5.2.2平行线的判定(1).2.2平行线的判定(1)

合集下载

5.2.2平行线的判定(1)

5.2.2平行线的判定(1)
A
E B 变式1
2 1 3
C
A
2
C
1
E F B
3
F
D
D 变式2
大家来探索!
① 如图: 如果∠1=∠3, 那么a与b平行吗?
l
a
b


1
内错角相等,两直线平行。
∠1 ∠3 ∵ ____=____(已知) ∴ ___∥___(内错角相等,两直线平行) a b
大家来探索!
l
② 如图: o 如果∠1+∠2=180 , 那么a与b平行吗?
5.2.2 平行线的判定(1)
知识回顾
1、两条直线的位置关系有哪几种?
2、怎样的两条直线平行? 3、平行线的公理及推论是什么?
平行线的画法
一放 二靠 三推 四画
从画图过程,三角板起到什么作用?
要判断直线a //b,你有办法了吗? c
1
1. 两条直线被第三条直线所截, 如果同位角相等,那么两直线 平行。简单地说: 同位角相等,两直线平行。 如图: ∵ ∠1=∠2(已知)
3. 如图:已知 ∠1=75 , ∠2 =105
o
o
问:AB与CD平行吗?为什么?
A
5
1 4 2 3
B
C
D
“在同一平面内,垂直于同一条直 线的两条直线互相平行”是否可以 看做平行线判定方法的特殊情形?
C
1
E
2
如图:已知ABCD, ABEF,那么 CD//EF吗? B
A
D F
1.如图所示: (1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________; (2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是 __________________; (3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是 __________________; (4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__, 因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是 __________________; (5)如果已知∠1=∠6,则可判定_____∥______,其理由是 __________________.

5-2-2平行线的判定-七年级下册人教版数学课件

5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.

《平行线的判定》(一)评课

《平行线的判定》(一)评课

《5.2.2 平行线的判定(一)》评课
本节课的教学内容主要是平行线的三个判定方法。

由于学生还没有接触公理、定理等概念,所以本节的教学如何处理好公理的呈现和定理的得出就成了教学的一个难点。

教者在本节教学中采用了从实际问题出发,创设问题情境,从木匠在木板上画线到平行线的画法,让学生发现二者的相同之处,确认画出的是平行线,并发现保证平行的条件,从而水到渠成地引入了平行线的第一种判定方法——“同位角相等,两直线平行”。

学生对公理的认可过程正是公理的形成过程,这种潜移默化的处理在本节显得非常得当。

学生主动的探索是知识结构形成的必经之路,教者在得到第一种判定方法后,不失时机地通过“小明的画板”问题,引导学生经过“简单说理”得出判定2、3,学生在不知不觉中进入了逻辑轨道,通过提问、追问、设问,使说理更加严谨。

本节教者通过引导----操作法、观察法、多媒体电化教学法相结合,很好地完成了本节的教学任务。

特别是将实物抽象成几何图形,向学生渗透具体到抽象、转化等数学思想,展示了数学研究的一个形成过程,使学生对判定方法理解更加准确。

本节对“转化”的数学思想及激发学生的探索精神都做得非常好,整节都体现了“做数学”的一种学习意识,教者对学生掌握几何语言的训练也非常重视,体现了严谨治学的态度。

学生在本节课上充分动手实践、自主探索、合作交流,课堂气氛融洽,活动充分,不失为一节新课程下的优质数学课。

2014年春人教版义务教育教科书数学7年级下册5.2.2平行线的判定

2014年春人教版义务教育教科书数学7年级下册5.2.2平行线的判定

5.2.2平行线的判定学习范围:课本13页——15页学习目标:1、通过用直尺和三角尺画平行线的方法理解平行线的判定定理1。

2、能用平行线的判定定理1来推理判定2和判定3. 学习重点:了解和应用平行线的判定方法 学习过程: 1、回顾三线八角2、自主学习13页思考及14页第一段:判定方法1:两条直线被第三条直线所截,如果同位角 ,那这么两条直线平行。

即:1、 51∠=∠ ∴ a ∥ b( 同位角相等,两直线平行)你还能其它的同位角说明吗: 3、说一说木工用图中的角尺画平行线的道理。

4、自主学习14页思考:判定方法2:两条直线被第三条直线所以截,如果 相等,那么这两条直线平行。

试用此图说明理由:ab c87654321abc3215、自主学习15页,你还能用什么方法来证明两条直线是平行的,说明你的理由:、学效测试:6、完成课后练习7、判断题(1)两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )(2)两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )8、如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a ∥b,理由是__________.a b87654321同步训练:1、如图:如果21∠=∠,那么 ∥ ;如果42∠=∠,那么 ∥ ;如果018031=∠+∠,那么 ∥ 。

2、下列条件不能判定AB ∥CD 的是( ) A 、41∠=∠ B 、32∠=∠ C、B ∠=∠5 D 、0180=∠+∠D BAD3、如图:若1∠与2∠互补,2∠与4∠互补,则( ) A 、d ∥c B 、 a ∥b C 、 a ∥ c D 、 b ∥c4、在同一平面内的三条直线满足a ⊥b , a ⊥c, 则b 与c 的位置关系是 。

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

5.2.2 平行线的判定 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.2.2 平行线的判定1.(2023秋·山西晋中·八年级统考期末)如图,将两个完全相同的三角板的斜边重合放在同一平面内,可以画出两条互相平行的直线.这样画的依据是()A.内错角相等,两直线平行B.两直线平行,内错角相等C.同位角相等,两直线平行D.两直线平行,同位角相等【答案】A【分析】如图,利用三角形板的特征可确定,然后根据内错角相等,两直线平行可判断.【详解】解:如图,由题意得,根据内错角相等,两直线平行可得.故选:A.【点睛】此题考查了平行线的判定,熟练掌握内错角相等,两直线平行是解题的关键.2.(2022秋·河南新乡·七年级校考期末)如图,下列推理中,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么【答案】B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由内错角相等,两直线平行可知如果,那么,不能得到,故此选项不符合题意;B、由内错角相等,两直线平行可知如果,那么,故此选项符合题意;C、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;D、由同旁内角互补,两直线平行可知,如果,那么,故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.3.(2022春·辽宁沈阳·七年级校考期中)如图,现有条件:①;②;③;④.能判断的条件有()A.①②B.②③C.①③D.②④【答案】C【分析】根据平行线的判定定理即可求解.【详解】①∵∴②∵∴③∵∴④∵∴∴能得到的条件是①③.故选C.【点睛】此题主要考查了平行线的判定,解题的关键是合理利用平行线的判定,确定同位角、内错角、同旁内角,平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.4.(2022春·四川成都·七年级校考阶段练习)如图,点在的延长线上,在下列四个条件中,不能判断的是()A.B.C.D.【答案】C【分析】直接利用平行线的判定方法分析选择符号题意的选项即可.【详解】解:A、,,故此选项不合题意;B、,,故此选项不合题意;C、,,故此选项符合题意;D、,,故此选项不合题意.故选:C.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(2022秋·山东枣庄·八年级校考期末)如图,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据平行线的判定定理,逐项判断即可求解.【详解】解:若,则,故本选项不符合题意;B、若,则,故本选项不符合题意;C、若,则,故本选项符合题意;D,若,则,故本选项不符合题意;故选:C【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.6.(2023春·江苏·七年级专题练习)如图,点,,分别在的边,,上,连接,,在下列给出的条件中,不能判定的是( )A.B.C.D.【答案】C【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法进行判断即可.【详解】解:A.若,则(同旁内角互补,两直线平行);B.若,则(内错角相等,两直线平行);C.若,则(同位角相等,两直线平行);D.,则(同位角相等,两直线平行);故选:C.【点睛】本题主要考查了平行线的判定,掌握:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解决问题的关键.7.(2023春·七年级课时练习)如图,下列条件中不能判定的是( )A.B.C.D.【答案】D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A. ,内错角相等两直线平行,能判定;B. ,同位角相等两直线平行,能判定;C. ,,可知,内错角相等两直线平行,能判定;D. 是同旁内角相等,但不一定互补,所以不能判定.故选:D.【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.8.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知,,求证:与平行.证明:①:;②:,;③:;④:;⑤:.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①【答案】B【分析】先证明,结合,证明,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵(已知),(邻补角的定义),∴(同角的补角相等).∵(已知),∴(等量代换),∴(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B.【点睛】本题考查的是补角的性质,平行线的判定,证明是解本题的关键.9.(2021春·浙江宁波·七年级校考期中)如图把三角板的直角顶点放在直线上,若,则当______度时,.【答案】【分析】由直角三角板的性质可知,当时,,得出即可.【详解】当当时,,理由如下:∵,∴,当时,,∴故答案为:【点睛】本题主要考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解题的关键.10.(2021春·江苏南京·七年级南京钟英中学校考期中)如图,直线、被直线所截,,当______时,.【答案】115【分析】若,则,由可得的度数,从而求得的度数.【详解】解:如图,若要,则,∵,∴,∴.故答案为:115.【点睛】本题考查平行线的判定方法,熟记平行线判定方法是解题的关键.11.(2021春·浙江绍兴·七年级校考期中)如图,,,若使,则可将直线b绕点A 逆时针旋转___________度.【答案】42【分析】先根据邻补角进行计算得到,根据平行线的判定当b与a的夹角为时,,由此得到直线b绕点A逆时针旋转.【详解】解:如图:∵,∴,∵,∴当时,,∴直线b绕点A逆时针旋转.故答案为:42.【点睛】本题考查的是平行线的判定定理,熟知同位角相等,两直线平行是解答此题的关键.12.(2022春·江苏宿迁·七年级校考阶段练习)如图,条件______填写所有正确的序号一定能判定.①;②;③;④;【答案】①③④【分析】根据平行线的判定解答即可.【详解】解:∵,∴;①一定能判定,符合题意.∵,∴;③一定能判定,不合题意.∵,∴;③一定能判定,符合题意.∵,∴;④一定能判定,符合题意.故答案为:【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.13.(2022春·山东泰安·七年级统考期中)如图,点在的延长线上,下列条件:①;②;③;④.其中能判定的是________.(将所有正确的序号都填入)【答案】①②③【分析】根据平行线的判定条件逐一判断即可.【详解】解:由∠C=∠5,可以判断(同位角相等,两直线平行),故①正确;由∠C+∠BDC=180°,可以判断(同旁内角互补,两直线平行),故②正确;由,可以判断(内错角,两直线平行),故③正确;由可以判断(内错角,两直线平行),不能判定,故④不正确;故答案为:①②③.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.14.(2022春·山东枣庄·七年级统考期中)平行线在生活中应用很广泛,人们为了准确地画出平行线,往往利用三角尺和直尺按照下面的方法去做:第一步:作直线AB,并用三角尺的一条边贴住直线AB;第二步:用直尺紧靠三角尺的另一条边;第三步:沿直尺下移三角尺;第四步:沿三角尺的边作出直线CD.这样,就得到.请写出其中的道理:______.【答案】同位角相等,两直线平行【分析】根据作图过程可得∠1=∠2,根据平行线的判定可得答案.【详解】解:如下图所示,∵∠1=∠2,∴(同位角相等,两直线平行),故答案为:同位角相等,两直线平行【点睛】本题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.15.(2022秋·山西临汾·七年级统考期末)阅读下面的解答过程,并填空.如图,,平分,平分,.求证:.证明:∵平分,平分,(已知)∴__________,_________.(角平分线的定义)又∵,(已知)∴∠____________=∠____________.(等量代换)又∵,(已知)∴∠____________=∠____________.(等量代换)∴.(____________)【答案】;;;;;;同位角相等,两直线平行【分析】根据角平分线的定义,等量代换,同位角相等两直线平行,联系证明过程,可推理出答案.【详解】证明:∵平分,平分,(已知)∴,.(角平分线的定义)又∵,(已知)∴.(等量代换)又∵,(已知)∴.(等量代换)∴.(同位角相等,两直线平行).【点睛】本题考查了平行线的判定,角平分线的定义,解决本题的关键是熟悉相关的几何定理,联系证明过程进行推导.16.(2022春·福建厦门·七年级统考期末)如图,,,.与平行吗?为什么?解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(____________)∴.(____________)【答案】,,同角的余角相等,同位角相等,两直线平行;【分析】先证明,,结合同角的余角相等可得,从而可得答案.【详解】解:,理由如下:∵,(已知)∴,即.(垂直的定义)又∵,且,(已知)∴.(等量代换)∴.(同角的余角相等)∴.(同位角相等,两直线平行)【点睛】本题考查的是垂直的定义,余角的性质,平行线的判定,熟练的证明是解本题的关键.17.(2023春·全国·七年级专题练习)已知:如图,于点C,于点D,.求证:.【答案】见详解【分析】根据垂直的定义得到,等量代换可得,再根据平行线的判定定理即可得到结论.【详解】解:∵,,∴,∴,∵,∴,∴.【点睛】本题考查了平行线的判定,余角的性质,熟练掌握平行线的判定定理是解题的关键.18.(2022秋·全国·八年级专题练习)如图,直线a,b直线c所截.(1)当∠1=∠3时,直线a,b平行吗?请说明理由.(2)当∠2+∠3=180°时,直线a,b平行吗?请说明理由.【答案】(1),理由见解析(2),理由见解析【分析】(1)根据等角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;(2)根据同角的补角相等可得∠2=∠4,再根据同位角相等,两直线平行即可得a b;【详解】(1)解:如图,当∠1=∠3时,a b,理由如下:∵∠1+∠2=180°,∠3+∠4=180°,∠1=∠3,∴∠2=∠4,∴a b;(2)当∠2+∠3=180°时,a b,理由如下:∵∠2+∠3=180°,∠3+∠4=180°,∴∠2=∠4,∴a b;【点睛】本题考查了平行线的判定,解决本题的关键是熟练运用平行线的判定定理.1.(2023春·七年级单元测试)如图,下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则【答案】D【分析】根据平行线的判定条件逐一判断即可得到答案.【详解】解:A、,不能判断,选项错误;B、,可以判断,不能判断,选项错误;C、,可以判断,不能判断,选项错误;D、,可以判断,选项正确,故选D.【点睛】本题考查了平行线的判定,解题关键是掌握平行线的判定条件:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行.2.(2023春·全国·七年级专题练习)如图,点在的延长线上,下列条件不能判定的是()A.B.C.D.【答案】C【分析】根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A.根据内错角相等,两直线平行可判定,故此选项不合题意;B.根据同位角相等,两直线平行可判定,故此选项不合题意;C.根据内错角相等,两直线平行可判定,无法判定,故此选项符合题意;D.根据同旁内角互补,两直线平行可判定,故此选项不合题意;故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.3.(2023春·七年级课时练习)如图,,下列结论正确的是( )①若,则;②若,则;③若,则;④若,则.A.①②B.②④C.②③④D.②【答案】B【分析】根据平行线的判定定理,即可一一判定.【详解】解:由,不能判定,故①不符合题意;,,,,故②符合题意;由,,不能判定,故③不符合题意;,,,,故④符合题意;故选:B.【点睛】本题考查了平行线的判定定理,熟练掌握和运用平行线的判定定理是解决本题的关键.4.(2022春·河北邯郸·七年级校考期中)将一副三角板按如图所示方式放置.结论Ⅰ:若∠1=45°,则有;结论Ⅱ:若∠1=30°,则有;下列判断正确的是()A.I和Ⅱ都对B.I和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【答案】D【分析】根据三角板中角的和差关系,当结论Ⅰ时得到∠B+∠BAE=180°,根据平行线的判定即可得到结论;当结论Ⅱ时,无法得出结论,结合选项逐个判断即可.【详解】解:如图所示:结论Ⅰ:∵∠1=45°,∴∠2=90°−∠1=45°,∴∠BAE=90°+45°=135°,∴∠B+∠BAE=45°+135°=180°,∴BC AE,故结论Ⅰ正确;结论Ⅱ:∵∠1=30°,∴∠2=90°−∠1=60°,∴∠BAE=90°+60°=150°,∴∠E+∠BAE=60°+150°=210°,∴无法得到DE AB,故结论Ⅱ错误,故选:D.【点睛】本题考查平行线的判定,等腰直角三角形等知识点,能灵活运用定理进行推理是解题的关键.5.(2022春·新疆乌鲁木齐·七年级乌鲁木齐市第九中学校考期中)如图,下列判断中错误的是()A.因为∠1=∠2,所以B.因为∠5=∠BAE,所以C.因为∠3=∠4,所以D.因为∠5=∠BDC,所以【答案】B【分析】根据平行线的判定定理求解判断即可.【详解】因为∠1=∠2,所以AE∥BD,故A正确,不符合题意;因为∠5=∠BAE,所以AB∥CD,故B错误,符合题意;因为∠3=∠4,所以AB∥CD,故C正确,不符合题意;因为∠5=∠BDC,所以AE∥BD,故D正确,不符合题意;故选:B.【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.6.(2022春·江苏扬州·七年级校联考期中)如图,下列条件中:①;②;③;④;能判定的条件个数有()A.1B.2C.3D.4【答案】B【分析】利用平行线的判定定理对条件依次验证即可知正确条件个数.【详解】解:当①;利用同位角互补,两直线平行可知①能判定;当②;可以判定,故②不能判定;③;可以判定,故②不能判定;④;利用内错角相等,两直线平行可知①能判定;故选:B【点睛】本题考查平行线的判定定理,解题的关键是熟练掌握平行线的判定定理.7.(2022·全国·七年级假期作业)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠4=∠6;③∠4+∠5=180°;④∠2+∠3=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【答案】C【分析】根据平行线的判定定理“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行”逐项排查即可.【详解】解:①∠1=∠5可根据同位角相等,两直线平行得到a∥b;②∠4=∠6可根据内错角相等,两直线平行得到a∥b;③∠4+∠5=180°可根据同旁内角互补,两直线平行得到a∥b;④∠2、∠3是邻补角,则∠3+∠2=180°不能得到a∥b;故选:C.【点睛】此题主要考查了平行线的判定,平行线的判定定理有同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.(2023春·七年级课时练习)如图(1),在中,,边绕点按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2)),当()时,.A.42°B.138°C.42°或138°D.42°或128°【答案】C【分析】结合旋转的过程可知,因为位置的改变,与∠A可能构成内错角,也有可能构成同旁内角,所以需分两种情况加以计算即可.【详解】解:如图(2),当∠ACB'=42°时,∵,∴∠ACB'=∠A.∴CB'∥AB.如图(2),当∠ACB'=138°时,∵∠A=42°,∴∴CB'∥AB.综上可得,当或时,CB'∥AB.故选:C【点睛】本题考查了平行线的判定、分类讨论的数学思想等知识点,根据CB'在旋转过程中的不同位置,进行分类讨论是解题的关键.9.(2023春·七年级课时练习)如图,不添加辅助线,请写出一个能判定AB CD的条件__【答案】∠1=∠4##∠B=∠5##∠B+∠BCD=180°【分析】根据平行线的判定定理即可解答.【详解】解:由“内错角相等,两直线平行”可以添加条件∠1=∠4.由“同位角相等,两直线平行”可以添加条件∠B=∠5.由“同旁内角互补,两直线平行”可以添加条件∠B+∠BCD=180°.综上所述,满足条件的有:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.故答案是:∠1=∠4或∠B=∠5或∠B+∠BCD=180°.【点睛】本题主要考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.(2023春·七年级课时练习)如图,a、b、c三根木棒钉在一起,,现将木棒a、b同时顺时针旋转一周,速度分别为18度/秒和3度/秒,两根木棒都停止时运动结束,则___________秒后木棒a,b平行.【答案】2或14或50或110【分析】设t秒后木棒a,b平行,分四种情况讨论:当秒时,当时,当时,当时,即可求解.【详解】解:设t秒后木棒a,b平行,根据题意得:当秒时,,解得:t=2;当时,,解得:t=14;当时,木棒a停止运动,当时,,解得:t=-10;(不合题意,舍去)当时,或,解得:t=50或t=110;综上所述,2或14或50或110秒后木棒a,b平行.故答案为:2或14或50或110【点睛】本题主要考查了平行线的判定,一元一次方程的应用,明确题意,利用分类讨论思想解答是解题的关键.11.(2023春·七年级课时练习)在同一平面内有2022条直线,如果,,,……那么与的位置关系是_____________.【答案】垂直【分析】根据垂直的定义和平行线的性质可得依次是垂直,垂直,平行,平行,4个一循环,依此可得,的位置关系.【详解】解:∵在同平面内有2022条直线,若,,,……∴与依次是垂直,垂直,平行,平行,…,∵…1,∴与的位置关系是垂直.故答案为:垂直.【点睛】本题考查垂线、平行线的规律问题,解题的关键是找出规律.12.(2023春·七年级课时练习)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B两点分别落在直线m,n上,对于给出的五个条件:①∠1=25.5°,∠2=55°;②∠1+∠2=90°;③∠2=2∠1;④∠ACB=∠1+∠3;⑤∠ABC=∠2-∠1.能判断直线m n的有__.(填序号)【答案】①④⑤【分析】根据平行线的判定方法和题目中各个小题中的条件,逐一判断是否可以得到m∥n,从而可以解答本题.【详解】解:∵∠1=25.5°,∠2=55°,∠ABC=30°,∴∠ABC+∠1=55.5°=55°=∠2,∴m n,故①符合题意;∵∠1+∠2=90°,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故②不符合题意;∵∠2=2∠1,∠ABC=30°,∴∠1+∠ABC不一定等于∠2,∴m和n不一定平行,故③不符合题意;过点C作CE m,∴∠3=∠4,∵∠ACB=∠1+∠3,∠ACB=∠4+∠5,∴∠1=∠5,∴EC n,∴m n,故④符合题意;∵∠ABC=∠2-∠1,∴∠2=∠ABC+∠1,∴m n,故⑤符合题意;故答案为:①④⑤.【点睛】本题考查平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2021春·全国·七年级专题练习)如图,点是延长线上一点,在下列条件中:①;②;③且平分;④,能判定的有__.(填序号)【答案】③④【分析】根据平行线的判定方法分别判定得出答案.【详解】①中,,(内错角相等,两直线平行),不合题意;②中,,(同位角相等,两直线平行),不合题意;③中,且平分,,,故此选项符合题意;④中,,(同旁内角互补,两直线平行),故此选项符合题意;答案:③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.(2021春·湖南岳阳·七年级统考期末)如图,将一副三角板按如图所示放置,,,,且,则下列结论中:①;②若平分,则有;③将三角形绕点旋转,使得点落在线段上,则此时;④若,则.其中结论正确的选项有______.(写出所有正确结论的序号)【答案】②③④【分析】①根据同角的余角相等得∠1=∠3,但不一定得45°;②都是根据角平分线的定义、内错角相等,两条直线平行,可得结论;③根据对顶角相等和三角形的外角等于不相邻的两个内角得和,可得结论;④根据三角形内角和定理及同角的余角相等,可得结论.【详解】解:①如图,∵∠CAB=∠DAE=90°,即∠1+∠2=∠3+∠2+90°,∴∠1=∠3≠45°,故①不正确;②∵AD平分∠CAB,∴∠1=∠2=45°,∵∠1=∠3,∴∠3=45°,又∵∠C=∠B=45°,∴∠3=∠B,∴BC∥AE,故②正确;③将三角形ADE绕点A旋转,使得点D落在线段AC上,则∠4=∠ADE-∠ACB=60°-45°=15°,故③正确;④∵∠3=2∠2,∠1=∠3,∴∠1=2∠2,∠1+∠2=90°,∴3∠2=90°,∴∠2=30°,∴∠3=60°,又∠E=30°,设DE与AB交于点F,则∠AFE=90°,∵∠B=45°,∴∠4=45°,∴∠C=∠4,故④正确,故答案为:②③④.【点睛】本题主要考查了同角的余角相等、角平分线定义、平行线的判定的运用,解题关键是熟练掌握同角的余角相等及平行线的判定.15.(2021春·山东济南·七年级校考期中)如图,直线,相交于点,平分,平分,,垂足为,那么,请说明理由.【答案】见解析【分析】根据角平分线的定义得到,,根据垂直的定义得到,根据平行线的判定定理即可得到结论.【详解】证明:∵平分,∴,∵平分,∴,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的定义,平行线的判定,熟练掌握平行线的判定是解题的关键.16.(2023春·全国·七年级专题练习)如图,直线、交于点O,,分别平分和,已知,且.(1)求的度数;(2)试说明的理由.【答案】(1)的度数为(2)见解析【分析】(1)根据角平分线的定义推出,再根据对顶角性质求解即可;(2)结合等量代换得出,根据“内错角相等,两直线平行”即可得解.【详解】(1)解:∵,分别平分和,∴,,∵,∴,∵,∴,∴,∵,∴,∴,∴,∴,∴;(2)解:,,∴,∴.【点睛】本题主要考查了平行线的判定与性质,角平分线的定义,余角的性质,熟记平行线的判定与性质是解题的关键.17.(2023春·七年级课时练习)如图,已知点O在直线AB上,射线OE平分∠AOC,过点O作OD⊥OE,G是射线OB上一点,连接DG,使∠ODG+∠DOG=90°.(1)求证:∠AOE=∠ODG;(2)若∠ODG=∠C,试判断CD与OE的位置关系,并说明理由.【答案】(1)证明见解析(2)CD OE,理由见解析【分析】(1)由OD⊥OE得到∠EOC+∠COD=∠AOE+∠DOG=90°,再利用等角的余角相等即可证明∠AOE=∠ODG;(2)证明∠EOC=∠C,利用内错角相等两直线平行,即可证明CD OE.【详解】(1)证明:∵OD⊥OE,∴∠EOC+∠COD=∠AOE+∠DOG=90°,∵∠ODG+∠DOG=90°,∴∠AOE=∠ODG;(2)解:CD OE.理由如下:由(1)得∠AOE=∠ODG,∵射线OE平分∠AOC,∴∠AOE=∠EOC,∵∠ODG=∠C,∴∠EOC=∠C,∴CD OE.【点睛】本题考查了角平分线定义,垂直的定义,平行线的判定,等角的余角相等,正确识图是解题的关求证:.证明:∵∠1=∠2(已知)∠ABF=∠1(对顶角相等)∴______FC平分∠BFG∴______∴∠EBF=______∴(【答案】对顶角相等;∠∴∠FC平分∠BFG∴∠∴∠EBF=∠∴(内错角相等,两直线平行)故答案为:对顶角相等;∠统考中考真题)如图,直线,且直线定直线的是(A.B...【答案】C、当时,;故、当时,;故B不符合题意;、当时,;故C、∵,则,∵,则,∴;故D不符合题意;故选:C【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.2.(2022·吉林·统考中考真题)如图,如果,那么,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为与是一对相等的同位角,得出结论是,所以其依据可以简单说成同位角相等,两直线平行,故选:D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.3.(2022·浙江台州·统考中考真题)如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是()A.B.C.D.【答案】C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C.【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.4.(2020·浙江金华·统考中考真题)如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【答案】A【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.【详解】解:由题意得:∴a∥b(在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A.【点睛】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.5.(2020·湖南郴州·统考中考真题)如图,直线被直线所截,下列条件能判定的是()A.B.C.D.【答案】D【分析】直接利用平行线的判定方法进而分析得出答案.【详解】A、当∠1=∠3时,c∥d,不能判定a∥b,故此选项不合题意;B、当∠2+∠4=180°时,c∥d,不能判定a∥b,故此选项不合题意;C、当∠4=∠5时,c∥d,不能判定a∥b,故此选项不合题意;D、当∠1=∠2时,a∥b,故此选项符合题意;故选:D【点睛】本题主要考查了平行线的判定,正确掌握判定方法是解题关键.6.(2020·浙江衢州·统考中考真题)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是( )A.B.C.D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.7.(2021·甘肃兰州·统考中考真题)将一副三角板如图摆放,则______∥______,理由是______.【答案】内错角相等,两直线平行【分析】根据三角板的角度可知,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴,∴(内错角相等,两直线平行),故答案为:;;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.8.(2021·广西桂林·统考中考真题)如图,直线a,b被直线c所截,当∠1 ___∠2时,a//b.(用“>”,“<”或“=”填空)【答案】=.【分析】由图形可知∠1 与∠2是同位角,利用直线平行判定定理可以确定∠1 =∠2,可判断a//b.【详解】解:∵直线a,b被直线c所截,∠1与∠2是同位角,∴当∠1 =∠2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.9.(2020·湖北咸宁·中考真题)如图,请填写一个条件,使结论成立:∵__________,∴.【答案】∠1=∠4(答案不唯一)【分析】根据平行线的判定添加条件即可.【详解】解:如图,若∠1=∠4,则a∥b,故答案为:∠1=∠4(答案不唯一)【点睛】本题考查了平行线的判定,可围绕截线找同位角、内错角和同旁内角解答.。

七年级数学下册教学课件《5.2.2平行线的判定》

七年级数学下册教学课件《5.2.2平行线的判定》

第3题图
第 4 题图
第 5 题图
5.如图,能判定 AB∥CD 的条件有___①①③③④④ ___.(填序号)
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
当堂检测
6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么? 解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD(内错角相等,两直线平行). ∵∠DEF=∠A,∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
方法二:∵∠1+∠4=180°(平角定义), ∵∠1+∠2=180°(已知),∴∠2=∠4(同角的 补角相等),∴a∥b(内错角相等,两直线平行).
预习成果
1.如图1,∠C=60°,当∠ABE= 60° 时,就能使 BE∥CD.根据 同位角相等,两直线平行 . 2.如图2,∠1=120°,∠2=60°,问a与b的位置关系? 3.如图3,直线CD、EF被直线AB所截. (1)量得∠3=120°,∠4=120°,就可以判定 CD ∥ EF , 根据 内错角相等,两直线平行 . (2)量得∠1=60°,∠3=120°,就可以判定 CD ∥ EF , 根据 同旁内角互补,两直线平行 .
巩固例题
【例 2】如图,BE平分∠ABD,DE平分∠BDC,且 ∠1+∠2=90°. 求证:AB∥CD. 解:∵BE平分∠ABD,DE平分∠BDC(已知), ∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义). ∵∠1+∠2=90°, ∴∠ABD+∠BDC=2(∠1+∠2)=180°. ∴AB∥CD(同旁内角互补,两直线平行).
②当∠2+∠3=180°时,a∥b.证明: ∵∠2+∠4=180°,∠3+∠6=180°(平角定义), ∴∠2+∠4+∠3+∠6=360°,∵∠2+∠3=180° ∴∠4+∠6=180°∴a∥b(同旁内角互补,两直线平行).

人教版数学七年级下册 5.2.2 平行线的判定 课件

人教版数学七年级下册 5.2.2 平行线的判定 课件

为什么?
解:直线与平行. 理由如下:
∵∠1 + ∠ = 180°, ∠1 + ∠ = 180°,
∴∠ = ∠.
∵∠ = ∠,
∴∠ = ∠.
∴∥(同位角相等,两直线平行).
【例题2】如图,∠ + ∠ = 180°,∠ = ∠,试说明∥.



∠ + ∠ = ∠
∠ = ∠ − ∠
∠ = ∠
∠ = ∠ − ∠ = ∠
【例题3】如图,∠ + ∠ = ∠,试说明∥.
解: 如图,作∠ = ∠.
∵∠ = ∠
∴∥.
又∵∠ + ∠ = ∠,
解: ∵∠1=∠2, ∴AB∥CD.
∵∠3+∠4=180°,∴CD∥EF,
∴AB∥EF.
3.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你
∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°
所添加的条件是___________________________________________(不允许添加
任何辅助线).
4.如图,下列条件不能判断直线a∥b的是( D
).
A. ∠1=∠4 B. ∠3=∠5 C. ∠2+∠5=180° D. ∠2+∠4=180°
平行线的判定方法
1. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 同位角相等,两直线平行.
3. 内错角相等,两直线平行.
4. 同旁内角互补,两直线平行.
∠1 = ∠2

判定方法2
线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直

平行线的判定 课件2022-2023学年 人教版七年级数学下册

平行线的判定 课件2022-2023学年 人教版七年级数学下册
难点:正确使用推理的基本格式.
复习回顾
1.平行线的定义
在同一平面内,不相交的两条直线叫做平行线.
2.画平行线的方法:
已知点P是直线a外一点,画出经过点P且直线a平行的直线的作图过程.
P

一落
二靠
三移
四画
a
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这
两条直线平行.
但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直
课堂练习
3.如图,下列判断正确的是( D ).
A.若∠1+∠2=180°,则 //
B.若∠2=∠3,则 //
C.若∠1+∠2+∠3=180°,则 //
D.若∠2+∠4=180°,则 //
课堂练习
4. 在一次数学活动课上,老师让同学们用两个大小、形状都相同的
三角板画平行线AB , CD , 贝贝、晶晶、欢欢三位同学的做法如
行?根据是什么?
新知讲解
利用同旁内角互补判定两条直线平行
平行线的判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条
直线平行.
简单可以说成:同旁内角互补,两条直线平行
几何语言:
∵∠1+∠2=180° (已知)
∴a//b (同旁内角互补,两直线平行)
c
3
b
1
2
a
练一练
如图,BE 平分 ∠ABC,CE 平分 ∠DCB,∠1+ ∠2=90°,能
AB//CE . 请完成下列推理过程:
证明:∵CD 平分∠ECF
∴∠ECD= ∠FCD (
角平分线的定义
∵∠ACB=∠FCD( 对顶角相等
∴∠ECD=∠ACB( 等量代换

SX-7-006第五章5.2.2平行线的判定(1)导学案附教学反思

SX-7-006第五章5.2.2平行线的判定(1)导学案附教学反思
5、提高训练:
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗? 为-什么?





学习本节课前我们前面已经接触了平面内两条直线平行的位置关系、平行公理及其推论,有了这些“空间与图形”的基础知识,我们本节在此基础上继续探究新的知识,使学生会识别三种角,理解并掌握平行线的三种判定方法,它是本章《相交线与平行线》的重点内容,学习它以后会对后面我们学习平行线的性质、三角形、四边形等知识打下了牢固的基础.同时,通过学生观察、操作、探讨等活动,对培养学生的空间观念、探索精神、表达能力、推理能力具有良好的作用.
4、同旁内角互补,两直线平行
5、垂直于垂直于同一条直线的两条直线互相平行




(一)选择题:
1.如图1所示,下列条件中,能判断AB∥CD的是( )毛
A.∠BAD=∠BCDB.∠1=∠2; C.∠3=∠4 D.∠BAC=∠ACD
(1) (2) (3) (4)
2.如图2所示,如果∠D=∠EFC,那么( )
(二)填空题:
1.如图3,如果∠3=∠7,或_____,那么______,理由是__________;
如果∠5=∠3,或______,那么________, 理由是______________;
如果∠2+∠5=____ 或者_____,那么a∥b,理由是________.
2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥____,如果∠9=____,那么AD∥BC;如果∠9=___,那么AB∥CD.
。∵∠1=∠2(已知)

5.2.2平行线的判定(1) 教用

5.2.2平行线的判定(1) 教用

平行线判定方法2:内错角相等, 两直线平行。 平行线判定方法2:同旁内角互补 ,两直线平行。
6.布置作业
教科书 习题5.2 第1、4、7题
平行线判定方法3: 同旁内角互补,两直 线平行。
如图,四边形ABCD中,已知∠B=60° ,∠C=120°,AB与CD平行吗?AD与BC 平行吗?
A B
解:直线AB与CD平行, 因为∠B=60°,∠C=120°
D C
所以∠B+C=180°,
所以AB//CD(同旁内角互补,两直线平行)
根据题目条件无法判定AD与BC平行。
o
o
同旁内角互补,两直线平行
④ ∵ ∠4 +_____=180 (已知) ∠3
∴ CE∥AB
同旁内角互补,两直线平行
(1)如图1,∠C=57°,
当∠ABE= 57 °时,就能使BE∥CD.
(2)如图2 , ∠1=120°,∠2=60°.
问a与b的关系? a∥b
A B
a b
2
C

E D
1 3
c

平行线判定方法1:同位角相等, 两直线平行。
运用新知,加深理解;
c
b
两条直线垂直于 同一条直线,这两 条直线平行吗?
1 a
2
4.巩固新知,深化理解
例1 如图,你能说出木工用图中的
角尺画平行线的道理吗?
同位角相等,两
直线平行.
巩固新知,深化理解
例2 如图, BE是AB的延长线. (1)由∠CBE=∠A可以判定哪两条直线平行? 根据是什么? 答: AD∥BC .根据同位角相等,两直线平行.
A
l1
l2
B
由此你能发现判定两直线平行的方法吗?

5.2.2平行线的判定知识总结(实用含解析)

5.2.2平行线的判定知识总结(实用含解析)

5.2.2平行线的判定知识点总结1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

公理:同位角相等,两直线平行。

定理1:内错角相等,两直线平行。

条件2:同旁内角互补,两直线平行。

注:这三个判定都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角。

补充平行线的判定方法:(1)平行于同一条直线的两条直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

定理1:两直线平行,同位角相等。

定理2:两直线平行,内错角相等。

定理3:两直线平行,同旁内角互补。

定理:平行于同一条直线的两条直线平行复习提纲1、平行线判定定理1:同位角相等,两直线平行。

如下图所示,只要满足∠1=∠2(或者∠3=∠4;∠5=∠7;∠6=∠8),就可以得到AB//CD。

2、平行线判定定理2:内错角相等,两直线平行。

5.2.2 平行线的判定

5.2.2 平行线的判定
(2)从∠1=∠3 可以得出哪 两条直线平行?根据是什么?
(3)直线 a,b,c 互相平行 吗?根据是什么?
解:(1)根据同位角相等,两直 线平行,由∠1=∠2,可得出 a∥b;
(2)根据内错角相等,两直线平 行,由∠1=∠3,可以得出 a∥c;
(3)a∥b∥c .根据如果两条直线 都与第三条直线平行,那么这两条直 线也互相平行.
3. 如图,这是两条道路互相垂直的交通路口, 你能画出它的平面示意图吗?类似地,你能画出 两条道路成 75°角的交通路口的示意图吗?
解:(1)两条道路互 相垂直时:(如图①)
(2)两条道路成 75° 角时:(如图②)


4. 如图,直线 a,b,c 被直线 l 所截,量得 ∠1=∠2=∠3.
(1)从∠1=∠2 可以得出哪 两条直线平行?根据是什么?
解:∵∠1=∠3,∠3=∠4, ∴∠1=∠4, ∴a∥b(同位角相等,两直线平行). ∵∠3=∠4,∠2=∠5,∠2+∠3=180°, ∴∠4+∠5=180°, ∴a∥b(同旁内角互补,两直线平行).
平行线 的判定
课堂小结
①平行公理的推论:如果两条直线都与第 三条直线平行,这两条直线也互相平行. ②判定方法 1:同位角相等,两直线平行. ③判定方法 2:内错角相等,两直线平行. ④判定方法 3:同旁内角互补,两直线平行. ⑤同一平面内,垂直于同一直线的两条直 线平行.
如图,如果∠2 +∠4 = 180°, 那么 a 与 b 平行吗?
因为∠2 +∠4 = 180°, ∠1 +∠4 = 180°, 所以∠1 = ∠2, 所以 a∥b .
判定方法3 两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行.

5.2.2 《平行线的判定》教学设计

5.2.2 《平行线的判定》教学设计

教学评一体化课时教学设计表(教师个体备课表)为营造轻松愉快的学习氛围,老师准备往墙上挂装饰画,如图所示,老师正在向墙上钉木条,请同学们思考,如果木条b与墙壁的边缘垂直,那么木条a与墙壁的边缘所夹的角为多少度时,才能使木条a与木条b 平行?一、新知建构(板块)问题一:归纳总结平行线的判定方法一活动1:两条不重合的直线的位置关系有哪几种?怎样的两条直线平行?活动2:观察用直尺跟三角尺画平行线的过程,思考:(1)画图过程中,什么角始终保持相等?(2)直线a,b位置关系如何?活动3:归纳平行线的判定方法一问题二:归纳总结平行线的判定方法二、三活动1:内错角相等,证明两直线平行(1分)通过题意抽象出几何图形,写出已知求证并证明(2分)能够运用推理出的结论,结合条件得出新的结论。

(3分)能够得出结论,并说明理由,但书写不够严谨。

(4分)能够准确的得出结论并且理由充分,书写的规范。

(5分)能够准确的运用结论,并帮助没有解决问题的组员理清思路。

活动2:同旁内角互补,证明两直线平行二、迁移运用(板块)在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?成果集成:(这是课堂小结的策略)判定两条直线平行的方法作业设计:1.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠4=180°,则a∥c 2.如图,给出下列条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;⑤∠B=∠D.其中,一定能判定AB∥CD的条件有 (填写所有正确的序号).3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次向右拐150º,第二次向左拐30ºB.第一次向左拐30º,第二次向右拐30ºC.第一次向右拐130º,第二次向右拐50ºD.第一次向左拐150º,第二次向左拐30º4.如图,直线AB,CD被直线EF所截 .若∠1=120°,∠2=__,则AB//CD.()若∠1=120°,∠3=__,则AB//CD.()5.如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?链接中考1.(2021滨州)如图,在平行四边形ABCD中,BE平分∠ABC交DC于点E.若60∠=︒,则∠DEB的大小为()AA.130°B.125° C.120° D.115°2.(2022滨州)如图,在弯形管道ABCD中,若AB CD∥,拐角122∠=︒,则BCDABC∠的大小为()A.58︒ B.68︒ C.78︒ D.122︒。

平行线的判定练习题及答案1套

平行线的判定练习题及答案1套

5.2.2平行线的判定练习题(1)班级: 姓名: 知识点:1、判定方法一:同位角相等,两直线平行2、判定方法二:内错角相等,两直线平行3、判定方法三:同旁内角互补,两直线平行4、判定方法四:两条直线垂直于同一条直线,这两直线平行同步测试:1 如图,给出了过直线外一点作已知直线的平行线的方法,其依据是( ) A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.两直线平行,同位角相等2、如图,直线AB 、CD ,被直线EF 所截,①若∠1=∠2,则AB ∥CD ,依据是 ②若∠2=∠3,则AB ∥CD ,依据是 。

3、如图,完成下列填空:①∠1=∠A ,则GC ∥AB ,依据是 。

②∠3=∠B ,则EF ∥AB ,依据是 。

③∠1=∠4,则GC ∥EF ,依据是 。

④∠4=∠A ,则EF ∥AB ,依据是 。

4、如图,完成下列填空: ①如果∠1=∠C ,可得ED ∥ ,依据是 。

②如果∠2=∠BED ,可得DF ∥ ,依据是 。

③如果∠BED=∠A ,可得 ,依据是 。

5、如下图,∠5=∠6,则可得出( ).A .AD//BCB .AB//DC C .AD//BC ,D .都不对A1 B CFE2 3 DABC ED12 3 4 F1 A BF ECDG2436.填空题 (1)如图 ∵ (已知), ∴____∥____,理由是( )又∵ (已知)∴_______=,理由是( )∴_____∥______,理由是( ) 7.如图, , . 说明:AB ∥CD.8.如图,AD 是一条直线, . .说明:BE ∥CF.9. ①如图,哪两个角相等能判定直线AB ∥CD? ②如果∠1=∠2,能判定哪两条直线平行? ③如果∠3=∠4,能判定哪两条直线平行?5.2.2平行线的判定练习题(1)答案: 1、A2、①同位角相等,两直线平行②内错角相等,两直线平行A BC D E F GH123 4 53、①内错角相等,两直线平行②同位角相等,两直线平行③内错角相等,两直线平行④同位角相等,两直线平行4、①FC 同位角相等,两直线平行②BE 内错角相等,两直线平行③ED∥AC 同位角相等,两直线平行5、B6、AE BD 内错角相等,两直线平行;∠2 ;等量代换;AC ED 同位角相等,两直线平行7、∵∠1=70°∴∠3=∠1=70°∴∠1=∠2=70°∴ AB ∥CD8、∵∠2=115°∴∠BCF=65°∴∠1=∠BCF∴BE ∥CF9、①∠2=∠3 或∠4=∠5或∠1=∠2②AB ∥CD③EF∥ GD。

(新人教版)七年级数学下册:5.2.2《平行线的判定》教学课件PPT

(新人教版)七年级数学下册:5.2.2《平行线的判定》教学课件PPT

【答案】平行
5.2.2直线平行的条件
1.如图5-41,点E在CD上,点F在BA上,G是AD延长线上一点. (1)若∠A=∠1,则可判断__C__D___∥__A__B___,因为 ___同__位__角__相__等__,_两__直__线__平__行___. (2)若∠1=∠____C_____,则可判断 AG∥BC,因为_内__错__角__相__等__,__两__直__线__平__行. (3)若∠2+ ∠__E__F_B__=180°,则可判 断CD∥AB,因为_同__旁__内__角__互__补__,_两__直__线_ 平行
5.2.2直线平行的条件
【例3】如图3,E是AB上的一点.
(1)知道了∠DEC=∠ADE,可以判定哪两条直线平行?为 什么?
(2)知道了∠AEC+∠DCE=180°,
可以判定哪两条直线平行?为什么? D
C
(3)知道了∠AED=∠B,可以判定 哪两条直线平行?为什么?
A
E
B
【解答】(1)AD∥CE,内错角相等,两直线平行;
方法2:两条直线被第三条直线所截,如果内错角相等,那么 这两条直线平行.(简称:内错角相等,两直线平行.)
5.2.2直线平行的条件
问题:在图4中,如果同旁内角∠2+∠4=180°,那么a,b 平行吗? 解∵∠2+∠4=180°(已知) 又∵∠1+∠4=180°(邻补角的定义)
∴∠1=∠2(同角的补角相等) ∴a∥b (同位角相等,两直线平行) 方法3: 两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.(简称:同旁内角互补,两直线平行.)
4.如图5-44,直线AB、CD被直线EF所截,使
∠1=∠2≠90°,则( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
针对初一学生的年龄特点和心理特征,以及他们的知识水平,以学生发展为本,遵循认知
规律,体现循序渐进与启发式的教学原则。

本节课我以“提出问题一一动手操作
---自主探究
---合作交流---归纳总结---应用实践”的方法进行.让学生始终处于主动参与、勤与动手、
乐于探究、善于思考的学习状态,让学生有充分的思考机会,借助小教具和多媒体演示,让学生 在实践中思考,思考后归纳总结的过程中培养其推理能力、应用能力和有条理表达的能力 教学过程: -、复习导入
回顾用一副三角尺画平行线的方法
要求:过已知直线 a 外一点P 画a 的平行线b (叙述作图过程) 步骤:① _________
② ______ ③ ______ ④ ______
展示课件:
引入:除了平行线公理能够证明两直线平行外有没有更好的方法? 二.合作探究 平行线的判定方法1
演示过直线外一点作已知直线的平行线的作法,并思考: 问题1:如右图,在用直尺和三角板画平行线的过程中,三角板起 着什么样的作用? 结论结果:三角板的作用是使/ PHF 和/ BGF 相等。

问题2:这两个角具有什么样的关系?我们是否得到一个判定两 直线平行的方法?
讨论结果、形成结论,教师借助几何画板验证,归纳公理 平行线的判定方法1:两条直线被第三条直线所截,如果同 位角相等,那么这两条直线平行。

简单记为:同位角相等,两条直线平行。

用符号语言表达两直线平行的判定方法 1:
522
平行线的判定(1)教学设计
平行线的画法。

B
fj
F
D
B
⑵已知/ 3=/ 5,可判定AB// ___,其理由是 4.如图,(1)如果/ 1=___,那么DE// AC;理由是
(2)如果/ B=__,那么EF// BC;理由是 __________ ;
(3)如图,如果/ 3=___,那么DF// AB;理由是
(4)如果/ A= / CFD 那么_//亠 理由是 _____________ ;
【教法说明】通过多种图形变换,让学生识别各种图形下的同 位角,掌握直
线平行的条件,熟悉 推理格式,做到有理有据,培 养思维的严谨性。

问题3 :尝试引用(二)----我能行
1、你能说出木工师傅用图中这种角尺的工具画平行线的道理吗?
如果/ 1=/ 2,那么 AB// CD.
【教法说明】这一内容是本节也是本章的重点,教学中必须重视,通过该过程培养学生文 字语言、
符号语言和图形语言之间的转换能力,为学生规范的进行推理证明做准备,培养学 生的推理能力、有条理的表达能力,学会正确的学习方式和良好的学习习惯。

问题3 :尝试引用(一)----看你会不会
【教法说明】在这个过程中我设计了几个数学问题和实际问题交替的题组,层层深入,既 巩固了知识,又锻炼了学生分析、解决生活实际的问题的能力。

更培养学生的推理能力和表 达能力,充分体现了数学来源于生活,又服务于生活。

1.如图,(1)如果/ 1= / 2,那么.// ;理由是 ⑵如果/ 1= / 3,那么_//亠理由是
2、如图•••/ 1=/ 2,
//
•••/ 2=/ 3,
//
)。

3.如图:
⑴已知/ 1=/ 2,可判定DE//
,,其理由是
2
C
3
A
2
断?
【教法说明】
该题组既增强趣味性,又锻炼学生应用知识解答生活实际问题的能力,在学习中应给予 足够的重视,做到学以至
用。

培养学生的实践能力是新课程标准的重要精神之一,让学生在 亲身经历中感受、理解数学,让学生切实感受到数学的实用性与趣味性。

这也是中考考查的 热点之一。

如题2:可让学生动手试一试,有人根据画法验证;有人根据量线与边缘构成的 同位角;有人先画了一条截线,再量形成的同位角;等。

这时可设一障碍:无任何工具,你 还有办法吗?意在培养学生的创造性思维,把本节课推向高潮。

生说的内容概括成要点加以总结。

2.这是小明同学自己制作的英语抄写纸的一部
分,其中的横格线互相平行吗?你可以怎样判
二三二二
问题3 :尝试引用(三)
真金不怕火炼
1.如图:已知/ 2=/4,又因为/仁/ 4,(对顶角相等)所以可得/
1=/ 2 D 卩 才 E
/ 2 4 1
因此可判定
// —,其理由是
2、如图所示:
(1)如果已知 / 5=/ 6,又因为/ 3=/ 6,理由是(
所以可得/ 3=/5,因此可以判___// __,其理由是
(2)如果已知/ 1+/ 2=180,那么根据邻补角定义则可得/
/ 2=180°,由同角的补角相等得到/ 仁/3,因此可以判定 ,其理由是 ______________________.
【教法说明】意在培养学生综合应用知识的能力,使知识的前 后得到衔
接,形成知识体系。

又为下一节课学习另外两个判定方 法做了充分的准备。

问题3 :尝试引用(四)
//
勇攀高峰
两捧r % 9 #更
壬和千打8 . 阿- U

上2足jfiL 用- 乂耳应盘阖牛
介松 C 田中电畑 ttf *<| > - 妊W 亠和 il- * TiJ ”
啟Vt
昨冋条-临牡足杏平柑? 妊i±l
【教法说明】从多个方面、多种途径考虑,把所学知识得到升华。

三.归纳提升
让学生说出在知识、能力、情感方面有何收获?教师在赞赏学生学习成果的同时,把学
B
3+
C
烷*
四.布置作业五.教学反思
本节课的教学设计,从画平行线的方法出发到得出两直线平行的条件,经历观察、操作、猜想、推理等过程,使学生体会到数学思想运用的重要性,培养学生合作交流,勇于创新的精神,同时注意激发学生参与、探索、求知的欲望,从不同角度引导学生解决问题,多方面体现《新课标》的教学理念.。

相关文档
最新文档