、J .求证:IO =OJ .(1990年冬令营选拔赛题)8.水平直线m 通过圆O 的中心,直线l ⊥m ,l 与m 相交于M ,点M 在圆心的右侧,直线l 上不同的三点A 、B 、C 在圆外,且位于直线m 上方,A 点离M 点最远,C 点离M 点最近,AP 、BQ 、,CR 为圆O 的三条切线,P 、Q,、R 为切点.试证:(1)l 与圆O 相切时,AB ⨯CR +BC ⨯AP =AC ⨯BQ ;(2)l 与圆O 相交时,AB ⨯CR +BC ⨯AP <AC ⨯BQ ; (3)l 与圆O 相离时,AB ⨯CR +BC ⨯AP >AC ⨯BQ .(1993年全国高中数学联合竞赛)习题561.已知AM 是 ABC 的一条中线,任一条直线交AB 于P ,交AC 于Q ,交AM 于N .求证:AB AP ,AM AN ,ACAQ成等差数列.2.在四边形ABCD 中,AB 与CD 的垂直平分线相交于P ,BC 和AD 的垂直平分线相交于Q ,M 、N 分别为对角线AC 、BD 中点.求证:PQ ⊥MN .3.证明,如一个凸八边形的各个角都相等,而所有各邻边边长之比都是有理数,则这个八边形的每组对边一定相等.(1973年奥地利数学竞赛题)4.设△ABC 是锐角三角形,在△ABC 外分别作等腰直角三角形BCD 、ABE 、CAF ,在此三个三角形中,∠BDC 、∠BAE 、∠CF A 是直角.又在四边形BCFE 外作等腰直角三角形EFG ,∠EFG 是直角.求证:⑴GA =2AD ;⑵∠GAD =135°;(上海市1994年高中数学竞赛) 5.如图△ABC 和△ADE 是两个不全等的等腰直角三角形,现固定△ABC ,而将△ADE 绕A 点在平面上旋转.试证:不论△ADE 旋转到什么位置,线段EC 上必存在点M ,使△BMD 为等腰直角三角形.(1987年全国高中数学联赛)D ECBA6.设A1A2A3A4为⊙O的内接四边形,H1、H2、H3、H4依次为ΔA2A3A4、ΔA3A4A1、ΔA4A1A2、ΔA1A2A3的垂心.求证:H1、H2、H3、H4四点在同一个圆上,并定出该圆的圆心位置.(1992年全国高中数学联赛)7.证明:ΔABC的重心G,外心O,垂心H三点共线,且OG:GH=1:2.8.已知MN是圆O的一条弦,R是MN的中点,过R作两弦AB 和CD,过A、B、C、D四点的二次曲线交MN于P、Q.求证:R是PQ的中点.本节“情景再现”解答:1.以圆心O为原点,BA为y轴建立坐标系,设点C的坐标为(x0,y0),且⊙O的半径等于1.可得R点横坐标x R=x01-y0,Q点横坐标x Q=x01+y0,P点横坐标x P=1x0.所以x R+x q=x01-y0+x01+y0=x01-y20=2x0=2x P.即点P为QR的中点,所以|PQ|=|PR|.2.以O 为原点,EF 为x 轴,建立直角坐标系.设E (-x 0,0),F (x 0,0).圆M 的半径设为r ,则圆M 的方程为x 2+y 2-2xx 0-2yr +x 02=0 (1).过E 的两直线AB 、CD 的方程可设为h 1y =x +x 0,h 2y =x +x 0,合为(x -h 1y +x 0)(x -h 2y +x 0)=0 (2).直线BD 、AC 的方程又可设为y =kx ,ax +by +c =0.合为(y -kx )(ax +by +c )=0 (3).(1)与(2)所成的曲线系过交点A 、B 、C 、D ,又曲线(3)过点A 、B 、C 、D ,故为该曲线系中的一条.比较(1)与(2)所成的曲线系与(3)中常数项即可知(3)能由(1)、(2)相减得到,此时项中无x 2项.所以(3)中a =0,即AC ∥EF .3.建立如图所示的平面直角坐标系,设A 、B 、C 三点的坐标依次为A (a ,0),B (b ,0),C (0,c ).则P 点和K 点的坐标分别为:P (2bc 2b 2+c 2,2b 2c b 2+c 2),K (2ac 2a 2+c 2,2a 2ca 2+c 2).于是KP 所在的直线方程是c (a +b )x +(ab -c 2)y-2abc =0 ①,另一方面,BC 所在直线的方程是cx +by -bc =0 ②,BC 边上的高所在的直线方程是bx -cy -ab =0 ③,由于②×a +③×c =①,于是KP 经过BC 边上高线的垂足,同理,KP 与经过AC 边上高线的垂足.4.分别以AC 、AB 所在直线为x 轴和y 轴建立直角坐标系,并设|AC |=a ,|AB |=b ,|OD |=xc ,则c =aba 2+b2.设ΔACD 、ΔABD 的内切圆半径分别为r 1,r 2,则N ,M 的坐标分别为N (c -r 1,r 1),M (r 2,c -r 2).于是直线MN 的斜率为k MN =c -r 2-r 1r 2-c +r 1=-1.这说明ΔAKL 为等腰直角三角形,直线MN 的方程为y -r 1=-(x -c +r 1),其横、纵截距均为c ,所以2S ΔAKL=c 2=a 2b 2a 2+b 2≤a 2b 22ab=ab2=S ΔABC .5.以A 为原点,AB 为x 轴正方向建立直角坐标系.设|AB |=p ,|AC |=q .则1p +1q =m ,q =pmp -1,点B (p ,0),C (q cos α,q sin α).直线BC 的方程为yq sin α=x -p q cos α-p.整理得p (my -sin α)+[x sin α-(1+cos α)y ]=0,即无论p 为何值时,直线BC 经过两条定直线my -sin =0与x sin α-(1+cos α)y =0的交点.(两条直线斜率不等,故必有交点),即直线BC 过定点.6.以外接⊙O 的圆心O 为原点,平行于BC 的直线为x 轴建立坐标系.设A (x 1,y 1),B (x 2,y 2),则C (-x G (x 13,y 1+2y 23).设外接圆半径为r .则=x 22+y 22=r 2.由相交弦定理,知AG GP =|AG |2r 2-|OG |2,同理BG GQ =|BG |2r 2-|OG |2,CG GR =|CG |r 2-|OG |2;|AG |2+|BG |2+|CG |2=(x 1-x 13)2+(x 2-x 13)2+(x 2+x 13)2+(y 1-y 1+2y 23)2+2(y 2-y 1+2y 23)2=23[x 12+(y 1-y 2)2]+2x 22=43(r 2+x 22-y 1y 2),r 2-|OG |2=r 2-[x 209+(y 1+2y 2)29]=49(2r 2-y 22-y 1y 2).注意到x 22+y 22=r 2,就得AG GP +BG GQ +CGGR=|AG |2+|BG |2+|CG |2r 2-|OG |2=3.7.如图,以O 为原点,OD 为x 轴正方向建立直角坐标系,设A (0,a ),D (d ,0),C (0,c ),则B (-d ,0).直线AB 方程为:x -d+ya -1=0;设GH 方程:ky -x =0. (因为求I 点坐标时要取y =0,故把系数k 置 于y 前).于是GF 方程为x -d +ya -1+λ(ky-x )=0 ①,BC 方程为x -d +yc -1=0,设EF 方程为hy -x =0.于是GF 方程又可表 示为x -d+yc -1+μ(hy -x )=0 ②. ①与②是同一个方程,比较系数得λ=μ,1a +λk =1c+μh .则λ=1h -k (1a -1c ).在①中,令y =0得I 点的横坐标x I =d1+d λ;同理,点J 的横坐标为x J =-d 1-d λ',其中λ'=1k -h (1a-1c ),于是x I=-x j .即IO =OJ .从而得证.8.证略.本节“习题56”解答:1.以BC所在直线为x轴,高AD所在直线为y轴建立直角坐标系.设A(0,a),B(m-b,0),C(m+b,0),直线PQ方程:y=kx+q.设ABAP=λ,则AP+PBAP=λ,BPP A=λ-1.所以P点坐标为x=m-bλ,y=(λ-1)aλ,故(λ-1)a=k(m-b)+qλ,则λ=k(m-b)+aa-q ,即ABAP=k(m-b)+aa-q,同理,AMAN=km+aa-q,ACAQ=k(m+b)+a a-q .则ABAP+ACAQ=2AMAN.这说明ABAP,AMAN,ACAQ成等差数列.2.提示:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),利用式子的对称性即可证得结论.3.此八边形的每个内角都等于135︒.不妨设每边的长都是有理数.依次设其八边长为有理数a,b,c,d,e,f,g,h.把这个八边形放入坐标系中,使长为a的边的一个顶点为原点,这边在x轴上,于是a+b cos45︒+d cos135︒-e+f cos225︒+h cos315︒=0,整理得a+e+22(b-d-f+h)=0;b cos45︒+c+d cos(-45︒)+f cos135︒-g+h cos225︒=0,整理得c+g+E22(b+d-f-h)=0.所以a=e,b-d-f+h=0;c=g,b+d-f-h=0.则b-f=0,g-h=0.从而凸八边形的每组对边相等.4.以A为原点建立直角坐标系,设B、C对应的复数为z B,z C.则点E对应复数z E=-iz B,点D对应复数z D=12(1+i)(z B-z C)+z C=12[(1+i)z B+(1-i)z C],点F对应复数z F=12(1+i)z C.向量→FE=z E-z F=-iz B-12(1+i)z C.z G=z F-i→FE=12(1+i)z C-i[-iz B-12(1+i)z C]=-z B+12(1+i)2z C=-z B+iz C.则z G=(-1+i)z D=2(cos135︒+i sin135︒)z D.则GA=2AD;∠GAD=135°.5.以A为原点,AC为x轴正方向建立复平面.设C表示复数c,点E表示复数e(c、e∈R).则点B表示复数b=12c+12ci,点D表示复数d=12e-12ei.把△ADE绕点A旋转角θ得到△AD'E',则点E'表示复数e'=e(cosθ+i sinθ).点D'表示复数d'=d(cosθ+i sinθ)表示E'C中点M的复数m=12(c+e').则表示向量→MB的复数:z1=b-12(c+e')=12c+12ci-12c-12e(cosθ+i sinθ)=-12e cosθ+12(c-e sinθ)i.表示向量→MD '的复数:z 2=d '-m =(12e -12ei )(cos θ+i sin θ)-12c -12e (cos θ+i sin θ)=12(e sin θ-c )-12ie cos θ.显然:z 2=z 1i .于是|MB |=|MD '|,且∠BMD '=90°.即△BMD '为等腰直角三角形.故证.6.以O 为坐标原点,⊙O 的半径为长度单位建立直角坐标系,设OA 1、OA 2、OA 3、OA 4与OX 正方向所成的角分别为α、β、γ、δ,则点A 1、A 2、A 3、A 4的坐标依次是(cos α,sin α)、(cos β,sin β)、(cos γ,sin γ)、(cos δ,sin δ).显然,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的外心都是点O ,而它们的重心依次是(13(cos β+cos γ+cos δ),13(sin β+sin γ+sin δ))、(13(cos γ+cos δ+cos α),13(sin α+sin δ+sin γ))、(13(cos δ+cos α+cos β),13(sin δ+sin α+sin β))、(13(cos α+cos β+cos γ),13(sin α+sin β+sin γ)).从而,⊿A 2A 3A 4、⊿A 3A 4A 1、⊿A 4A 1A 2、⊿A 1A 2A 3的垂心依次是H 1(cos β+cos γ+cos δ,sin β+sin γ+sin δ)、H 2(cos γ+cos δ+cos α,sin α+sin δ+sin γ)、H 3(cos δ+cos α+cos β,sin δ+sin α+sin β)、H 4(cos α+cos β+cos γ,sin α+sin β+sin γ).而H 1、H 2、H 3、H 4点与点O 1(cos α+cos β+cos γ+cos δ,sin α+sin β+sin γ+sin δ)的距离都等于1,即H 1、H 2、H 3、H 4四点在以O 1为圆心,1为半径的圆上.证毕.7.以ΔABC 的外心O 为坐标原点,不妨设ΔABC 的外接圆半径为1,设A (cosα,sinα),B (cosβ,sinβ),C (cosγ,sinγ),则重心G 的坐标为G (cosα+cosβ+cosγ3,sinα+sinβ+sinγ3).设H '(cosα+cosβ+cosγ,sinα+sinβ+sinγ).则k AH '=sinβ+sinγcosβ+cosγ=tan β-γ2,k BC =sinβ-sinγcosβ-cosγ=-cot β-γ2.则可得k AH '·k BC =-1,则AH '⊥BC .同理,BH '⊥CA ,CH '⊥AB .因此,H '(cosα+cosβ+cosγ,sinα+sinβ+sinγ)为ΔABC 的垂心H .观察O 、G 、H 的坐标可知,G 、O 、H 三点共线,且OG :GH =1:2.8.以R 为原点,MN 为x 轴,建立如图所示的平面直角坐标系.设圆心O 的坐标为(0,a ),圆半径为r ,则圆的方程为x 2+(y -a )2=r 2 ①,设AB 、CD 的方程分别为y =k 1x 和y =k 2x .将它们合成为(y -k 1x )(y-k 2x )=0 ②,于是过①与②的四个交点A 、B 、C 、D 的曲线系方程为(y -k 1x )(y -k 2x )+λ[x 2+(y -a )2-r 2]=0 ③,令③中y =0,得(λ+k 1k 2)x 2+λ(a 2-r 2)=0 ④.④的两个根是二次曲线与MN 交点P 、Q 的横坐标,因为x P +x Q =0,即R 是PQ 的中点.从而得证.说明:本例实质上是平面几何中蝴蝶定理得推广.平面几何中许多x命题都可以通过解析法获证.第21 页共21 页。
高中数学解析几何解题技巧
高中数学解析几何解题技巧
高中数学解析几何解题技巧主要包括以下几个方面:
1. 理解基本概念:解析几何的基本概念是解题的基础,包括直线、平面、向量、点、线段等。
在解题过程中,要确保对这些基本概念的理解准确。
2. 熟悉性质定理:解析几何中有许多性质定理,例如平行线性质、垂直线性质、相似三角形性质等。
熟悉这些性质定理,可以帮助理解和解决解析几何题目。
3. 运用向量法解题:向量法是解析几何中常用的一种解题方法。
通过引入向量的概念,可以简化解析几何题目的计算过程,提高解题效率。
4. 利用几何变换:几何变换是解析几何中常用的一种方法,包括平移、旋转、镜像等。
通过利用几何变换,可以将原题转化为更简单的几何问题进行求解。
5. 善用相似性质:相似性质在解析几何中有着重要的应用。
通过发现和利用图形的相似性质,可以得到一些有用的信息,从而解决解析几何题目。
6. 注意特殊情况:解析几何题目中经常会涉及到一些特殊情况,例如对称性、平行四边形、等腰三角形等。
在解题过程中,要特别注意这些特殊情况,以充分利用它们带来的信息。
7. 多画图辅助:在解析几何题目中,通过画图可以更好地理解和分析题目。
因此,解析几何解题过程中,多画图进行辅助,有助于
提高解题的思路和准确性。
8. 注意技巧和方法:解析几何题目中有一些常用的技巧和方法,例如相似比例、平行线截比、垂直线截比等。
要熟悉这些技巧和方法,并在解题过程中加以运用。
最后,解析几何题目的解题技巧需要通过大量的练习和实践来逐渐掌握和提高。
不断总结经验,加强对解析几何知识的理解和掌握,才能在解析几何题目中游刃有余。
解析几何-方法提炼
第七章中常用的方法7.1方法提炼1.直线的倾斜角不为90°时,其正切值才叫直线的斜率.故倾斜角为90°的直线无斜率.另外,每条直线都存在唯一的倾斜角,但并不是每条直线都存在斜率,故运用直线的斜率解题时,一定要考虑斜率是否存在的情形.2.直线的倾斜角围为α∈[0,π),当α∈(0,2π)时,斜率k >0, 当α∈(2π,π)时,k <0, 因而含有参数的斜率,求其倾斜角时,必须对斜率的正负加以讨论.一般当k <0时.其倾斜角为π+arctan k ,也可表示为π-arctan(-k )或2π+arccot(-1k )或π等,要注意反三角函数值的等价性.3.直线斜率k 的求法有三种:(1) 倾斜角α,求k (分α=90°,α≠90°两种情况求;(2)两点P 1(x 1,y 1),P 2(x 2,y 2),求 k (分x 1=x 2, x 1≠x 2两种情况求,特别当x 1≠x 2时,k 不存在; (3)直线方程Ax +By +C =0,求k , 分B =0, B ≠0两种情况求.4.设A (a ,b ),B (c ,d ),P (m ,n ),要使过P 点的直线l 与线段AB 有公共点,那么l 的斜率k 围的求法(A 点在B 点的左侧)可分两种情形术:(1)当直线x =m 与线段AB 有交点时,k ≥k PB 或k ≤k PA , (2)当直线x =m 与线段AB 无交点时,k PA <k <k PB .7.2方法提炼1.直线方程的点斜式和斜截式只能表示斜率存在的直线,不能表示与x 轴垂直的直线,因而,利用它们解题时应首先对所求直线的斜率的存在性加以判定.2.两点式方程不能表示与坐标轴平行的直线,截距式方程不能表示与坐标轴平行和经过原点的直线,因而利用这两种形式解题时应首先对所求直线的可能情形加以判定,以防漏解. 3.“截距〞与“距离〞是两个不同的概念,横截距是指直线与x 轴的交点的横坐标,纵截距是直线与y 轴交点的纵坐标.截距可为正数、负数或零,而距离是大于或等于零的实数. 4.题目中凡涉及“截距相等〞、“截距互为相反数〞、“截距的绝对值相等〞等条件时,一定要考虑截距为零的情形.截距要加绝对值符号后才成为线段的长度.5.直线与坐标轴围成的三角形的面积、周长问题均与截距有关,所以选用截距式.特别在求三角形面积的最值时,先应列出所求最值的目标函数关系式,再利用代数方法(如判别式法,均值不等式法)求最值.6.判断直线在坐标平面的位置,第一看斜率(或倾斜角),第二看直线在y 轮上的截距的正负,即可得出结论.7.当点在直线上时,常借助直线的方程,用一个字母(本数)来表示直线上点的两个坐标,这种方法称为“直线标点法〞,它是解析几何最根本的思想方法,在解题中有较灵活的应用.7.3方法提炼1.直线方程的一般式为Ax 十By 十C =0, 当B =0时,斜率不存在;当B ≠0时,斜率为-AB.令x =0可得y 的值即为纵截距,令y =0,得x 的值即为横截距.2.判断直线y =kx +b 不经过哪个象很,必须对k 和b 的正负加以讨论:①当k >0, b >0时,不经过第四象限;②当k >0,b <0时,不经过第二象限;③当k <0,b >0时,不经过第三家限;④当k <0,b <0时,不经过第一象限.3.直线Ax 十By 十C =0与坐标轴围成的三角形面积应是横、纵截距的绝对值乘积的21. 4.涉及直线的科率问题或需设直线上点的坐标时往往将一般式方程化为斜截式方程;涉及直线的横、纵截距或直线与坐标轴围成的三角形面积、周长时,往往将一般式方程化成截距式.5.含有绝对值符号的方程,一般要先找分界点,分段讨论,把绝对值符号脱掉.但得出的直线方程在画图形时,应注意x 和y 的取值围.6.根据条件求直线方程,应依据直线的方程判断其特征,运用待定系数法求解.7.4方法提炼1.两条直线位置关系的判定方法:方法一:解两直线方程组成的方程组,由方程组的解的情况判定两直线的位置关系,这种方法虽思路自然,但运算较繁.方法二:用斜率,但须保证两直线的斜率存在.设l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,那么①k 1≠k 2⇔l 1与l 2相交;②k 1=k 2且b 1≠b 2⇔l 1与l 2平行;③k 1k 2=-1⇔l 1⊥l 2,④k 1=k 2且b 1=b 2⇔l 1与l 2重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何解析法
几何解析法是一种通过数学几何的方法来解决问题的技术。
它将几何问题转化为代数问题,通过运用代数的性质和技巧来求解。
几何解析法在数学、物理等领域都有广泛的应用,可以帮助我们更好地理解和分析问题。
一、几何解析法的基本原理
几何解析法的基本原理是将几何图形中的点用坐标表示,通过坐标的运算和代数的方法来研究几何问题。
在平面几何中,我们可以用直角坐标系来表示一个点的位置,其中x轴和y轴分别代表了水平和垂直的方向。
在空间几何中,我们可以用三维直角坐标系来表示一个点的位置,其中x轴、y轴和z轴分别代表了水平、垂直和深度的方向。
二、几何解析法的应用
1. 几何定理的证明:通过几何解析法,我们可以更直观地解释和证明各种几何定理。
例如,我们可以通过坐标的运算来证明平行线的性质,或者证明相似三角形的性质。
2. 图形的性质分析:通过几何解析法,我们可以分析和研究各种图形的性质。
例如,我们可以通过坐标的运算来计算图形的面积、周长和中心点的位置,从而更好地理解和描述图形的特征。
3. 几何问题的求解:通过几何解析法,我们可以求解各种几何问题。
例如,我们可以通过坐标的运算来求解两条直线的交点、两个图形的重叠部分或者一个图形的对称图形。
三、几何解析法的优缺点
几何解析法的优点是可以通过代数的方法来求解几何问题,使问题更具有普遍性和一般性。
几何解析法还可以通过坐标的运算和代数的技巧来解决复杂的几何问题,提高问题的求解效率。
然而,几何解析法也有一些缺点。
首先,几何解析法需要使用坐标系和代数运算,对于一些几何问题来说可能会增加一定的复杂性。
其次,几何解析法的应用范围相对有限,对于一些非线性和非平面的几何问题可能无法有效地求解。
四、几何解析法的案例分析
为了更好地理解几何解析法的应用,我们可以通过一个案例来进行分析。
假设我们需要求解一个平面上的三角形的面积。
我们可以将三角形的三个顶点用坐标表示,然后通过坐标的运算来计算三角形的面积。
具体的步骤如下:
1. 假设三角形的三个顶点分别为A、B和C,它们的坐标分别为(x1,y1)、(x2,y2)和(x3,y3)。
2. 根据两点之间的距离公式,我们可以计算出三角形的三条边的长度(a、b和c)。
3. 根据海伦公式,我们可以计算出三角形的半周长(s)。
4. 根据海伦公式,我们可以计算出三角形的面积(S)。
通过以上的步骤,我们就可以通过几何解析法来求解出平面上任意三角形的面积。
五、总结
几何解析法是一种通过数学几何的方法来解决问题的技术。
它通过将几何问题转化为代数问题,运用代数的性质和技巧来求解。
几何解析法在几何定理的证明、图形的性质分析和几何问题的求解中有广泛的应用。
几何解析法的优点是可以通过代数的方法来求解几何问题,使问题更具有普遍性和一般性。
然而,几何解析法也有一些缺点,对于一些复杂和非线性的几何问题可能无法有效地求解。
通过几何解析法,我们可以更好地理解和分析几何问题,提高问题的求解效率。