第5章 频率特性解析
控制工程 第5章 系统的频率特性
频响函数 幅频特性 相频特性
1 G ( j ) 1 j 0.005 1 | G ( j ) | 1 (0.005 )2 0 0.005 ( ) arctan arctan 1 1 arctan(0.005 )
可见:输入信号频率越高,稳态输出幅值衰减越大,相移越大(这正是惯性环节 的频响特性)。
18:10:18
5-1 频率特性
本例题也可以采用第 4 章介绍的求时间响应的方法获 得稳态响应,即利用传递函数求出零状态响应,然后分 解出其中的稳态响应。 而利用频响函数可直接求出稳态 响应。
21
y( t ) L [Y ( s )] 0.555e 200 t
m k f (t)/x (t) f(t)—力
A
f(t) = Asin(ωt)
A B
x(t)—位移 B
0 -A
ωt
υ
单自由度有阻尼振动 x(t) = Bsin(ωt+υ)+瞬态响应 系统力学模型 教材101页图5-2中的标注“υ”不对,应改成“υ/ω”,
18:10:18
或将横坐标标尺改成“ωt”。
5-1 频率特性
相频特性 = 正弦信号稳态响应相角 - 正弦输入信号相角
幅频特性和相频特性合起来描述了系统的频响特 性或频率特性。
18:10:18
13
5-1 频率特性
系统频率特性的获得 解析法 令输入x(t)=x0sin(t),求解微分方程的特解(稳 态解)。可以利用拉氏变换求解;
利用频率响应函数;
实验法
输入正弦信号,测量稳态输出。
18:10:18
5-1 频率特性
利用频率响应函数求频率特性 频率响应函数的定义:对连续线性定常系统,输出 的付立叶变换 C(j) 与输入的付立叶变换 R(j) 之比 ,叫频率响应函数,简称频响函数,也称为正弦传 递函数,记作G(j) 。即
系统的频率特性
三、机械系统动刚度的概念
质量-弹簧-阻尼系统(m- k- B)
f(t):输入力
x(t):输出位移
k
B
m
其传递函数
阻尼比
无阻尼自然频率
系统的频率特性
动柔度: 动刚度: ω = 0时,即为系统静刚度。 当
f
x1
k1
m1
k2
m2
x2
例p142:弹簧吸振器简化图示模型,若质量m1受到干扰力f=Asinωt,如何选择吸振器参数m2和k2,使质量m1产生的振幅为最小?
解 其稳态响应为: 求一阶系统G(s)=K/Ts+1的频率特性及在正弦信号xi(t)=Xsinωt作用下的频率响应。
求系统如图所示,当输入3cos(4t-30°)+sin(10t+45 °)时,试求系统的稳态输出。
[结论]:当传递函数中的复变量s用 jω代替时,传递函数就转变为频率特性。反之亦然。 到目前为止,我们已学习过的线性系统的数学模型有以下几种:微分方程、传递函数、脉冲响应函数和频率特性。它们之间的关系如下: 微分方程 频率特性 传递函数 脉冲函数
卡通风学期计划
频率特性
频率特性的对数坐标图
频率特性的极坐标图
最小相位系统
闭环频率特性与频域性能指标
系统辨识
第五章 系统的频率特性
B
D
F
A
C
E
掌握系统频率特性的概念和求法
掌握系统闭环频率特性的求取方法
根据bode图估计系统的传递函数
熟悉系统的bode图和nyquist图的构成
系统幅频特性和相频特性的求法
解:以f为输入,x1为输出,系统微分方程为
则位移x1与干扰力f之间的传递函数为
自动控制原理--第五章-频率特性法
3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
第5章 控制系统的频域分析法 1(48)
频率特性如图5-3所示。 由图可看出,积分环节的相 频特性等于-900 ,与角频率 ω无关.
图5-3 积分环节的频率响应
14
表明积分环节对正弦输入信号有900的滞后作用; 其幅频特性等于1/ω,是ω的函数,当ω由零变到无穷大 时,输出幅值则由无穷大衰减至零。 在[G(jω)]平面上,积分环节的频率特性与负虚轴重合。
17
1
推广:当惯性环节传递函数的分子是常数K时, 即G(jω)=k/(jTω+1)时,其频率特性是圆心 为:[k/2,0],半径为k/2的实轴下方半个圆周。
(四)振荡环节
振荡环节的传递函数是:
(5-34)
其频率特性是:
(5-35)
图5-4 惯性环节的频率响应
幅频特性和相频特性分别为:
18
振荡环节的幅频特性和相频特性均与阻尼比ξ有关, 不同阻尼比的频率特性曲线如图所示。 当阻尼比较小时,会产生谐振,谐振峰值Mr(Mr>1) 和谐振频率ωr由幅频特性的极值方程解出。
时,输出幅值衰减很快。
当阻尼比 时,此时振 荡环节可等效成两个不同时间 常数的惯性环节的串联,即:
T1,T2为一大一小两个不 同的时间常数,小时间常数对 应的负实极点离虚轴较远,对 瞬态响应的影响较小。
图5-6 振荡环节的频率响应
21
振荡环节为相位滞后环节,最大滞后相角是180 。 推广:当振荡环节传递函数的分子是常数K时, 即 ,其对应频率特性 的起点为
G( j ) G( j ) e jG ( j ) (5 - 15)
;
称为系统的频率特性,它反映了在正弦输入信号作用 下,系统的稳态响应与输入正弦信号的关系。
9
G ( j ) G ( j ) e jG ( j )
频率特性分析方法
(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
第5章 频率特性
当 ur (t ) U r sin t 时, 其稳态输出为: uc (t ) Ur A()sin[t ()]
当T 2,ur (t ) 2sin t
=1,A()
1 T 2 2 1 5 0.447, () arctan 2 63.4 5
14
例5-1 设系统开环传递函数为 G(s) H (s) 统概略开环奈氏图。 解 系统的幅频特性和相频特性为
A( ) 5
5 ,试绘制系 s( s 1)(0.2s 1)
1
2
(0.2 ) 1
2
, () 90 arctg arctg 0.2
Im
指数形式:
Q( ) A( )
G ( j )
G( j) G( j) e jG( j ) A()e j ( )
三角函数形式:
( )
0
P( )
Re
G( j) A() cos () jA()sin ()
实频-虚频形式:
G( j) Re G( j) j ImG( j) P() jQ()
G ( j ) G ( s ) s j
各种数学 模型之间 的关系
5
例:RC电路网络是一个惯性环节,其传递函数为
G( s) U c ( s) 1 U r ( s ) Ts 1
其频率特性为
1 1 G( j ) G( s) s j e j arctan T jT 1 T 2 2 1 1 A( ) , () arctan T 2 2
所以有
uc (t ) 2 0.447sin (t 63.4)
练习:作业5-1
6
自动控制原理第5章频率特性
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
频率特性的基本概念05
I ( ) A ( ) sin ( )
以上函数都是ω的函数,并且A(ω)与R(ω)为ω的偶函数, (ω)与I(ω)是ω的奇函数。
5.1.3 频率特性的求取
R s in t
线性 线性定 G (s) 定常系统 常系统
A ( ) R s in ( t ( ))
G ( j ) G ( s )
j t
Rm 2 j
A ( ) e
j ( )
y s (t ) k c1e
kc2e
A ( ) R m
e
j ( t ( ))
e 2 j
j ( t ( ))
A ( ) R m s i n ( t ( ) ) Y m s i n ( t ( ) )
频率响应: 线性系统对正弦输入信号的稳态响应。
一个稳定的线性定常系统,在正弦信号的作用下,稳 态时输出仍是一个与输入同频率的正弦信号,且稳态输出 的幅值与相位是输入正弦信号频率的函数。
A ( ) R m s in ( t ( ) )
R m s in t
r(t)
Yss(t) t
A ( ) e
j ( )
G ( j ) G ( s ) | s j | G ( j ) | e
k c1 Rm 2 j
j t
j G ( j )
A ( ) e
j ( )
A ( ) e
j ( )
, kc2
系统的闭环频率特性为,
G ( j ) G ( s )
s j
4 j 5
4 (5 j ) (5 j )(5 j )
第五章(1,2) 线性系统的频域分析法解析
用频率特性求取正弦输入稳态误差的方法:
正弦输入稳态误差求法总结: 1.定义法,求拉式反变换(不能 用终值定理) 2.动态误差系数法 3.频率响应法
2.频率特性的几何表示法(图示法)(重点)
仅从G( j)的表达式中看出的信息不直观,在工程分析和 设计中,通常把线性系统的频率特性画成曲线,观察其在不 同频率段上的变换,再运用图解法进行研究(包括稳态性能、 暂态性能等)。常用的频率特性曲线有三种:
第五章 线性系统的频域分析法
时域分析法是分析控制系统的直接方法,比较直 观、精确。但往往需要求解复杂的微分方程。
复域分析法(根轨迹法)是一种在S平面上由开环零 极点绘制闭环系统特征根的图形分析法。
频域分析法也是一种图解分析法。依据系统的频 率特性,间接地揭示系统正弦输入信号下的暂态特 性和稳态特性。也是一种工程上常用的方法。
1
Re[G(jω)]
0
不足:计算繁琐。不直观,无法看出每个零极 点的影响。增添新的零极点时,只能重新计算。 看不出ω的变化速度。
单位:弧度/秒
半对数坐标系的优点:
对数频率特性采用 的对数分度实现了横坐标的非线性压缩,便于在较大频
率范围内反映频率特性的变化情况。对数幅频特性采用 20lg A()则将幅值的乘 法运算转化为加减运算,可以简化曲线的绘制过程。
对数幅相图实质上将伯德图的两张图合成一张图。
5-2 典型环节与开环系统的频率特性
设典型的线性系统结构如图所示,闭环系统的很多 性能可通过研究开环系统的频率特性来得到。
该线性系统的开环传递函数为 G(s,)H (为s) 了研究开 环系统频率特性曲线,本节先研究开环系统典型环节 的频率特性,进一步研究开环系统的频率特性。
1.频域特性的基本概念 (这种数学模型是怎样的?)
自动控制原理第5章
8
二、图形表示法
1.极坐标图(幅相频率特性图;奈奎斯特图) 1.极坐标图(幅相频率特性图;奈奎斯特图) 极坐标图 随着频率的变化,频率特性的矢量长度和幅角也改变。 随着频率的变化,频率特性的矢量长度和幅角也改变。 当频率ω 变化到无穷大时, 当频率ω从0变化到无穷大时,矢量的端点便在平面上画出一 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 条曲线,这条曲线反映出ω为参变量、模与幅角之间的关系。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。 通常称这条曲线叫做幅相频率特性曲线或奈奎斯特曲线。画 有这种曲线的图形称为极坐标图。 有这种曲线的图形称为极坐标图。
− j arctan 2 ζT ω 1−T 2ω 2
幅频特性 相频特性
A(ω ) =
ϕ (ω ) = − arctan
23
典型环节的频率特性
9
2.博德图(对数频率特性图) 博德图(对数频率特性图) 博德图 两张图构成 一张是对数幅频图 一张是对数相频图 构成: 对数幅频图, 对数相频图。 由两张图构成:一张是对数幅频图,一张是对数相频图。 两张图的横坐标都是采用了半对数坐标。 两张图的横坐标都是采用了半对数坐标。
10
对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 对数幅频特性图的纵坐标是频率特性幅值的对数值乘20, 是频率特性幅值的对数值乘20 即 L(ω ) = 20 lg A(ω ) 表示,均匀分度,单位为db。 表示,均匀分度,单位为db db。 对数相频特性图的纵坐标是相移角φ(ω),均匀分度,单 对数相频特性图的纵坐标是相移角φ 是相移角 均匀分度, 位为“ 位为“度”。 对数幅频特性图绘的是对数幅频特性曲线, 对数幅频特性图绘的是对数幅频特性曲线, 对数相频特性图绘的是对数相频特性曲线。 对数相频特性图绘的是对数相频特性曲线。
27-----10-11夏学期第五章5-5 相角裕度和幅值裕度以及闭环频率特性
浙江大学控制科学与工程学系
16
Phase Margin and Gain Margin
相角裕度和幅值裕度的求解方法——Bode图法
例5-20的Bode图如右图所示。 从图中,可直接得到 幅值穿越频率 ω Φ ≈ 2 相角穿越频率 ω x = 5 相角裕度: 幅值裕度:
dB
Lm(ω )
− 20dB / dec
ωΦ
2
5
ωx
ω
1 / h (dB)
γ ≈ 80 0
度
− 60dB / dec
φ(ω)
h = 2dB
− 900
γ
− 180
0
ω
− 2700
例5-20 Bode图
浙江大学控制科学与工程学系
17
Phase Margin and Gain Margin
相角裕度和幅值裕度的求解方法
浙江大学控制科学与工程学系
Maple
3
Phase Margin and Gain Margin
相角裕度和幅值裕度以及与稳定性的关系
稳定性和近似稳定度可以通过对数幅频曲线和相频曲线来确定。稳定 性可以用以下指标进行度量. Gain crossover(幅值穿越频率--增益临界点) G(jω)幅相曲线在该点处的幅值为1 [LmG(jω)=0dB]. 该点处的频率被 称为相角裕度频率ωΦ,或(截止频率ωC) Phase margin angle(相角裕度) 相 角 裕 度 等 于 180° 加 上 截 止 频 率 处 的 负 相 角 , 用 γ 来 表 示 , γ=180°+Φ, 其中 ∠G(jωΦ)=Φ 是负值.
第5章 控制系统的频域分析
积分环节的对数相频特性表达式为
积分环 节 的 伯 德 图 如 图 5-12 所 示。
第5章 控制系统的频域分析
图5-12 积分环节的伯德图
第5章 控制系统的频域分析 3.微分环节
第5章 控制系统的频域分析
图5-13 微分环节的极坐标图
第5章 控制系统的频域分析
图5-9 比例环节的极坐标图
第5章 控制系统的频域分析 2)伯德图 比例环节的对数幅频特性表达式为
其对数相频特性表达式为
比例环节的对数频率特性曲线(即伯德图)如图5-10所示。
第5章 控制系统的频域分析
图5-10 比例环节的伯德图
第5章 控制系统的频域分析 2.积分环节 积分环节的传递函数为
第5章 控制系统的频域分析
图5-21 二阶比例微分环节的伯德图
第5章 控制系统的频域分析 8.延迟环节
第5章 控制系统的频域分析
图5-22 延迟环节的极坐标图和伯德图
第5章 控制系统的频域分析 5.3 系统的开环频率特性
第5章 控制系统的频域分析
5.3.1 最小相位系统和非最小相位系统 若控制系统开环传递函数的所有零、极点都位于虚轴以
图5-1 典型一阶系统
第5章 控制系统的频域分析
第5章 控制系统的频域分析 对于图5-2所示的一般线性定常系统,可列出描述输出量
c(t)和输入量r(t)关系的微分方程:
图5-2 一般线性定常系统
第5章 控制系统的频域分析 与其对应的传递函数为
如果在系统输入端加一个正弦信号,即 式中,R0是幅值,ω 是角频率。由于 所以
第5章 控制系统的频域分析
第五章5 5 相角裕度和幅值裕度以及闭环频率特性自动控制原理 浙江大学考研资料
-90° -135° -180°
-225° -270°
ωΦ ωc
ω→
Phase margin angle, γ(–)
G(jω)的对数幅频曲线和10相频曲线
Phase Margin and Gain Margin
相角裕度和幅值裕度的求解方法——解析法
通常有三种求解系统相角裕度和幅值裕度的方法,即解析法、极坐标 图法和伯德图法。下面通过实例进行说明。
则系统将处于临界稳定状态。可以用频率点ωx处的传递函数来表示,
即 G( jx ) h 1
在G(jω)极坐标图上,频率点 ωx对应的幅值
G(
jx )
1 h
在对数幅频曲线上, Lmh Lm G( jx )
8
Phase Margin and Gain Margin
相角裕度和幅值裕度以及与稳定性的关系
如果稳定性不够??--校正。
2
主要内容
Phase Margin and Gain Margin
简介 Bode 图 (对数坐标图) 极坐标图 Nyquist稳定判据- 1 Nyquist稳定判据- 2 相角裕度和幅值裕度以及与稳定性的关系 闭环频率特性 补偿 ………
LmG(jω)
ωΦ
-1 γ(–) Φ
G(jω) ω G(jω)的极坐标图
-90°
-135° -180° -225° -270°
ωΦ
ω→ Phase margin
angle, γ(–)
G(jω)的对数幅频曲线6 和相频曲线
Phase Margin and Gain Margin
相角裕度和幅值裕度以及与稳定性的关系
(一) 解析法 根据系统的开环频率特性,由 G( j )H ( j ) 1 (0 )
频率特性及其图示法
幅
值 比
r=sinωt
1
R(s)
0.5s 1 Y(s)
ω=0.2π ω=1π
ω=5π
考
ω=0.2π
察
相
位
差
ω=1π
ω=5π
结论 推广到一般,得出以下
:
1、对稳定的线性系统作用正弦信号,其稳态输出
仍是一正弦函数,频率不变,幅值和相位发生变化。
2、幅值比 B 和相位差Φ都是输入信号频率ω的函数,
A
2
整理:U
2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
A是幅值,ω是角频率.
稳态响应
,是频率的函数。
利用频率特性研究的系统必须是稳定的系统。
一阶线性系统
r=Asinωt
K
R(s)
Ts 1
Y(s)
当输入
r Asint时, R(s)
A s2 2
Y (s) G(s)R(s)
K A Ts 1 s2 2
K
A
b a a
Ts 1 (s j )(s j ) Ts 1 s j s j
A
∴ G( j) 是频率特性函数。
关于频率特性的总结:
1、任何稳定的线性系统,当输入为正弦信号时,稳 态后输出也是正弦信号,频率相同,幅值和相位 都发生变化,而且它们都是频率的函数。
2、将传递函数 G(s)中的s 用 j 代替得 G( j) , G( j)
即为频率特性。 G( j) 为幅值比,又称幅频特性。 G( j) 为相位差,又称相频特性。
机械控制理论基础(第五章 系统的频率特性)
Imaginary Axis
Phase (deg)
-45 -90 -135 -180 -2 10
-1 0 1 2
-2
-1
0 Real Axis
1
2
3
10
10 Frequency (rad/sec)
10
10
第五章 系统的频率特性 §5-2 典型环节的频率特性图
7.
二阶微分环节
传递函数: G( s) T 2 s 2 + 2Ts + 1 频率特性:
频率特性的求取:已知系统传递函数G(s),令
s=jw代入,即得
第五章 系统的频率特性 §5-1频率特性
例:已知系统传递函数G(s) = K/(Ts+1),求系统
的频率特性及对正弦输入Asinwt的稳态响应
解:系统的频率特性G(jw) = K/(jTw+1)
当r(t) = Asinwt时
Bode Diagram 0 -5
Magnitude (dB)
-10 -15 -20 -25 -30 0
渐近线 转角频率
渐近线
Phase (deg)
-45
-90 -1 10
10 10 Frequency (rad/sec)
0
1
10
2
第五章 系统的频率特性 §5-2 典型环节的频率特性图
3.
一阶微分环节
在初步设计和分析中,能满足要求; ③ 可以利用样板方便地画出准确的对数幅频特性和对 数相频特性曲线; ④ 从试验得出的对数频率特性曲线能够简便地确定系 统(元件)的传递函数; ⑤ 可以在很宽的频率范围内研究系统。
第五章 系统的频率特性 §5-2 典型环节的频率特性图
第5章线性系统的频域分析方法
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
自动控制原理(第2版)(余成波)_第5章习题解答 -
108第5章频率特性法教材习题同步解析5.1 一放大器的传递函数为:G (s )=1+Ts K测得其频率响应,当ω=1rad/s 时,稳态输出与输入信号的幅值比为12/2,稳态输出与输入信号的相位差为-π/4。
求放大系数K 及时间常数T 。
解:系统稳态输出与输入信号的幅值比为A ==222172K T ω=+ 稳态输出与输入信号的相位差arctan 45T ϕω=-=-︒,即1T ω=当ω=1rad/s 时,联立以上方程得T =1,K =12放大器的传递函数为:G (s )=121s +5.2 已知单位负反馈系统的开环传递函数为5()1K G s s =+ 根据频率特性的物理意义,求闭环输入信号分别为以下信号时闭环系统的稳态输出。
(1)r (t )=sin (t +30°); (2)r (t )=2cos (2t -45°);(3)r (t )= sin (t +15°)-2cos (2t -45°); 解:该系统的闭环传递函数为65)(+=Φs s 闭环系统的幅频特性为109365)(2+=ωωA闭环系统的相频特性为6arctan )(ωωϕ-=(1)输入信号的频率为1ω=,因此有37375)(=ωA ,()9.46ϕω︒=- 系统的稳态输出()20.54)37ss c t t ︒=+ (2)输入信号的频率为2ω=,因此有()A ω=,()18.43ϕω︒=- 系统的稳态输出()cos(263.43)2ss c t t ︒=- (3)由题(1)和题(2)有对于输入分量1:sin (t +15°),系统的稳态输出如下1() 5.54)37ss c t t ︒=+ 对于输入分量2:-2cos (2t -45°),系统的稳态输出为2()63.43)ss c t t ︒=- 根据线性系统的叠加定理,系统总的稳态输出为)4363.632cos(210)537.5sin(37375)(︒︒--+=t t t c ss5.3 绘出下列各传递函数对应的幅相频率特性与对数频率特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
如果输入为正弦电压r(t)=Asint ,c(t)的稳态输出:
1 A C ( s) 2 Ts 1 s 2 AT AT A s 2 2 1 (T ) 1 (T ) 1 (T )2 s 1/T s2 2
t AT AT A T c( t ) e cos t sin t 2 2 2 1 (T ) 1 (T ) 1 (T )
AT A lim c( t ) css ( t ) cos t sin t 2 2 t 1 (T ) 1 (T )
A [T cos t sin t ] 2 1 (T )
4
A css(t) [T cos t sin t ] 2 1 (T )
第五章 频率响应法
5.1 频率特性
5.2 典型环节的频率特性
5.3 控制系统的频率特性
5.4 奈奎斯特稳定判据
5.5 稳定裕量
5.6 闭环频率特性
5.7 频率特性分析
1
1 频率法的思路是: 建立频率特性 → 作为一种数模 → 相应的系统分析方法 → 频率指标 → 利用与时域指标的对应关系 → 转换成 时域指标 2 频率法的特点: (1) 应用奈氏稳定判据,根据系统的开环频率特性研究 闭环稳定性,而不必解特征方程的根; (2) 系统的频率特性可用实验方法测出; (3) 用频率法设计系统,可使噪声忽略或达到规定的程 度; (4) 频率法可用某些非线性系统。
r(t)
G(s) c( t )
下面证明对图所示的线性定常系统,传递函数与频率特 8 性的关系,G(j ) G( s ) s j 。
b0 s m b1 s m 1 bm 1 s bm C ( s) G( s ) n R( s ) s a1 s n1 an1 s an r(t) = r0 cos( t + ) 假设 = 0,则 r(t) = r0 cos t r0 j t r0 j t r ( t ) r0 cos t e e 2 2 C(s) = G(s) R(s)
n
c( t ) C i e si ( Be j t De j t )
i 1
n
9
c( t ) C i e si ( Be j t De j t )
i 1
n
c(t ) Be j t De j t
r0 B G( s ) R( s ) ( s j ) s j G( j ) 2 r0 D G( s ) R( s ) ( s j ) s j G(j ) 2 r0 r0 j t G ( j ) cs ( t ) G(j ) e G(j ) e j t G ( j ) 2 2
④
1 1 (T )
2
e
j arctanT
1 1 j T
e
j
1 1 jT
1 1 j T
上式完全地描述了网络在正弦输入电压作用下,稳 态输出电压幅值和相角随正弦输入电压频率变化的规律, 7 称为网络的频率特性。
1 1 (T )
1 1 j T
2
e
j arctanT
b0 s m b1 s m 1 bm 1 s bm r0 r0 1 1 n ( ) n 1 s a1 s an1 s an 2 s j 2 s j
Ci D B ( ) s j s j i 1 s si
T 1 cos t sin t 2 2 1 (T )2 1 ( T ) 1 ( T ) A
A 1 (T )2 sin( t arctan T )
T
1
5
r( t )
lim c( t )
t
A 1 T
2 2
sin(t arctan T )
t css(t) t
r(t)
t
0 css(t) 0
t
6
由此可见:
lim c( t )
t
A 1 T
2 2
sin(t arctan T )
① 网络的稳态输出电压仍然是正弦电压,其频率和输入 电压频率相同。
② 稳态输出电压幅值是输入电压幅值 1 / 1 (T )2 ,是 频率 的函数,称为RC网络的幅频特性。 ③ 稳态输出电压相角比输入电压相角迟后了arctanT, 是频率 的函数,称为RC网络的相频特性。
1 1 j T
e
j
1 1 jT
1 1 j T
—— 幅频特性
1 —— 相频特性 1 j T
⑤
1 1 | 即把传函中的s 用j 代替就可得 s j 1 jT 1 sT
到频率特性。 css(t) = A G( j) sin[ t + G( j) ]
2
5-1 频率特性
5.1性电路,当输入为正弦电压r(t)=Asint 时,c(t)的稳态输出为多少? 解: RC电路的微分方程为
r ( t) R C c(t)
dc( t ) T c( t ) r ( t ) dt
式中,T=RC。网络的传函为:
C ( s) 1 R( s ) Ts 1
r0 G(j ) cos( t G(j ))
G(j ) G( s ) s j
10
4.1.2 定义 1 频率特性:指线性系统或环节在正弦函数作用下稳态 输出与输入复数符号之比对频率的关系特性,用G(j) 表示。 物理意义:反映了系统对正弦信号的三大传递能力 同频,变幅,相移。 2 幅频特性:稳态输出与输入振幅之比,用A() 表示。 A() = G(j) 3 相频特性:稳态输出与输入相位差,用 ()表示。 ()= G(j) 4 实频特性: G(j) 的实部,用Re()表示。 5 虚频特性: G(j) 的虚部,用Im()表示。 11 G(j) = A() e j() = Re() + j Im()