高考数学一轮总复习平面向量的概念及线性运算教案理新人教A版

合集下载

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

第1节平面向量的概念及线性运算考试要求1。

了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4。

掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。

知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量。

规定:0与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb=03.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。

[常用结论与微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+错误!=错误!,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2。

中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3。

错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊断自测1。

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算

2024届高考一轮复习数学课件(新教材人教A版):平面向量的概念及线性运算
当λ<0时,λa的方向与a的方向 相反 ; λ(a+b)=_λ_a_+__λ_b_
当λ=0时,λa=__0__
知识梳理
3.向量共线定理 向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使 b=λa .
常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最 后一个向量终点的向量,即A—1→A2+A—2→A3+A—3→A4+…+—A—n-—1A→n =A—1→An,特 别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若 F 为线段 AB 的中点,O 为平面内任意一点,则O→F=12(O→A+O→B).
常用结论
3.若 A,B,C 是平面内不共线的三点,则P→A+P→B+P→C=0⇔P 为△ABC 的重心,A→P=13(A→B+A→C). 4.对于任意两个向量a,b,都有||a|-|b||≤|a±b|≤|a|+|b|.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)|a|与|b|是否相等,与a,b的方向无关.( √ ) (2)若向量a与b同向,且|a|>|b|,则a>b.( × )
√B.A→M+M→B+B→O+O→M=A→M
C.A→B+B→C-A→C=0 D.A→B-A→D-D→C=B→C
教材改编题
3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共线,则λ=-__13__.
由题意知存在k∈R,
使得a+λb=k[-(b-3a)],
所以λ1==-3kk,,
解得k=13, λ=-13.
知识梳理
2.向量的线性运算 向量运算 法则(或几何意义)
运算律
加法
交换律:a+b= b+a ; 结合律:(a+b)+c=_a_+__(_b_+__c)_

新高考一轮复习人教A版第6章第1节平面向量的概念及线性运算课件(48张)

新高考一轮复习人教A版第6章第1节平面向量的概念及线性运算课件(48张)
__λ_=__0_或__a_=__0___时,λa=0
λ(μa)=(λμ)a; (λ+μ)a=λa+μa; λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使b=λa.
(一)必背常用结论
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向
=A→B
-34
→ CD

1 4
→ AC

又点D是线段BC上靠近点C的三等分点,所以C→D
=13
→ CB

所以E→B
+E→C
=A→B
-34
1 ×3
→ CB
+14
→ AC
=A→B
+14
→ AC
-14
A→B-A→C
=34
→ AB
+12
→ AC

答案:B
角度2 根据向量线性运算求参数
【例2】(1)已知△ ABC中,D为AB的中点,A→E
量终点的向量,即A1A2+A2A3+A3A4+…+An-1An=A1An,特别地, 一个封闭图形, 首尾连接而成的向量和为零向量.
2.若P为线段AB的中点,O为平面内任一点,则O→P
=12
→ (OA
+O→B
).
3.若
→ OA
=λ
→ OB
+μ
→ OC
(λ,μ为常数),则A,B,C三点共线的充要条件是λ+μ
A.e1-3e2
B.e1+3e2
C.-3e1+e2
D.-e1+3e2
解析:由图可得,a=e1+4e2,b=2e1+e2,所以a-b=-e1+3e2. 答案:D
2.(2021·重庆八中月考)在△

新人教A版版高考数学一轮复习第五章平面向量平面向量的概念及其线性运算教案理解析版

新人教A版版高考数学一轮复习第五章平面向量平面向量的概念及其线性运算教案理解析版

基础知识整合1.向量的有关概念(1)向量:既有大小又有错误!方向的量叫做向量,向量的大小叫做向量的错误!模.(2)零向量:长度为错误!0的向量,其方向是任意的.(3)单位向量:长度等于错误!1个单位的向量.(4)平行向量:方向相同或错误!相反的非零向量,又叫共线向量.规定:0与任一向量共线.(5)相等向量:长度相等且方向错误!相同的向量.(6)相反向量:长度相等且方向错误!相反的向量.2.向量的线性运算3.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λA.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+An—1An=错误!.特别地,一个封闭图形首尾连接而成的向量和为零向量.2.若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3.错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.1.对于非零向量a,b,“a+b=0”是“a∥b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析当a+b=0时,a=—b,所以a∥b;当a∥b时,不一定有a=—b,所以“a+b=0”是“a∥b”的充分不必要条件.故选A.2.(2019·嘉兴学科基础测试)在△ABC中,已知M是BC中点,设错误!=a,错误!=b,则错误!=()A.错误!a—b B.错误!a+bC.a—错误!b D.a+错误!b答案A解析错误!=错误!—错误!=错误!错误!—错误!=错误!a—B.故选A.3.已知a,b是两个非零向量,且|a+b|=|a|+|b|,则下列说法正确的是()A.a+b=0 B.a=bC.a与b共线反向D.存在正实数λ,使a=λb答案D解析因为a,b是两个非零向量,且|a+b|=|a|+|b|,则a与b共线同向,故D正确.4.已知向量i与j不共线,且错误!=i+mj,错误!=ni+j,若A,B,D三点共线,则实数m,n应该满足的条件是()A.m+n=1B.m+n=—1C.mn=1D.mn=—1答案C解析由A,B,D共线可设错误!=λ错误!,于是有i+mj=λ(ni+j)=λni+λj.又i,j不共线,因此错误!即有mn=1.5.(2019·大同模拟)△ABC所在的平面内有一点P,满足错误!+错误!+错误!=错误!,则△PBC与△ABC的面积之比是()A.错误!B.错误!C.错误!D.错误!解析因为错误!+错误!+错误!=错误!,所以错误!+错误!+错误!=错误!—错误!,所以错误!=—2错误!=2错误!,即P是AC边的一个三等分点,且PC=错误!AC,由三角形的面积公式可知,错误!=错误!=错误!.核心考向突破考向一平面向量的概念1若两个向量相等,则它们的起点相同,终点相同;2若a与b共线,b与c共线,则a与c也共线;3若A,B,C,D是不共线的四点,则错误!=错误!,则ABCD为平行四边形;4a=b的充要条件是|a|=|b|且a∥b;5已知λ,μ为实数,若λa=μb,则a与b共线.其中真命题的序号是________.答案3解析1错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点.2错误,若b=0,则a与c不一定共线.3正确,因为错误!=错误!,所以|错误!|=|错误!|且错误!∥错误!;又A,B,C,D是不共线的四点,所以四边形ABCD为平行四边形.4错误,当a∥b且方向相反时,即使|a|=|b|,也不能得到a=b,所以|a|=|b|且a∥b不是a=b的充要条件,而是必要不充分条件.5错误,当λ=μ=0时,a与b可以为任意向量,满足λa=μb,但a与b不一定共线.故填3.触类旁通平面向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性.错误!3向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的移动混淆.错误!即时训练1.设a0为单位向量,下列命题中:1若a为平面内的某个向量,则a=|a|·a0;2若a与a0平行,则a=|a|a0;3若a与a0平行且|a|=1,则a=a0.假命题的个数是()A.0 B.1C.2D.3答案D解析向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故1是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=—|a|a0,故23也是假命题.综上所述,假命题的个数是3.故选D.考向二平面向量的线性运算角度错误!向量加减法的几何意义例2(1)在四边形ABCD中,错误!=a+2b,错误!=—4a—b,错误!=—5a—3b,则四边形ABCD的形状是()A.矩形B.平行四边形C.梯形D.以上都不对答案C解析由已知得,错误!=错误!+错误!+错误!=a+2b—4a—b—5a—3b=—8a—2b=2(—4a—b)=2错误!,故错误!∥错误!.又因为错误!与错误!不平行,所以四边形ABCD是梯形.故选C.(2)(2017·全国卷Ⅱ)设非零向量a,b满足|a+b|=|a—b|,则()A.a⊥b B.|a|=|b|C.a∥b D.|a|>|b|答案A解析解法一:∵|a+b|=|a—b|,∴|a+b|2=|a—b|2.∴a2+b2+2a·b=a2+b2—2a·B.∴a·b=0.∴a⊥B.故选A.解法二:利用向量加法的平行四边形法则.在▱ABCD中,设错误!=a,错误!=b,由|a+b|=|a—b|知|错误!|=|错误!|,从而▱ABCD为矩形,即AB⊥AD,故a⊥B.故选A.角度错误!平面向量线性运算例3(1)(2018·全国卷Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则错误!=()A.错误!错误!—错误!错误!B.错误!错误!—错误!错误!C.错误!错误!+错误!错误!D.错误!错误!+错误!错误!答案A解析根据向量的运算法则,可得错误!=错误!—错误!=错误!—错误!错误!=错误!—错误!(错误!+错误!)=错误!错误!—错误!错误!,故选A.(2)(2019·唐山统考)在等腰梯形ABCD中,错误!=—2错误!,M为BC的中点,则错误!=()A.错误!错误!+错误!错误!B.错误!错误!+错误!错误!C.错误!错误!+错误!错误!D.错误!错误!+错误!错误!答案B解析因为错误!=—2错误!,所以错误!=2错误!.又M是BC的中点,所以错误!=错误!(错误!+错误!)=错误!(错误!+错误!+错误!)=错误!错误!=错误!错误!+错误!错误!.故选B.角度错误!利用线性运算求参数例4(1)在△ABC中,点D在边CB的延长线上,且错误!=4错误!=r错误!—s错误!,则s+r等于()A.0 B.错误!C.错误!D.3答案C解析因为错误!=4错误!,所以错误!=错误!错误!.又因为错误!=错误!—错误!,所以错误!=错误!(错误!—错误!)=错误!错误!—错误!错误!,所以r=s=错误!,s+r=错误!.(2)(2019·河南中原联考)如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若错误!=λ错误!+μ错误!(λ,μ为实数),则λ2+μ2=()A.错误!B.错误!C.1D.错误!答案A解析错误!=错误!错误!+错误!错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!+错误!)=错误!错误!—错误!错误!,所以λ=错误!,μ=—错误!,故λ2+μ2=错误!.故选A.触类旁通平面向量线性运算的一般规律(1)用已知向量来表示另外一些向量是用向量解题的基本功,除利用向量的加法、减法、数乘运算外,还应充分利用平面几何的一些定理.(2)在求向量时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.即时训练2.已知四边形ABCD是平行四边形,O为平面上任意一点,设错误!=a,错误!=b,错误!=c,错误!=d,则()A.a+b+c+d=0 B.a—b+c—d=0C.a+b—c—d=0 D.a—b—c+d=0答案B解析如图所示,a—b=错误!,c—d=错误!,∵四边形ABCD是平行四边形,∴AB綊DC,且错误!与错误!反向,即错误!+错误!=0,也就是a—b+c—d=0.3.设D为△ABC所在平面内一点,错误!=3错误!,则()A.错误!=—错误!错误!+错误!错误!B.错误!=错误!错误!—错误!错误!C.错误!=错误!错误!+错误!错误!D.错误!=错误!错误!—错误!错误!答案A解析错误!=错误!+错误!=错误!+错误!错误!=错误!+错误!(错误!—错误!)=错误!错误!—错误!错误!=—错误!错误!+错误!错误!.故选A.4.(2019·唐山模拟)在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2错误!,BC=2,点E在线段CD上,若错误!=错误!+μ错误!,则μ的取值范围是________.答案0≤μ≤错误!解析由题意可求得AD=1,CD=错误!,所以错误!=2错误!.∵点E在线段CD上,∴错误!=λ错误!(0≤λ≤1).∵错误!=错误!+错误!,又错误!=错误!+μ错误!=错误!+2μ错误!=错误!+错误!错误!,∴错误!=1,即μ=错误!.∵0≤λ≤1,∴0≤μ≤错误!.考向三共线向量定理的应用例5(1)(2019·朔州模拟)设e1与e2是两个不共线向量,错误!=3e1+2e2,错误!=ke1+e2,错误!=3e1—2ke2,若A,B,D三点共线,则k的值为()A.—错误!B.—错误!C.—错误!D.不存在答案A解析由题意,A,B,D三点共线,故必存在一个实数λ,使得错误!=λ错误!.又错误!=3e1+2e2,错误!=ke1+e2,错误!=3e1—2ke2,所以错误!=错误!—错误!=3e1—2ke2—(ke1+e2)=(3—k)e1—(2k+1)e2,所以3e1+2e2=λ(3—k)e1—λ(2k+1)e2,所以错误!解得k=—错误!.故选A.(2)(2019·河北衡水调研)一直线l与平行四边形ABCD中的两边AB,AD分别交于点E,F,且交其对角线AC于点M,若错误!=2错误!,错误!=3错误!,错误!=λ错误!—μ错误!(λ,μ∈R),则错误!μ—λ=()A.—错误!B.1C.错误!D.—3答案A解析错误!=λ错误!—μ错误!=λ错误!—μ(错误!+错误!)=(λ—μ)错误!—μ错误!=2(λ—μ)错误!—3μ错误!,因为E,M,F三点共线,所以2(λ—μ)+(—3μ)=1,即2λ—5μ=1,所以错误!μ—λ=—错误!.故选A.触类旁通1三点共线问题可转化为向量共线问题来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.根据A,B,C三点共线求参数问题,只需将问题转化为,再利用对应系数相等列出方程组,进而解出系数.错误!2三点共线的一个常用结论:A,B,C三点共线⇔存在实数λ,μ对平面内任意一点O O不在直线BC上满足即时训练5.(2019·济南模拟)已知向量a,b不共线,且c=λa+b,d=a+(2λ—1)b,若c 与d共线反向,则实数λ的值为()A.1B.—错误!C.错误!D.—2答案B解析由于c与d共线反向,则存在实数k使c=kd(k<0),于是λa+b=k[a+(2λ—1)b],整理得λa+b=ka+(2λk—k)B.由于a,b不共线,所以有错误!整理得2λ2—λ—1=0,解得λ=1或λ=—错误!.又因为k<0,所以λ<0,故λ=—错误!.故选B.6.如图所示,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若错误!=m错误!,错误!=n错误!,则m+n的值为________.答案2解析解法一:错误!=错误!(错误!+错误!)=错误!错误!+错误!错误!.∵M,O,N三点共线,∴错误!+错误!=1.∴m+n=2.解法二:MN绕O旋转,当N与C重合时,M与B重合,此时m=n=1,∴m+n=2.。

高三数学一轮复习教案全套 人教A版平面向量的概念与线性运算

高三数学一轮复习教案全套 人教A版平面向量的概念与线性运算

高三一轮复习第四章平面向量与复数
4.1平面向量的概念与线性运算
【教学目标】
1.了解向量的实际背景.
2.理解平面向量的概念,理解两个向量相等的含义.
3.理解向量的几何表示.
4.掌握向量加法、减法的运算,并理解其几何意义.
5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.
6.了解向量线性运算的性质及其几何意义.
【重点难点】
1.教学重点理解平面向量的概念,掌握向量加法、减法、向量数乘的运算;
2.教学难点学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】
自主学习、小组讨论法、师生互动法
【教学过程】
平行四边形法则
,得BA →=PC →.又AP →=
+AB →)=12·2AD →=AD →
.。

高考数学一轮总复习 第26讲 平面向量的概念及线性运算课件 理 新人教A版

高考数学一轮总复习 第26讲 平面向量的概念及线性运算课件 理 新人教A版
(5)因为O→A+O→B+O→C=0,
第二十五页,共45页。
所以O→A=-(O→B+O→C),即O→B+O→C是与O→A方向相反且 长度相等的向量.
如图所示,以 OB、OC 为相邻的两边作平行四边形 BOCD,
则O→D=O→B+O→C,所以O→D=-O→A, 在平行四边形 BOCD 中,设 BC 与 OD 相交于 E,B→E=E→C, 则O→E=E→D. 所以 AE 是△ABC 的边 BC 的中线,且|O→A|=2|O→E|. 所以 O 是△ABC 的重心,故正确.
第二十二页,共45页。
(4)O 是平面内一定点,A、B、C 是平面内不共线的三个 点,动点 P 满足O→P=O→A+λ(|AA→→BB|+|AA→→CC|),λ∈[0,+∞),则点 P 的轨迹一定通过△ABC 的内心;
(5)已知 A、B、C 是不共线的三点,O 是△ABC 内的一点, 若O→A+O→B+O→C=0,则 O 是△ABC 的重心.
第三十四页,共45页。
三 平面向量 (xiàngliàng)共线问题
【例 3】设 a,b,c 为非零向量,其中任意两向量不共 线,已知 a+b 与 c 共线,且 b+c 与 a 共线,试问 b 与 a +c 是否共线?并证明你的结论.
第三十五页,共45页。
【解析】 b 与 a+c 共线,证明如下: 因为 a+b 与 c 共线,所以存在唯一实数 λ, 使得 a+b=λc,① 又因为 b+c 与 a 共线,所以存在唯一实数 μ, 使 b+c=μa,② ①-②,得 a-c=λc-μa,即(1+μ)a+(-1-λ)c=0. 因为 a 与 c 不共线,由平面向量基本定理,得
素材 (sùcái )3
已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a -3b 平行,且平行时它们是同向还是反向?

高三数学一轮复习优质教案5:5.1 平面向量的概念及线性运算教学设计

高三数学一轮复习优质教案5:5.1 平面向量的概念及线性运算教学设计

5.1 平面向量的概念及线性运算『课前 考点引领』考情分析考点新知① 了解向量的实际背景;理解平面向量的基本概念和几何表示;理解向量相等的含义. ② 掌握向量加、减法和数乘运算,理解其几何意义;理解向量共线定理. ③ 了解向量的线性运算性质及其几何意义. 掌握向量加、减法、数乘的运算,以及两个向量共线的充要条件.『知识清单』1. 向量的有关概念(1) 向量:既有 又有 的量叫做向量,向量AB →的大小叫做向量的 (或模),记作|AB →|.(2) 零向量: 的向量叫做零向量,其方向是 的. (3) 单位向量:长度等于 的向量叫做单位向量.(4) 平行向量:方向 或 的 向量叫做平行向量.平行向量又称为 ,任一组平行向量都可以移到同一直线上.规定:0与任一向量 .(5) 相等向量:长度 且方向 的向量叫做相等向量.(6) 相反向量:与向量a 长度 且方向 的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.2. 向量加法与减法运算 (1) 向量的加法① 定义:求两个向量和的运算,叫做向量的加法. ② 法则:三角形法则;平行四边形法则. ③ 运算律:a +b =b +a ;(a +b )+c =a +(b +c ). (2) 向量的减法① 定义:求两个向量差的运算,叫做向量的减法. ② 法则:三角形法则. 3. 向量的数乘运算及其几何意义(1) 实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: ① |λa |= ;② 当 时,λa 与a 的方向相同;当 时,λa 与a 的方向相反;当λ=0时,λa =0. (2) 运算律:设λ、μ∈R ,则:① λ(μa )= ;② (λ+μ)a = ;③ λ(a +b )= . 4. 向量共线定理向量b 与a (a≠0)共线的充要条件是 一个实数λ,使得 .『课中 技巧点拨』『题型精选』题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →; ⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号)备选变式(教师专享)设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |·a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题个数是________.题型2 向量的线性表示例2 平行四边形OADB 的对角线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,用a 、b 表示OM →、ON →、MN →.变式训练在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试用a ,b 表示AG →.题型3 共线向量例3 设两个非零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线.备选变式(教师专享)已知a 、b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ、μ∈R ),当A 、B 、C 三点共线时λ、μ满足的条件为________.题型4 向量共线的应用例4 如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为________.备选变式(教师专享)如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP→=QA →,试确定λ的值.『疑难指津』1. 解决与平面向量的概念有关的命题真假的判定问题,其关键在于透彻理解平面向量的概念,还应注意零向量的特殊性,以及两个向量相等必须满足:①模相等;②方向相同.2. 在进行向量线性运算时要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线,相似三角形对应边成比例得平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.3. 平行向量定理的条件和结论是充要条件关系,既可以证明向量共线,也可以由向量共线求参数.利用两向量共线证明三点共线要强调有一个公共点.答案『知识清单』1. (1)大小 方向 长度 (2) 长度为0 任意 (3) 1个单位长度(4) 相同 相反 非零 共线向量 平行 (5) 相等 相同 (6) 相等 相反3. (1)① |λ||a| ②λ>0 λ<0 (2)① (λμ)a ②λa +μa ;③λa +λb4.有且只有 b =λa 例1『答案』①②③⑥『解析』两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.备选变式(教师专享) 『答案』3『解析』向量是既有大小又有方向的量,a 与|a |a 0模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②、③也是假命题,填3.例2解:BA →=a -b ,BM →=16BA →=16a -16b ,OM →=OB →+BM →=16a +56b .OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b .MN →=ON →-OM →=12a -16b .变式训练解:AG →=AB →+BG →=AB →+λBE →=AB →+λ2(BA →+BC →)=⎝⎛⎭⎫1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB →+λ2AC →=(1-λ)a +λ2b . 又AG →=AC →+CG →=AC →+m CF →=AC →+m 2(CA →+CB →)=(1-m )AC →+m 2AB →=m2a +(1-m )b ,∴ ⎩⎨⎧1-λ=m2,1-m =λ2,解得λ=m =23,∴ AG →=13a +13b .例3备选变式(教师专享) 『答案』λμ=1『解析』由AB →=λa +b ,AC →=a +μb (λ、μ∈R )及A 、B 、C 三点共线得AB →=t AC →,所以λa +b =t (a +μb )=t a +tμb ,即可得⎩⎪⎨⎪⎧λ=t ,1=tμ,所以λμ=1.例4 『答案』12『解析』如图所示,设M 是AC 的中点,则 OA →+OC →=2OM →. 又OA →+OC →=-2OB →, ∴ OM →=-OB →, 即O 是BM 的中点, ∴ S △AOB =S △AOM =12S △AOC ,即S △AOB S △AOC =12. 备选变式(教师专享)解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+CN →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,又∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.。

最新人教版A版高考数学理科一轮复习4.1 平面向量的概念及其线性运算教学设计

最新人教版A版高考数学理科一轮复习4.1 平面向量的概念及其线性运算教学设计

第一节平面向量的概念及其线性运算向量的线性运算及几何意义(1)理解平面向量的有关概念及向量的表示方法.(2)掌握向量加法、减法、数乘的运算及其几何意义.(3)理解两个向量共线的含义.(4)了解向量线性运算的性质及其几何意义.知识点一向量的有关概念易误提醒1.对于平行向量易忽视两点:(1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件.2.单位向量的定义中只规定了长度没有方向限制.[自测练习]1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:若a与b都是零向量,则a=b,故选项C正确.答案:C2.若m∥n,n∥k,则向量m与向量k( )A.共线B.不共线C.共线且同向D.不一定共线解析:可举特例,当n=0时,满足m∥n,n∥k,故A,B,C选项都不正确,故D正确.答案:D知识点二向量的线性运算平行四边形法则易误提醒1.作两个向量的差时,要注意向量的方向是指向被减向量的终点.2.数乘向量仍为向量只是模与方向发生变化,易认为数乘向量为实数.[自测练习]3.(2016·通州模拟)已知在△ABC中,D是BC的中点,那么下列各式中正确的是( )A.AB→+AC→=BC→B.AB→=12BC→+DA→C.AD→-DC→=AC→D.2CD→+BA→=CA→解析:本题考查向量的线性运算.A错,应为AB→+AC→=2AD→;B错,应为12BC→+DA→=BD →+DA→=BA→;C错,应为AC→=AD→+DC→;D正确,2CD→+BA→=CB→+BA→=CA→,故选D.答案:D知识点三共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.易误提醒1.在向量共线的重要条件中易忽视“a≠0”,否则λ可能不存在,也可能有无数个.2.要注意向量共线与三点共线的区别与联系.必记结论三点共线等价关系:A,P,B三点共线⇔AP→=λAB→(λ≠0)⇔OP→=(1-t)·OA→+tOB→(O为平面内异于A,P,B的任一点,t∈R)⇔OP→=xOA→+yOB→(O为平面内异于A,P,B的任一点,x∈R,y∈R,x+y=1).[自测练习]4.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.解析:由题意知a +λb =k [-(b -3a )],所以⎩⎨⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-13考点一 向量的基本概念|1.(2015·郑州二模)已知a ,b ,c 是任意向量,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ∥b ,则a ,b 方向相同或相反; ③若a =-b ,则|a |=|b |;④若a ,b 不共线,则a ,b 中至少有一个为零向量,其中正确命题的个数是( )A .4B .3C .2D .1解析:按照平面向量的概念逐一判断.若b =0,则①②都错误;若a =-b ,则|a |=|b |,③正确;若a ,b 不共线,则a ,b 中一定没有零向量,④错误,所以正确命题只有1个.答案:D2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b |b |=0成立的是( )A .a =2bB .a ∥bC .a =-13bD .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b |b |·|a |≠0,则a ,b 共线且方向相反,因此当向量a ,b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A 中向量a ,b 的方向相同,选项B 中向量a ,b 共线,方向相同或相反,选项C 中向量a ,b 的方向相反,选项D 中向量a ,b 互相垂直,故选C.答案:C解决向量的概念问题应关注五点(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.考点二 平面向量的线性运算|(1)(2015·高考课标卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD→=43AB→-13AC→[解析] 由题意得AD→=AC→+CD→=AC→+13BC→=AC→+13AC→-13AB→=-13AB→+43AC→,故选A.[答案] A(2)(2015·东北三校联考(二))已知在△ABC中,D是AB边上的一点,若AD→=2DB→,CD→=13CA→+λCB→,则λ=________.[解析] 因为AD→=2DB→,CD→=13CA→+λCB→,所以CD→=CA→+AD→=CA→+23AB→=CA→+23(CB→-CA→)=13CA→+23CB→,所以λ=23.[答案] 2 3平面向量线性运算问题的两种类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合平行四边形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.1.设O为△ABC内部的一点,且OA→+OB→+2OC→=0,则△AOC的面积与△BOC 的面积之比为( )A.32B.53C.2 D.1解析:取AB的中点E,连接OE,则有OA→+OB→+2OC→=2(OE→+OC→)=0,OE→+OC→=0,所以E,O,C三点共线,所以有△AEO与△BEO面积相等,因此△AOC的面积与△BOC的面积之比为1,故选D.答案:D考点三共线向量定理的应用|(2015·高考全国卷Ⅱ)设向量a,b不平行,向量λa+b与a+2b 平行,则实数λ=________.[解析] 由于λa+b与a+2b平行,所以存在μ∈R,使得λa+b=μ(a +2b),即(λ-μ)a+(1-2μ)b=0,因为向量a,b不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=1 2 .[答案] 1 21.共线向量定理的应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a,b不共线,则λa+μb=0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB→=λAC→,则A、B、C三点共线.2.设两个非零向量e1和e2不共线.(1)如果AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,求证:A,C,D三点共线;(2)如果AB→=e1+e2,BC→=2e1-3e2,AF→=3e1-k e2,且A,C,F三点共线,求k的值.解:(1)证明:AB→=e1-e2,BC→=3e1+2e2,∴AC →=AB →+BC →=4e 1+e 2, 又CD →=-8e 1-2e 2,∴CD →=-2AC →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A ,C ,D 三点共线. (2)∵AB →=e 1+e 2,BC →=2e 1-3e 2, ∴AC →=AB →+BC →=3e 1-2e 2. ∵A ,C ,F 三点共线.∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2, 又e 1,e 2是不共线的非零向量, ∴⎩⎨⎧3=3λ,-2=-λk ,因此k =2.∴实数k 的值为2.13.方程思想在平面向量呈线性运算中的应用【典例】 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.[思路点拨] (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去.(2)既然OM →能用a ,b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. [解] 设OM →=m a +n b ,则AM →=OM →-OA →=m a +m b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b . 又∵A ,M ,D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →, 即(m -1)a +n b =t ⎝ ⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎨⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C ,M ,B 三点共线, ∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →, ∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎨⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .[方法点评] (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是,找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A ,M ,D 三点共线和B ,M ,C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[跟踪练习] 如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.解析:由GA →+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG →=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n=6.答案:6A 组 考点能力演练1.关于平面向量,下列说法正确的是( ) A .零向量是唯一没有方向的向量 B .平面内的单位向量是唯一的C .方向相反的向量是共线向量,共线向量不一定是方向相反的向量D .共线向量就是相等向量解析:对于A ,零向量是有方向的,其方向是任意的,故A 不正确;对于B ,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C ,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D ,由共线向量和相等向量的定义可知D 不正确,故选C.答案:C2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( )A.23OA →-13OB → B .-13OA →+23OB →C .2OA →-OB →D .-OA →+2OB →解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA →+OB →=0,所以OC →=2OA →-OB →,故选C.答案:C3.(2015·嘉兴一模)已知在△ABC 中,M 是BC 的中点,设CB →=a ,CA →=b ,则AM →=( )A.12a -b B.12a +b C .a -12bD .a +12b解析:AM →=AC →+CM →=-CA →+12CB →=-b +12a .答案:A4.(2015·海淀期中)如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB→+nAD →(m ,n ∈R ),则m -n =( )A .2B .-2C .1D .-1解析:AC →=AB →+BC →=AB →+32BD →=AB →+32(AD →-AB →)=-12AB →+32AD →,则m =-12,n=32,所以m -n =-2. 答案:B5.若a ,b 是两个不共线的非零向量,a 与b 的起点相同,已知a ,t b ,13(a+b )三个向量的终点在同一条直线上,则t =( )A.12 B .-12C .2D .-2解析:设OA →=a ,OB →=t b ,OC →=13(a +b ),则AC →=OC →-OA →=-23a +13b ,AB →=OB→-OA →=t a -a .要使A ,B ,C 三点共线,只需AC →=λAB →,即-23a +13b =λt b -λa即可,又a ,b是两个不共线的非零向量,∴⎩⎪⎨⎪⎧-23=-λ,13=λt ,解得⎩⎪⎨⎪⎧λ=23,t =12,∴当三个向量的终点在同一条直线上时,t =12.答案:A6.(2016·长沙一模)在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2). 答案:12(5e 1+3e 2)7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________.解析:因为a 与b 共线,所以a =x b ,⎩⎨⎧x =2,λx =-1,故λ=-12.答案:-128.(2016·青岛一模)已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O是坐标原点,则|OA →|的最大值为________.解析:因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.答案:29.已知a ,b 不共线,OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎨⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.10.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点:①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心. 解:如图,记AM →=AB →|AB →|,AN →=AC →|AC →|,则AM →,AN →都是单位向量,∴|AM →|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.B 组 高考题型专练1.(2014·高考新课标全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.BC →B.12AD → C.AD →D.12BC → 解析:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选C. 答案:C2.(2015·高考陕西卷)对任意向量a ,b ,下列关系式中不恒成立的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2解析:对于A 选项,设向量a ,b 的夹角为θ,∵|a·b |=|a ||b ||cosθ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥||a |-|b ||,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B.答案:B3.(2013·高考江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →,所以λ1=-16,λ2=23,即λ1+λ2=12. 答案:124.(2015·高考安徽卷)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →. 解析:∵AB →=2a ,AC →=2a +b ,∴a =12AB →,b =BC →,又△ABC 是边长为2的等边三角形,∴|a |=1,|b |=2,故①正确,②错误,③错误;由b =BC →,知b ∥BC →,故④正确;∵4a +b =2AB →+BC →=AB →+AC →,∴(4a +b )·BC →=(AB →+AC →)·BC →=-2+2=0,∴(4a +b )⊥BC →,故⑤正确.答案为①④⑤.答案:①④⑤。

高考数学一轮总复习 4.1 平面向量的概念及线性运算教案 理 新人教A版

高考数学一轮总复习 4.1 平面向量的概念及线性运算教案 理 新人教A版

第四章平面向量高考导航知识网络4.1 平面向量的概念及线性运算典例精析题型一向量的有关概念【例1】下列命题:①向量AB的长度与BA的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量是共线向量,则A、B、C、D必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;与CD是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:a∙;①|a|=a②(a∙b) ∙c=a∙ (b∙c);③-=BA;④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+=2;⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为( )A.1B.2C.3D.4【解析】选 D.| a|=a a ∙正确;(a ∙b) ∙c ≠a ∙ (b ∙c); -=BA 正确;如下图所示,MN =MD ++且MN =MA +AB +,两式相加可得2MN =+DC ,即命题④正确;因为a ,b 不共线,且|a|=|b|=1,所以a +b ,a -b 为菱形的两条对角线, 即得(a +b)⊥(a -b). 所以命题①③④⑤正确.题型二 与向量线性运算有关的问题【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM =31,点N 在线段OC 上,且ON =OC31,设AB =a, AD =b,试用a 、b 表示AM ,AN ,MN .【解析】在▱ABCD 中,AC ,BD 交于点O , 所以DO =12=12(-)=12(a -b),AO =OC =12AC =12(+)=12(a +b).又DM =13DO , ON =13OC ,所以AM =AD +DM =b +13=b +13×12(a -b)=16a +56b ,AN =AO +ON =OC +13OC=43OC =43×12(a +b)=23(a +b). 所以MN =AN - =23(a +b)-(16a +56b)=12a -16b. 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足=+λ(AB +),若λ=12时,则PA ∙(PB +)的值为 .【解析】由已知得-=λ(AB +),即AP =λ(AB +AC ),当λ=12时,得AP =12(AB +AC ),所以2AP =AB +AC ,即AP -AB =AC -AP , 所以=PC ,所以+PC =+=0,所以PA ∙ (PB +)=PA ∙0=0,故填0. 题型三 向量共线问题【例3】 设两个非零向量a 与b 不共线.(1)若AB =a +b , BC =2a +8b , CD =3(a -b), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使ka +b 和a +kb 共线.【解析】(1)证明:因为=a +b , BC =2a +8b , CD =3(a -b), 所以BD =+=2a +8b +3(a -b)=5(a +b)=5AB , 所以AB , BD 共线.又因为它们有公共点B ,所以A ,B ,D 三点共线.(2)因为ka +b 和a +kb 共线,所以存在实数λ,使ka +b =λ(a +kb), 所以(k -λ)a =(λk -1)b.因为a 与b 是不共线的两个非零向量,所以k -λ=λk -1=0,所以k2-1=0,所以k =±1.【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练3】已知O 是正三角形BAC 内部一点,+2+3=0,则△OAC 的面积与△OAB 的面积之比是( ) A.32 B.23C.2D.13【解析】如图,在三角形ABC 中, OA +2OB +3OC =0,整理可得OA +OC +2(OB +OC )=0.令三角形ABC 中AC 边的中点为E ,BC 边的中点为F ,则点O 在点F 与点E 连线的13处,即OE =2OF.设三角形ABC 中AB 边上的高为h ,则S △OAC =S △OAE +S △OEC =12∙OE ∙ (h 2+h 2)=12OE ·h ,S △OAB =12AB ∙12h =14AB ·h ,由于AB =2EF ,OE =23EF ,所以AB =3OE ,所以S △OAC S △OAB =h h AB OE ∙∙421=23.故选B.总结提高1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a 与b 共线同向时,|a +b|=|a|+|b|; 当向量a 与b 共线反向时,|a +b|=||a|-|b||; 当向量a 与b 不共线时,|a +b|<|a|+|b|.。

2025届高中数学一轮复习课件《平面向量的概念及线性运算》ppt

2025届高中数学一轮复习课件《平面向量的概念及线性运算》ppt

单位向量 长度等于 1 个单位长度的向量
高考一轮总复习•数学
第6页
名称
定义
方向相同或相反的非零向量叫做平行向量,平行向量又
平行向量 叫共线向量.
规定:零向量与任意向量平行
相等向量 长度相等且方向相同的向量
相反向量 长度相等且方向相反的向量
高考一轮总复习•数学
第7页
二 向量的线性运算
向量运算
定义
法则(或几何意义)
E,F,G 是函数的图象与 x 轴的交点,则(O→A +O→B )·(O→C +O→D )=__1_2_π_2___.
高考一轮总复习•数学
第25页
解析:(1)因为|A→B |=|A→C |=|A→B -A→C |=2,所以△ABC 是边长为 2 的正三角形,所以
|A→B +A→C |为△ABC 的边 BC 上的高的 2 倍,所以|A→B +A→C |=2 3.
高考一轮总复习•数学
第20页
对点练 1(多选)(2024·山东烟台月考)给出下列命题,其中叙述错误的命题为( ) A.向量A→B的长度与向量B→A的长度相等 B.向量 a 与 b 平行,则 a 与 b 的方向相同或相反 C.|a|+|b|=|a-b|⇔a 与 b 方向相反 D.若非零向量 a 与非零向量 b 的方向相同或相反,则 a+b 与 a,b 之一的方向相同 解析:A 正确,A→B与B→A是相反向量,长度相等;B,C 错误,当 a,b 其中之一为 0 时,不成立;D 错误,当 a+b=0 时,不成立.故选 BCD.
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
Байду номын сангаас

2019-2020年高三数学一轮复习讲义 平面向量的概念及线性运算教案 新人教A版

2019-2020年高三数学一轮复习讲义 平面向量的概念及线性运算教案 新人教A版

2019-2020年高三数学一轮复习讲义 平面向量的概念及线性运算教案 新人教A 版自主梳理1.向量的有关概念(1)向量的定义:既有__大小____又有__方向____的量叫做向量.平面向量是自由向量 (2)表示方法: 用 有向线段 来表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. 用字母a ,b ,…或用AB →,BC →,…表示. (3)模:向量的__长度____叫向量的模,记作___ |a |__或____. 向量的两要素向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向是__任意的___. (5)单位向量:长度为_1个___单位长度的向量叫做单位向量.与a 平行的单位向量e =__±a|a|___. (6)平行向量:方向__相同___或__相反__的__非零___向量;平行向量又叫___ 共线向量_________,任一组平行向量都可以移到同一直线上.规定:0与任一向量_平行 __. 向量平行与直线平行的区别向量平行包括向量共线和重合的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.(7)相等向量:长度___相等___且方向__相同___的向量.2.向量的加法运算及其几何意义(1)已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的 和 ,记作 a +b ,即 a +b =AB →+BC →= AC →,这种求向量和的方法叫做向量加法的 三角形法则 . (2)以同一点O 为起点的两个已知向量a ,b 为邻边作平行四边形OACB ,则以O 为起点的对角线OA →就是a 与b 的和,这种作两个向量和的方法叫做向量加法的 平行四边形法则 .(3)加法运算律a +b =___ b +a _____ (交换律);(a +b )+c =__ a +(b +c )__________(结合律). 3.向量的减法及其几何意义 (1)相反向量与a ____长度相等__、____方向相反__的向量,叫做a 的相反向量,记作__-a ____. (2)向量的减法① 定义a -b =a +__(-b ) __,即减去一个向量相当于加上这个向量的__相反向量____.② 图,AB →=a ,,AD →=b ,则AC →= a +b ,DB →=__ a -b ____.4.向量数乘运算及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作__λa ____,它的长度与方向规定如下: ①|λa |=___|λ||a | ___;②当λ>0时,λa 与a 的方向__相同____;当λ<0时,λa 与a 的方向__相反______;当λ=0时,λa =____. (2)运算律设λ,μ是两个实数,则① λ(μa )=__(λμ)a ___.(结合律)② (λ+μ)a =__λa +μa ___.(第一分配律) ③λ(a +b )=__λa +λb ____.(第二分配律) (3)两个向量共线定理:向量b 与a (a ≠0)共线的充要条件是存在唯一一个实数λ,使b =λa .5.重要结论PG →=13(PA →+PB →+PC →)⇔G 为△ABC 的___重心__;PA →+PB →+PC →=0⇔P 为△ABC 的___重心___.3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得___ b =λa _. 自我检测1.设点M 是线段BC 的中点,点A 在直线BC 外,,|,|则|AM →|等于 ( )A .8B .4C .2D .1 1.2.下列四个命题:①对于实数m 和向量a ,b ,恒有m (a -b )=m a -m b ;②对于实数m 和向量a ,b (m ∈R ),若m a =m b ,则a =b ;③若m a =n a (m ,n ∈R ,a ≠0),则m =n ; ④若a =b ,b =c ,则a =c , 其中正确命题的个数为 ( )A .1B .2C .3D .42.C [①根据实数与向量积的运算可判断其正确;②当m =0时,m a =m b =0,但a 与b 不一定相等,故②错误;③正确;④由于向量相等具有传递性,故④正确.] 3.如图,正六边形ABCDEF 中,++=( )A .0 B. C. D .4.设P 是△ABC 所在平面内的一点,+=2,则( )A.=0 B .+=0 C.+=0 D.+=05.在平行ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →等于 ( )A .-14a +14bB .-12a +12bC .a +12bD .-34a +34bA [由AN →=3NC →得4AN →=3AC →=3(a +b ),又AM →=a +12b ,所以MN →=34(a +b )-⎝ ⎛⎭⎪⎫a +12b =-14a +14b .] 6.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=m 成立,则m 等于 ( )A .2B .3C .4D .5 B [由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D , 则AM →=23AD →,①因为AD 为中线,AB →+AC →=2AD →=mAM →,即2AD →=mAM →,② 联立①②可得m =3.]7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=______.解析 设AB →=a ,AD →=b ,那么AE →=a +b ,AF →=a +12b ,又∵AC →=a +b ,AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.例1 ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c .⑤a =b 的充要条件是|a |=|b |且a ∥b .以上命题中正确的个数为 ( )A .1B .2C .3D .0 [①不正确,向量可以用有向线段表示,但向量不是有向线段;②不正确,若a 与b 中有一个为零向量时也互相平行,但零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b =0时,则a 与c 不一定平行.探究提高 (1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与a |a |的关系是:a |a |是a 方向上的单位向量.变式训练1 (1)下列命题中正确的有________(填写所有正确命题的序号). ①|a |=|b |⇒a =b ; ②若a =b ,b =c ,则a =c ;③|a |=0⇒a =0; ④若 a =b ,则|a|=|b|;⑤若λ=0,则λa =0;⑥若A 、B 、C 、D 是不共线的四点,则AB →=DC →⇔四边形ABCD 是平行四边形.⑦若将所有的单位向量都平移到同一个起点,则它们的终点在同一个单位圆上. 变式训练1解析 ①模相同,方向不一定相同,故①不正确;②两向量相等,要满足模相等且方向相同,故向量相等具备传递性,②正确; ③ 只有零向量的模才为0,故③正确;⑥④AB →=DC →,即模相等且方向相同,即平行四边形对边平行且相等.故⑥正确. 故应选②③④⑤⑥⑦.(2)判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ;(4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)起点不同,但方向相同且模相等的几个向量是相等向量; (7)任一向量与它的相反向量不相等.解 (1)不正确,因为向量只讨论相等和不等,而不能比较大小.(2)不正确,因为向量模相等与向量的方向无关.(3)正确.(4)不正确,因为规定零向量与任意向量平行.(5)不正确,因为两者中若有零向量,零向量的方向是任意的.(6)正确. 对于一个向量只要不改变其大小与方向,是可以任意平行移动的. (7)不正确,因为零向量可以与它的相反向量相等.二 向量的线性运算例2 在△ABC 中,D 、E 分别为BC 、AC 边 上的中点,G 为BE 上一点,且GB =2GE , 设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b ;AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b .探究提高 (1)解题的关键在于搞清构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. 变式训练2 (1)在△ABC 中,E 、F 分别为AC 、AB 的 中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b , 试用a ,b 表示AG →.解 AG →=AB →+BG →=AB →+λBE →= == .又AG →=AC →+CG →=AC →+mCF →=AC →+m 2(CA →+CB →)=(1-m )AC →+m 2AB →=m2a +(1-m )b ,∴⎩⎪⎨⎪⎧1-λ=m21-m =λ2,解得λ=m =23,∴AG →=13a +13b .(2)如图所示,若四边形ABCD 是一个等腰梯形,AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知AB →=a ,AD →=b ,DC →=c ,试用a 、b 、c 表示BC →,MN →,DN →+CN →.变式迁移2 解 BC →=BA →+AD →+DC →题型三 共线向量问题例3 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b)=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.探究提高 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.变式训练3 (1) 设两个非零向量e 1和e 2不共线.①如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;②如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.(1)证明∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2, ∴AC →=AB →+BC →=e 1-e 2+3e 1+2e 2=4e 1+e 2=(-8e 1-2e 2) =CD →. ∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2) =3e 1-2e 2,∵A 、C 、D 三点共线, ∴AC →与CD →共线.从而存在实数λ使得AC →=λCD → 即3e 1-2e 2=λ(2e 1-k e 2).由平面向量的基本定理得⎩⎪⎨⎪⎧3=2λ,-2=-λk .解之,得⎩⎪⎨⎪⎧λ=32,k =43.∴k 的值为43.(2)如图所示,△ABC 中,在AC 上取一点N ,使得AN =13AC ,在AB 上取一点M ,使得AM =13AB ,在BN 的延长线上取点P ,使得NP =12BN ,在CM 的延长 线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值. 解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,又∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.(3)如图所示,平行四边形ABCD 中,AD →=b ,AB →=a ,M 为AB 中点,N 为BD 靠近B 的三等分点,求证:M 、N 、C 三点共线.证明 在△ABD 中BD →=AD →-AB →.因为AB →=a, AD →=b ,所以BD →=b -a .由共线向量定理知:CM →∥CN →,又∵CM →与CN →有公共点C ,∴M 、N 、C 三点共线.(4)设,不共线,点P 在AB 上,求证:=λ+μ且λ+μ=1,λ,μ∈R . 证明:∵P 在AB 上,∴与共线. ∴=t .∴-=t (-). ∴=+t -t =(1-t )+t .设1-t =λ,t =μ,则=λ+μ且λ+μ=1,λ,μ∈R .用方程思想解决平面向量的线性运算问题如图所示,在△ABO 中,OC →=14OA →, OD →=12OB →,AD 与BC相交于点M ,设OA →=a , OB →=b .试用a 和b 表示向量OM →.解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b .又∵A 、M 、D 三点共线,∴AM →与AD →共线.∴存在实数t ,使得AM →=tAD →,即(m -1)a +n b =t ⎝ ⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1n =t 1,消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .变式训练4综合问题如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成 的阴影区域内(不含边界)运动,且OP →=xOA →+yOB →,则x 的取值范围是 ________;当x =-12时,y 的取值范围是________.解析:由题意得:OP →=a ·OM →+b ·OB →(a ,b ∈R +,0<b <1)=a ·λAB →+b ·OB → (λ>0)=a λ(OB →-OA →)+b ·OB =-αλ·OA →+(αλ+b )·OB →.由-a λ<0,求得x ∈(-∞,0).又由OP →=xOA →+yOB →,则有0<x +y <1,当x =-12时,有0<-12+y <1,求得:y ∈⎝ ⎛⎭⎪⎫12,32.答案:(-∞,0) ⎝ ⎛⎭⎪⎫12,32变式训练5如图,平面内有三个向量 其中的夹角为1200,的夹角为300, 且||1,|23,OA OB OC ===|||则 的值是_6__.在△ABC 中, O 是△ABC 的重心.∠A,∠B, ∠C 的对边分别为a ,b ,c,若 求证△ABC 是等边三角形.λμ+平面向量的概念及线性运算练习一一、选择题1.若O 、E 、F 是不共线的任意三点,则以下各式中成立的是 ( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D. EF →=-OF →-OE →2. 已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么( ) A .AO →=OD →B.AO →=2OD →C.AO →=3OD →D.2AO →=OD →3.如图,正六边形 ABCDEF 中,++= ( ) A .0 B . C .D .4. 设P 是△ABC 所在平面内的一点,+=2,则( ) A .P 、A 、B 三点共线 B .P 、A 、C 三点共线 C .P 、B 、C 三点共线D .以上均不正确5.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么 ( )A.k =1且c 与d 同向B.k =1且c 与d 反向C.k =-1且c 与d 同向 D .k =-1且c 与d 反向6.在△ABC 中,已知D 是AB 边上一点,AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A .23 B.13 C .-13 D .-237. 在△ABC 中,M 为边BC 上任意一点,N 为AM 中点, =λ+μ,则λ+μ的值为( ) A .12B.13C.14D .18.在四边形ABCD 中,=,且·=0,则四边形ABCD 是 ( )A .矩形B .菱形C .直角梯形D .等腰梯形9.如图,e1,e 2为互相垂直的单位向量,则 向量a -b 可表示为 ( ) A .3e 2-e 1 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 210.已知向量p =a |a |+b|b |,其中a 、b 均为非零向量,则|p |的取值范围是 ( )A .[0,2]B .[0,1]C .(0,2]D .[0,2]11.化简:(1)AB →+BC →+CD →=________; (2)AB →-AD →-DC →=________;(3)(AB →-CD →)-(AC →-BD →)=________.12.已知在平面上不共线的四点O 、A 、B 、C ,若OA →-3OB →+2OC →=0,则|AB →||BC →|=__2______.13.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量;④相等向量一定共线.其中不正确命题的序号是_______.14.已知D 为三角形ABC 边BC 的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为_____-2____.15.已知|a |=3,|b |=5,且a =λb ,则实数λ的值是____ __. 解析:∵a =λb ,∴a 与b 共线,λ=±35.16.已知a ,b 是不共线的向量,若=λ1a +b ,=a +λ2b (λ1,λ2∈R),则A 、B 、C 三点共线的充要条件为_____.解析:A 、B 、C 三点共线⇔∥⇔λ1λ2-1×1=0⇔λ1λ2=1.17.已知|a |=6,|b |=8,且|a +b |=|a -b |,则|a -b |=__10______.18.已知3x +4y =a,2x -3y =b ,其中a ,b 为已知向量,则向量x =________,y =________.答案:317a +417b 217a -317b19.设两个非零向量a 与b 不共线,(1)若=a +b ,=2a +8b ,=3(a -b ),求证:A 、B 、D 三点共线. (2) 试判断A 、C 、D 三点是否共线,并说明理由. (3)试确定实数k ,使ka +b 和a +kb 共线. 解 (1)∵=a +b ,=2a +8b , =3(a -b ), ∴=+=2a +8b +3(a -b ), =2a +8b +3a -3b =5(a +b )=5.∴、共线,又∵它们有公共点B ,∴A 、B 、D 三点共线. (2)解:A 、C 、D 三点不共线. ∵=a +b ,BC =2a +8b , ∴=+=a +b +2a +8b =3a +9b . 而=3a -3b ,假设存在λ∈R ,使得=λ, 即3a +9b =3λa -3λb .则⎩⎪⎨⎪⎧3=3λ,9=-3λ显然满足上述条件的实数λ不存在,故A 、C 、D 三点不共线.(3)∵ka +b 与a +kb 共线,∴存在实数λ,使ka +b =λ(a +kb ),即ka +b =λa +λkb . ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.20.设两个非零向量e 1和e 2不共线.如果=e 1+e 2,=2e 1-3e 2,=2e 1-ke 2,且A 、C 、D 三点共线,求k 的值.=+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴与共线,从而存在实数λ使得=λ,即3e 1-2e 2=λ(2e 1-ke 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.平面向量的概念及线性运算练习二1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小;③λa =0 (λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( )A.1B.2 C .3 D.42.平面向量a ,b 共线的充要条件是 ( ) A .a ,b 方向相同 B .a ,b 两向量中至少有一个为0C .存在λ∈R ,使b =λaD .存在不全为零的实数λ1,λ2,使λ1a +λ2b =0解析:a ,b 共线时,a ,b 方向相同或相反,故A 错.a ,b 共线时,a ,b 不一定是零向量,故B 错.当b =λa 时,a ,b 一定共线,若b ≠0,a =0,则b =λa 不成立,故C 错.排除A 、B 、C.3.下列命题是假命题的是 ( ) A .对于两个非零向量a 、b ,若存在一个实数k 满足a =k b ,则a 、b 共线 B .若a =b ,则|a |=|b | C .若a 、b 为两个非零向量,则|a +b |>|a -b | D .若a 、b 为两个方向相同的向量,则|a +b |=|a |+|b |4.设a ,b 是任意的两个向量,λ∈R ,给出下面四个结论: ①若a 与b 共线,则b =λa ;②若b =-λa ,则a 与b 共线; ③若a =λb ,则a 与b 共线;④当b ≠0时,a 与b 共线的充要条件是有且只有一个实数λ=λ1,使得a =λ1b .其中正确的结论有 ( ) A .①② B .①③ C .①③④ D .②③④5.已知点O ,N 在△ABC 所在平面内,且||=||=||,++=0,则点O ,N 依次是△ABC 的( ) A .重心 外心B .重心 内心C .外心 重心D .外心 内心解析:由||=||=||知,O 为△ABC 的外心;++=0,知,N 为△ABC 的重心. 答案:C6.已知△ABC 中,点D 是BC 的中点,过点D 的直线分别交直线AB 、AC 于E 、F 两点,若=λ (λ>0),=μ (μ>0),则1λ+4μ的最小值是( )A .9B.72 C .5 D.92解析:由题意得,+=2=λ+μ⇔=λ2+μ2,又D 、E 、F 在同一条直线上,可得λ2+μ2=1.所以1λ+4μ=(λ2+μ2)(1λ+4μ)=52+2λμ+μ2λ≥52+2=92,当且仅当2λ=μ时取等号.答案:D7.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足+ +=,则点P 与△ABC 的关系为( )A .P 在△ABC 内部B .P 在△ABC 外部C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点 解析:∵++=, ∴++=-,∴=-2=2, ∴P 是AC 边的一个三等分点.8.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的 ( ) A .外心 B .垂心 C .内心 D .重心9.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( ) A.△ABC 的内部 B .AC 边所在直线上 C. AB 边所在直线上 D.BC 边所在直线上10.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:OP →=OA →+λ ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的 ( )A.外心B .内心 C.重心D.垂心解:由条件得=λ,因与都是单位向量,故点P 在∠BAC 的平分线上,所以点P 的轨迹通过△ABC 的内心.选B.11.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →= ( ) A.14a +12b B.13a +23b C.12a +14b D .23a +13b 解析:∵AF →=AC →+CF →=a +23CD →=a +13(b -a )=23a +13b .故选D.12.设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值为___-1_______.13.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是_________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ; ②存在相异实数λ、μ,使λ·a +μ·b =0; ③x ·a +y ·b =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB →与CD →共线. 14.已知=a ,OP 2→=b ,P 1P 2→=λPP 2→,则OP →=_________.1λa +λ-1λb=a +λ-1λ(b -a )=1λa +λ-1λb .15.如图,以向量OA →=a ,OB →=b 为边作▱OADB , BM →=13BC →,CN →=13CD →,用a 、b 表示OM →、ON →、MN →.解 ∵BA →=OA →-OB →=a -b , BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b .又OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23(a +b ).∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .即OM →=16a +56b ,ON →=23a +23b , MN →=12a -16b .16.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,13(a +b )三向量的终点在同一条直线上?解 设OA →=a ,OB →=t b ,OC →=13(a +b ),∴AC →=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t b -a .要使A 、B 、C 三点共线,只需AC →=λAB →. 即-23a +13b =λt b -λa .∴有⎩⎪⎨⎪⎧ -23=-λ,13=λt ,⇒⎩⎪⎨⎪⎧λ=23,t =12.∴当t =12时,三向量终点在同一直线上.平面向量的概念及线性运算练习三1.若△ABC 满足|CB →|=|AB →+AC →|,则△ABC 的形状必定为 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形2.命题p :a 与b 是方向相同的非零向量,命题q: a 与b 是两平行向量,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是( ) A.13 B.12 C .23 D.344.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若=λ (λ∈R),=μ (μ∈R),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C (c,0),D (d,0)(c ,d ∈R)调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上解 依题意,若C ,D 调和分割点A ,B ,则有=λ,=μ,且1λ+1μ=2.若C 是线段AB 的中点,则有=12,此时λ=12.又1μ+1λ=2,∴1μ=0,不可能成立.因此选项A 不正确,同理B 也不正确.若C ,D 同时在线段AB 上,由=λ,=μ知0<λ<1,0<μ<1,此时1λ+1μ>2,与已知1λ+1μ=2矛盾,因此选项C 不正确. 若C ,D 同时在线段AB 的延长线上,则=λ时,λ>1,=μ时,μ>1,此时1λ+1μ<2,与已知1λ+1μ=2矛盾,故C ,D 不可能同时在线段AB 的延长线上.5.设a ,b 是两个不共线的非零向量,若8a +k b 与k a +2b 共线,则实数k =__±4______. 解析:因为8a +kb 与ka +2b 共线,所以存在实数λ,使8a +kb =λ(ka +2b ),即(8-λk )a+(k -2λ)b =0.又a ,b 是两个不共线的非零向量,故⎩⎪⎨⎪⎧8-λk =0,k -2λ=0,解得k =±4.6.如图所示,平面内的两条相交直线OP1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若=a +b ,且点P 落在第Ⅲ部分,则实数a ,b 满足a ________0,b ________0(用“>”,“<”或“=”填空).解析:由于点P 落在第Ⅲ部分,且=a +b ,则根据实数与向量的积的定义及平行四边形法则知a >0,b <0. 答案:> <7.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为_(-4,-2)_______.解析:设a =(x ,y ),x <0,y <0,则x -2y =0且x 2+y 2=20,解得x =4,y =2(舍去),或者x =-4,y =-2,即a =(-4,-2).8.已知等差数列{a n }的前n 项和为S n ,若=a 1+a 200,且A ,B ,C 三点共线(该直线不过原点O ),则S200=_100_____9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为____311_____.10.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交 直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为____.解析 方法一 若M 与B 重合,N 与C 重合, 则m +n =2.方法二 ∵2=+=m +n ,=m 2=m 2.∵O 、M 、N 共线,∴m 2+n2=1. ∴m +n =2. 11. 已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为___±2_____.12.如下图,两块斜边长相等的直角三角板拼在一起,若 AD →=xAB →+yAC →,则x =______,y =__________.作DF ⊥AB 交AB 的延长线于F ,设AB =AC =1⇒BC =DE =2,∵∠DEB =60°,∴BD =62. 由∠DBF =45°,得DF =BF =62×22=32,所以BF →=32AB →FD →=32AC →,所以AD →=AB →+BF →+FD →=()AB →+32AC →.14.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,OH →=m (OA →+OB →+OC →),则实数m =________.解析:如图所示,连接BO ,并延长交圆O 于点D ,连接CH ,CD ,AD ,则∠BCD =∠BAD =90°,∴CD ⊥BC ,AD ⊥AB .又H 为△ABC的垂心,∴AH ⊥BC ,CH ⊥AB . ∴CD ∥AH ,AD ∥HC .∴四边形AHCD 为平行四边形. ∴AH →=DC →=OC →-OD →.∵O 为BD 的中点,∴OB →=-OD →.∴OH →=OA →+AH →=OA →+OC →-OD →=OA →+OB →+OC →. ∴m =1.故填1.15.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为___12_____.三、解答题16.如图,在△ABC 中,,BN 与CM 交于P 点,且AB →=a ,AC →=b .用a ,b 表示AP →.解析:由题意知:AM →=13AB →=13a ,AN →=14AC →=14b ,BN →=AN →-AB →=14b -a ,CM →=AM →-AC →=13a -b .设PN →=λBN →,PM →=μCM →,则PN →=λ4b -λa ,PM →=μ3a -μb ,∴AP →=AN →-PN →=14b -(λ4b -λa )=λa +1-λ4b ,AP →=AM →-PM →=13a -(μ3a -μb )=1-μ3a +μb 而AP →=AP →,∴λa +1-λ4b =1-μ3a +μb而a ,b 不共线.∴λ=1-μ3且1-λ4=μ.∴λ=311.因此AP →=311a +211b .17已知点G 是△ABO 的重心,M 是AB 边的中点. (1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b , 求证:1m +1n=3.(1)解 ∵GA →+GB →=2GM →,又2GM →=-GO →, ∴GA →+GB →+GO →=-GO →+GO →=0. (2)证明 显然OM →=12(a +b ).因为G 是△ABO 的重心,所以OG →=23OM →=13(a +b ).由P 、G 、Q 三点共线,得PG →∥GQ →, 所以,有且只有一个实数λ,使PG →=λGQ →. 而PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +⎝⎛⎭⎪⎫n -13b ,所以⎝ ⎛⎭⎪⎫13-m a +13b =λ⎣⎢⎡⎦⎥⎤-13a +⎝⎛⎭⎪⎫n -13b .又因为a 、b 不共线,所以⎩⎪⎨⎪⎧13-m =-13λ13=λ⎝ ⎛⎭⎪⎫n -13,消去λ,整理得3mn =m +n ,故1m +1n=3.。

高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版

高考数学一轮复习第5章平面向量第1节平面向量的概念及线性运算课件理新人教A版

[最新考纲] 1.了解向量的实际背景. 2.理解平面向量的概念,理解两个向量相等的含义. 3.理解向量的几何表示. 4.掌握向量加法、减法的运算,并理解其几何意义. 5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 6.了解向量线性运算的性质及其几何意义.
[考情分析]
[核心素养]
平面向量的相关概念,平面向量的线性运算,共线向 1.数学运算
量定理及其应用仍是 2021 年高考考查的热点,题型仍将是 2.直观想象
选择题与填空题,分值为 5 分.
1
课 前 ·基 础 巩 固
‖知识梳理‖ 1.向量的有关概念 (1)向量:既有大小又有 1 __方__向_____的量叫做向量,向量的大小叫做向量的 2 _____模____. (2)零向量:长度为 3 ___0______的向量,其方向是任意的. (3)单位向量:长度等于 4 _1_个__单__位___的向量.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb),即(k-λ)a=(λk-1)b. 又 a,b 是两个不共线的非零向量, ∴kλk--λ=1=0,0. ∴k2-1=0.∴k=±1.
|变式探究| 1.若将本例(1)中“B→C=2a+8b”改为“B→C=a+mb”,则 m 为何值时,A,B,D 三点共线? 解:B→D=B→C+C→D=(a+mb)+3(a-b)=4a+(m-3)b, 若 A,B,D 三点共线,则存在实数 λ,使B→D=λA→B, 即 4a+(m-3)b=λ(a+b),∴4m=-λ3,=λ,解得 m=7. 故当 m=7 时,A,B,D 三点共线.
法则(或几何意义)
运算律
交换律:a+b= 8 __b_+__a____;
结 合 律 : (a + b) + c = 9 _a_+__(b_+__c_)_

高三数学一轮复习平面向量复习教案和学案

高三数学一轮复习平面向量复习教案和学案

1、向量的概念及运算 一、考纲要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;③了解向量的线性运算性质及其几何意义.(3)平面向量的基本定理及坐标表示了解平面向量的基本定理及其意义;二、知识梳理:1.向量的概念①向量既有大小又有方向的量。

向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB .几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。

向量的大小即向量的模(长度),记作|AB |.即向量的大小,记作|a|。

向量不能比较大小,但向量的模可以比较大小.②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行.零向量a =0 ⇔|a|=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b 。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量长度相等且方向相同的向量.相等向量经过平移后总可以重合,记为b a =。

大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 。

高三数学一轮复习讲义 平面向量的概念及线性运算教案 新人教A版

高三数学一轮复习讲义 平面向量的概念及线性运算教案 新人教A版

平面向量的概念及线性运算自主梳理1.向量的有关概念(1)向量的定义:既有__大小____又有__方向____的量叫做向量.平面向量是自由向量 (2)表示方法: 用 有向线段 来表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. 用字母a ,b ,…或用AB →,BC →,…表示. (3)模:向量的__长度____叫向量的模,记作___ |a |__或__AB __. 向量的两要素向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小.(4)零向量:长度为零的向量叫做零向量,记作0;零向量的方向是__任意的___. (5)单位向量:长度为_1个___单位长度的向量叫做单位向量.与a 平行的单位向量e =__±a|a|___. (6)平行向量:方向__相同___或__相反__的__非零___向量;平行向量又叫___ 共线向量_________,任一组平行向量都可以移到同一直线上.规定:0与任一向量_平行 __. 向量平行与直线平行的区别向量平行包括向量共线和重合的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.(7)相等向量:长度___相等___且方向__相同___的向量.2.向量的加法运算及其几何意义(1)已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的 和 ,记作 a +b ,即 a +b =AB →+BC →= AC →,这种求向量和的方法叫做向量加法的 三角形法则 . (2)以同一点O 为起点的两个已知向量a ,b 为邻边作平行四边形OACB ,则以O 为起点的对角线OA →就是a 与b 的和,这种作两个向量和的方法叫做向量加法的 平行四边形法则 .(3)加法运算律a +b =___ b +a _____ (交换律);(a +b )+c =__ a +(b +c )__________(结合律). 3.向量的减法及其几何意义 (1)相反向量与a ____长度相等__、____方向相反__的向量,叫做a 的相反向量,记作__-a ____. (2)向量的减法① 定义a -b =a +__(-b ) __,即减去一个向量相当于加上这个向量的__相反向量____.② 图,AB →=a ,,AD →=b ,则AC →= a +b ,DB →=__ a -b ____.4.向量数乘运算及其几何意义(1)定义:实数λ与向量a 的积是一个向量,记作__λa ____,它的长度与方向规定如下: ①|λa |=___|λ||a | ___;②当λ>0时,λa 与a 的方向__相同____;当λ<0时,λa 与a 的方向__相反______;当λ=0时,λa =____. (2)运算律设λ,μ是两个实数,则① λ(μa )=__(λμ)a ___.(结合律)② (λ+μ)a =__λa +μa ___.(第一分配律) ③λ(a +b )=__λa +λb ____.(第二分配律) (3)两个向量共线定理:向量b 与a (a ≠0)共线的充要条件是存在唯一一个实数λ,使b =λa .5.重要结论PG →=13(PA →+PB →+PC →)⇔G 为△ABC 的___重心__;PA →+PB →+PC →=0⇔P 为△ABC 的___重心___.3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得___ b =λa _. 自我检测1.设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,|AB AC AB AC +-=,|则|AM →|等于 ( )A .8B .4C .2D .1 1.2.下列四个命题:①对于实数m 和向量a ,b ,恒有m (a -b )=m a -m b ;②对于实数m 和向量a ,b (m ∈R ),若m a =m b ,则a =b ;③若m a =n a (m ,n ∈R ,a ≠0),则m =n ; ④若a =b ,b =c ,则a =c , 其中正确命题的个数为 ( )A .1B .2C .3D .42.C [①根据实数与向量积的运算可判断其正确;②当m =0时,m a =m b =0,但a 与b 不一定相等,故②错误;③正确;④由于向量相等具有传递性,故④正确.] 3.如图,正六边形ABCDEF 中,BA +CD +EF =( )A .0 B.BE C.AD D .CF4.设P 是△ABC 所在平面内的一点,BC +BA =2BP ,则( ) A.PA PB +=0 B .PC +PA =0 C.PB +PC =0 D.PA PB ++PC =05.在平行ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →等于 ( )A .-14a +14bB .-12a +12bC .a +12bD .-34a +34bA [由AN →=3NC →得4AN →=3AC →=3(a +b ),又AM →=a +12b ,所以MN →=34(a +b )-⎝ ⎛⎭⎪⎫a +12b =-14a +14b .] 6.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=m AM 成立,则m 等于 ( ) A .2 B .3 C .4 D .5 B [由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D , 则AM →=23AD →,①因为AD 为中线,AB →+AC →=2AD →=mAM →,即2AD →=mAM →,② 联立①②可得m =3.]7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=______.解析 设AB →=a ,AD →=b ,那么AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.例1 ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c .⑤a =b 的充要条件是|a |=|b |且a ∥b .以上命题中正确的个数为 ( )A .1B .2C .3D .0 [①不正确,向量可以用有向线段表示,但向量不是有向线段;②不正确,若a 与b 中有一个为零向量时也互相平行,但零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行; ④不正确,如果b =0时,则a 与c 不一定平行.探究提高 (1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (5)非零向量a 与a |a |的关系是:a|a |是a 方向上的单位向量.变式训练1 (1)下列命题中正确的有________(填写所有正确命题的序号). ①|a |=|b |⇒a =b ; ②若a =b ,b =c ,则a =c ;③|a |=0⇒a =0; ④若 a =b ,则|a|=|b|;⑤若λ=0,则λa =0;⑥若A 、B 、C 、D 是不共线的四点,则AB →=DC →⇔四边形ABCD 是平行四边形.⑦若将所有的单位向量都平移到同一个起点,则它们的终点在同一个单位圆上. 变式训练1解析 ①模相同,方向不一定相同,故①不正确;②两向量相等,要满足模相等且方向相同,故向量相等具备传递性,②正确; ③ 只有零向量的模才为0,故③正确;⑥④AB →=DC →,即模相等且方向相同,即平行四边形对边平行且相等.故⑥正确. 故应选②③④⑤⑥⑦.(2)判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ;(4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)起点不同,但方向相同且模相等的几个向量是相等向量; (7)任一向量与它的相反向量不相等.解 (1)不正确,因为向量只讨论相等和不等,而不能比较大小.(2)不正确,因为向量模相等与向量的方向无关.(3)正确.(4)不正确,因为规定零向量与任意向量平行.(5)不正确,因为两者中若有零向量,零向量的方向是任意的.(6)正确. 对于一个向量只要不改变其大小与方向,是可以任意平行移动的. (7)不正确,因为零向量可以与它的相反向量相等.二 向量的线性运算例2 在△ABC 中,D 、E 分别为BC 、AC 边 上的中点,G 为BE 上一点,且GB =2GE , 设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b ;AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b .探究提高 (1)解题的关键在于搞清构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. 变式训练2 (1)在△ABC 中,E 、F 分别为AC 、AB 的 中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b , 试用a ,b 表示AG →.解 AG →=AB →+BG →=AB →+λBE →=1()2AB BA AC λ++=1()2AB AB AC λ+-+= 1(1)2a b λ-+. 又AG →=AC →+CG →=AC →+mCF →=AC →+m 2(CA →+CB →)=(1-m )AC →+m 2AB →=m2a +(1-m )b ,∴⎩⎪⎨⎪⎧1-λ=m21-m =λ2,解得λ=m =23,∴AG →=13a +13b .(2)如图所示,若四边形ABCD 是一个等腰梯形,AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知AB →=a ,AD →=b ,DC →=c ,试用a 、b 、c 表示BC →,MN →,DN →+CN →.变式迁移2 解 BC →=BA →+AD →+DC →题型三 共线向量问题例3 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线.(2)解 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.探究提高 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.变式训练3 (1) 设两个非零向量e 1和e 2不共线.①如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线;②如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.(1)证明∵AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,∴AC →=AB →+BC →=e 1-e 2+3e 1+2e 2=4e 1+e 2=12-(-8e 1-2e 2) =12-CD →.∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2) =3e 1-2e 2,∵A 、C 、D 三点共线, ∴AC →与CD →共线.从而存在实数λ使得AC →=λCD → 即3e 1-2e 2=λ(2e 1-k e 2).由平面向量的基本定理得⎩⎪⎨⎪⎧3=2λ,-2=-λk .解之,得⎩⎪⎨⎪⎧λ=32,k =43.∴k 的值为43.(2)如图所示,△ABC 中,在AC 上取一点N ,使得AN =13AC ,在AB 上取一点M ,使得AM =13AB ,在BN 的延长线上取点P ,使得NP =12BN ,在CM 的延长 线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,又∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.(3)如图所示,平行四边形ABCD 中,AD →=b ,AB →=a ,M 为AB 中点,N 为BD 靠近B 的三等分点,求证:M 、N 、C 三点共线.证明 在△ABD 中BD →=AD →-AB →.因为AB →=a, AD →=b ,所以BD →=b -a .由共线向量定理知:CM →∥CN →,又∵CM →与CN →有公共点C ,∴M 、N 、C 三点共线.(4)设OA ,OB 不共线,点P 在AB 上,求证:OP =λOA +μOB 且λ+μ=1,λ,μ∈R .证明:∵P 在AB 上,∴AP 与AB 共线. ∴AP =t AB .∴OP -OA =t (OB -OA ). ∴OP =OA +t OB -t OA =(1-t )OA +t OB . 设1-t =λ,t =μ,则OP =λOA +μOB 且λ+μ=1,λ,μ∈R .用方程思想解决平面向量的线性运算问题如图所示,在△ABO 中,OC →=14OA →, OD →=12OB →,AD 与BC相交于点M ,设OA →=a , OB →=b .试用a 和b 表示向量OM →.解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b .AD →=OD →-OA →=12OB →-OA →=-a +12b .又∵A 、M 、D 三点共线,∴AM →与AD →共线.∴存在实数t ,使得AM →=tAD →,即(m -1)a +n b =t ⎝ ⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1n =t 1,消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .变式训练4综合问题如图,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成 的阴影区域内(不含边界)运动,且OP →=xOA →+yOB →,则x 的取值范围是 ________;当x =-12时,y 的取值范围是________.解析:由题意得:OP →=a ·OM →+b ·OB →(a ,b ∈R +,0<b <1)=a ·λAB →+b ·OB → (λ>0)=a λ(OB →-OA →)+b ·OB =-αλ·OA →+(αλ+b )·OB →.由-a λ<0,求得x ∈(-∞,0).又由OP →=xOA →+yOB →,则有0<x +y <1,当x =-12时,有0<-12+y <1,求得:y ∈⎝ ⎛⎭⎪⎫12,32.答案:(-∞,0) ⎝ ⎛⎭⎪⎫12,32变式训练5如图,平面内有三个向量 其中OA OB 与的夹角为1200,OA OC 与的夹角为300, 且||1,|23,OA OB OC ===|||则 的值是_6__.在△ABC 中, O 是△ABC 的重心.∠A,∠B, ∠C的对边分别为a ,b ,c,若求证△ABC 是等边三角形.,,OA OB OC ,(,R),OB μλμ∈+λμ+OC OA λ=λμ+0,aOA bOB cOC ++=平面向量的概念及线性运算练习一一、选择题1.若O 、E 、F 是不共线的任意三点,则以下各式中成立的是 ( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D. EF →=-OF →-OE →2. 已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么( ) A .AO →=OD →B.AO →=2OD →C.AO →=3OD →D.2AO →=OD →3.如图,正六边形 ABCDEF 中,BA +CD +EF = ( )A .0B .BEC .ADD .CF4. 设P 是△ABC 所在平面内的一点,BC +BA =2BP ,则( )A .P 、A 、B 三点共线 B .P 、A 、C 三点共线 C .P 、B 、C 三点共线D .以上均不正确5.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么 ( )A.k =1且c 与d 同向B.k =1且c 与d 反向C.k =-1且c 与d 同向 D .k =-1且c 与d 反向6.在△ABC 中,已知D 是AB 边上一点,AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A .23 B.13 C .-13 D .-23 7. 在△ABC 中,M 为边BC 上任意一点,N 为AM 中点, AN =λAB +μAC ,则λ+μ的值为( ) A .12B.13C.14D .18.在四边形ABCD 中,AB =DC ,且AC ·BD =0,则四边形ABCD 是 ( ) A .矩形 B .菱形 C .直角梯形 D .等腰梯形9.如图,e1,e 2为互相垂直的单位向量,则 向量a -b 可表示为 ( ) A .3e 2-e 1 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 210.已知向量p =a |a |+b|b |,其中a 、b 均为非零向量,则|p |的取值范围是 ( )A .[0,2]B .[0,1]C .(0,2]D .[0,2]11.化简:(1)AB →+BC →+CD →=___AD _____; (2)AB →-AD →-DC →=___CB _____;(3)(AB →-CD →)-(AC →-BD →)=____0____.12.已知在平面上不共线的四点O 、A 、B 、C ,若OA →-3OB →+2OC →=0,则|AB →||BC →|=__2______.13.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量;④相等向量一定共线.其中不正确命题的序号是_______.14.已知D 为三角形ABC 边BC 的中点,点P 满足PA →+BP →+CP →=0,AP →=λPD →,则实数λ的值为_____-2____.15.已知|a |=3,|b |=5,且a =λb ,则实数λ的值是____ __. 解析:∵a =λb ,∴a 与b 共线,λ=±35.16.已知a ,b 是不共线的向量,若AB =λ1a +b ,AC =a +λ2b (λ1,λ2∈R),则A 、B 、C 三点共线的充要条件为_____.解析:A 、B 、C 三点共线⇔AB ∥AC ⇔λ1λ2-1×1=0⇔λ1λ2=1.17.已知|a |=6,|b |=8,且|a +b |=|a -b |,则|a -b |=__10______.18.已知3x +4y =a,2x -3y =b ,其中a ,b 为已知向量,则向量x =________,y =________.答案:317a +417b 217a -317b19.设两个非零向量a 与b 不共线,(1)若AB =a +b ,BC =2a +8b ,CD =3(a -b ),求证:A 、B 、D 三点共线. (2) 试判断A 、C 、D 三点是否共线,并说明理由. (3)试确定实数k ,使ka +b 和a +kb 共线.解 (1)∵AB =a +b ,BC =2a +8b , CD =3(a -b ), ∴BD =BC +CD =2a +8b +3(a -b ), =2a +8b +3a -3b =5(a +b )=5AB .∴AB 、BD 共线,又∵它们有公共点B ,∴A 、B 、D 三点共线. (2)解:A 、C 、D 三点不共线. ∵AB =a +b ,BC =2a +8b ,∴AC =AB +BC =a +b +2a +8b =3a +9b . 而CD =3a -3b ,假设存在λ∈R ,使得AC =λCD , 即3a +9b =3λa -3λb .则⎩⎪⎨⎪⎧3=3λ,9=-3λ显然满足上述条件的实数λ不存在,故A 、C 、D 三点不共线.(3)∵ka +b 与a +kb 共线,∴存在实数λ,使ka +b =λ(a +kb ),即ka +b =λa +λkb . ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0,∴k =±1.20.设两个非零向量e 1和e 2不共线.如果AB =e 1+e 2,BC =2e 1-3e 2,CD =2e 1-ke 2,且A 、C 、D 三点共线,求k 的值.AC =AB +BC =(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC 与CD 共线,从而存在实数λ使得AC =λCD ,即3e 1-2e 2=λ(2e 1-ke 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.平面向量的概念及线性运算练习二1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小;③λa =0 (λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( )A.1B.2 C .3 D.42.平面向量a ,b 共线的充要条件是 ( ) A .a ,b 方向相同 B .a ,b 两向量中至少有一个为0C .存在λ∈R ,使b =λaD .存在不全为零的实数λ1,λ2,使λ1a +λ2b =0解析:a ,b 共线时,a ,b 方向相同或相反,故A 错.a ,b 共线时,a ,b 不一定是零向量,故B 错.当b =λa 时,a ,b 一定共线,若b ≠0,a =0,则b =λa 不成立,故C 错.排除A 、B 、C.3.下列命题是假命题的是 ( ) A .对于两个非零向量a 、b ,若存在一个实数k 满足a =k b ,则a 、b 共线 B .若a =b ,则|a |=|b | C .若a 、b 为两个非零向量,则|a +b |>|a -b | D .若a 、b 为两个方向相同的向量,则|a +b |=|a |+|b |4.设a ,b 是任意的两个向量,λ∈R ,给出下面四个结论: ①若a 与b 共线,则b =λa ;②若b =-λa ,则a 与b 共线; ③若a =λb ,则a 与b 共线;④当b ≠0时,a 与b 共线的充要条件是有且只有一个实数λ=λ1,使得a =λ1b .其中正确的结论有 ( ) A .①② B .①③ C .①③④ D .②③④5.已知点O ,N 在△ABC 所在平面内,且|OA |=|OB |=|OC |,NA +NB +NC =0,则点O ,N 依次是△ABC 的( ) A .重心 外心B .重心 内心C .外心 重心D .外心 内心解析:由|OA |=|OB |=|OC |知,O 为△ABC 的外心;NA +NB +NC =0,知,N 为△ABC 的重心. 答案:C6.已知△ABC 中,点D 是BC 的中点,过点D 的直线分别交直线AB 、AC 于E 、F 两点,若AB =λAE (λ>0),AC =μAF (μ>0),则1λ+4μ的最小值是( )A .9B.72 C .5 D.92解析:由题意得,AB +AC =2AD =λAE +μAF ⇔AD =λ2AE +μ2AF ,又D 、E 、F 在同一条直线上,可得λ2+μ2=1.所以1λ+4μ=(λ2+μ2)(1λ+4μ)=52+2λμ+μ2λ≥52+2=92,当且仅当2λ=μ时取等号. 答案:D7.已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA + PB +PC =AB ,则点P 与△ABC 的关系为 ( )A .P 在△ABC 内部B .P 在△ABC 外部C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点 解析:∵PA +PB +PC =AB ,∴PA +PB +PC =PB -PA ,∴PC =-2PA =2AP , ∴P 是AC 边的一个三等分点.8.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的 ( ) A .外心 B .垂心 C .内心 D .重心9.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在( ) A.△ABC 的内部 B .AC 边所在直线上 C. AB 边所在直线上 D.BC 边所在直线上10.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:OP →=OA →+λ ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的 ( )A.外心B .内心 C.重心D.垂心解:由条件得=λ,因与都是单位向量,故点P 在∠BAC 的平分线上,所以点P 的轨迹通过△ABC 的内心.选B.11.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →= ( ) A.14a +12b B.13a +23b C.12a +14b D .23a +13b 解析:∵AF →=AC →+CF →=a +23CD →=a +13(b -a )=23a +13b .故选D.12.设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值为___-1_______.13.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是_________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ; ②存在相异实数λ、μ,使λ·a +μ·b =0; ③x ·a +y ·b =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB →与CD →共线. 14.已知1OP =a ,OP 2→=b ,P 1P 2→=λPP 2→,则OP →=_________.1λa +λ-1λb=a +λ-1λ(b -a )=1λa +λ-1λb .15.如图,以向量OA →=a ,OB →=b 为边作▱OADB , BM →=13BC →,CN →=13CD →,用a 、b 表示OM →、ON →、MN →.解 ∵BA →=OA →-OB →=a -b , BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=16a +56b .又OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23(a +b ).∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .即OM →=16a +56b ,ON →=23a +23b , MN →=12a -16b .16.若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,13(a +b )三向量的终点在同一条直线上?解 设OA →=a ,OB →=t b ,OC →=13(a +b ),∴AC →=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t b -a .要使A 、B 、C 三点共线,只需AC →=λAB →. 即-23a +13b =λt b -λa .∴有⎩⎪⎨⎪⎧ -23=-λ,13=λt ,⇒⎩⎪⎨⎪⎧λ=23,t =12.∴当t =12时,三向量终点在同一直线上.平面向量的概念及线性运算练习三1.若△ABC 满足|CB →|=|AB →+AC →|,则△ABC 的形状必定为 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形2.命题p :a 与b 是方向相同的非零向量,命题q: a 与b 是两平行向量,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.在△ABC 所在平面上有一点P ,满足PA →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是( )A.13B.12 C .23 D.34 4.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若13AA =λ12A A (λ∈R),14A A =μ12A A (μ∈R),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C (c,0),D (d,0)(c ,d ∈R)调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 解 依题意,若C ,D 调和分割点A ,B ,则有AC =λAB ,AD =μAB ,且1λ+1μ=2. 若C 是线段AB 的中点,则有AC =12AB ,此时λ=12.又1μ+1λ=2,∴1μ=0,不可能成立.因此选项A 不正确,同理B 也不正确. 若C ,D 同时在线段AB 上,由AC =λAB ,AD =μAB 知0<λ<1,0<μ<1,此时1λ+1μ>2,与已知1λ+1μ=2矛盾,因此选项C 不正确. 若C ,D 同时在线段AB 的延长线上,则AC =λAB 时,λ>1,AD =μAB 时,μ>1,此时1λ+1μ<2,与已知1λ+1μ=2矛盾,故C ,D 不可能同时在线段AB 的延长线上.5.设a ,b 是两个不共线的非零向量,若8a +k b 与k a +2b 共线,则实数k =__±4______. 解析:因为8a +kb 与ka +2b 共线,所以存在实数λ,使8a +kb =λ(ka +2b ),即(8-λk )a+(k -2λ)b =0.又a ,b 是两个不共线的非零向量,故⎩⎪⎨⎪⎧8-λk =0,k -2λ=0,解得k =±4.6.如图所示,平面内的两条相交直线OP1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若OP =a 1OP +b 2OP ,且点P 落在第Ⅲ部分,则实数a ,b 满足a ________0,b ________0(用“>”,“<”或“=”填空).解析:由于点P 落在第Ⅲ部分,且OP =a 1OP +b 2OP , 则根据实数与向量的积的定义及平行四边形法则知a >0,b <0. 答案:> <7.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为_(-4,-2)_______.解析:设a =(x ,y ),x <0,y <0,则x -2y =0且x 2+y 2=20,解得x =4,y =2(舍去),或者x =-4,y =-2,即a =(-4,-2).8.已知等差数列{a n }的前n 项和为S n ,若OB =a 1OA +a 200OC ,且A ,B ,C 三点共线(该直线不过原点O ),则S200=_100_____9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为____311_____.10.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交 直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为____.解析 方法一 若M 与B 重合,N 与C 重合, 则m +n =2.方法二 ∵2=+=m +n ,=m 2=m 2.∵O 、M 、N 共线,∴m 2+n2=1. ∴m +n =2. 11. 已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为___±2_____.12.如下图,两块斜边长相等的直角三角板拼在一起,若 AD →=xAB →+yAC →,则x =______,y =__________.作DF ⊥AB 交AB 的延长线于F ,设AB =AC =1⇒BC =DE =2,∵∠DEB =60°,∴BD =62. 由∠DBF =45°,得DF =BF =62×22=32,所以BF →=32AB →⋅FD →=32AC →,所以AD →=AB →+BF →+FD →=(12+)AB →+32AC →.14.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,OH →=m (OA →+OB →+OC →),则实数m=________.解析:如图所示,连接BO ,并延长交圆O 于点D ,连接CH ,CD ,AD ,则∠BCD =∠BAD =90°,∴CD ⊥BC ,AD ⊥AB .又H 为△ABC的垂心,∴AH ⊥BC ,CH ⊥AB . ∴CD ∥AH ,AD ∥HC .∴四边形AHCD 为平行四边形. ∴AH →=DC →=OC →-OD →.∵O 为BD 的中点,∴OB →=-OD →.∴OH →=OA →+AH →=OA →+OC →-OD →=OA →+OB →+OC →. ∴m =1.故填1.15.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为___12_____.三、解答题16.如图,在△ABC 中,AM AN 11AB 3AC 4==,,,BN 与CM 交于P 点,且AB →=a ,AC →=b .用a ,b 表示AP →.解析:由题意知:AM →=13AB →=13a ,AN →=14AC →=14b ,BN →=AN →-AB →=14b -a ,CM →=AM →-AC →=13a -b .设PN →=λBN →,PM →=μCM →,则PN →=λ4b -λa ,PM →=μ3a -μb ,∴AP →=AN →-PN →=14b -(λ4b -λa )=λa +1-λ4b ,AP →=AM →-PM →=13a -(μ3a -μb )=1-μ3a +μb 而AP →=AP →,∴λa +1-λ4b =1-μ3a +μb而a ,b 不共线.∴λ=1-μ3且1-λ4=μ.∴λ=311.因此AP →=311a +211b .17已知点G 是△ABO 的重心,M 是AB 边的中点. (1)求GA →+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b , 求证:1m +1n=3.(1)解 ∵GA →+GB →=2GM →,又2GM →=-GO →, ∴GA →+GB →+GO →=-GO →+GO →=0. (2)证明 显然OM →=12(a +b ).因为G 是△ABO 的重心,所以OG →=23OM →=13(a +b ).由P 、G 、Q 三点共线,得PG →∥GQ →, 所以,有且只有一个实数λ,使PG →=λGQ →. 而PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +⎝⎛⎭⎪⎫n -13b ,所以⎝ ⎛⎭⎪⎫13-m a +13b =λ⎣⎢⎡⎦⎥⎤-13a +⎝⎛⎭⎪⎫n -13b .又因为a 、b 不共线,所以⎩⎪⎨⎪⎧13-m =-13λ13=λ⎝ ⎛⎭⎪⎫n -13,消去λ,整理得3mn =m +n ,故1m +1n=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章平面向量
高考导航
考试要求重难点击命题展望
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景;
(2)理解平面向量的概念,理解两个向量相等
的含义;
(3)理解向量的几何表示.
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义;
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;
(3)了解向量线性运算的性质及其几何意义.
3.平面向量的基本定理及其坐标表示
(1)了解平面向量的基本定理及其意义;
(2)掌握平面向量的正交分解及其坐标表示;
(3)会用坐标表示平面向量的加法、减法与数乘运算;
(4)理解用坐标表示的平面向量共线的条件.
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义;
(2)了解平面向量的数量积与向量投影的关系;
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算;
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题;
(2)会用向量方法解决某些简单的力学问题及其他一些实际问题. 本章重点:
1.向量的各种运
算;
2.向量的坐标运
算及数形结合的
思想;
3.向量的数量积
在证明有关向量
相等、两向量垂
直、投影、夹角等
问题中的应用.
本章难点:
1.向量的直角坐
标运算在证明向
量垂直和平行问
题中的应用;
2.向量的夹角公
式和距离公式在
求解平面上两条
直线的夹角和两
点间距离中的应
用.
向量是近代数学中重
要和基本的数学概念之
一,它是沟通代数、几何
与三角函数的一种工具,
有着极其丰富的实际背
景,同时又是数形结合思
想运用的典范,正是由于
向量既具有几何形式又具
有代数形式的“双重身
份”,所以它成为中学数
学知识的一个交汇点.在
高考中,不仅注重考查向
量本身的基础知识和方
法,而且常与解析几何、
三角函数、数列等一起进
行综合考查.
在考试要求的层次上更加
突出向量的实际背景、几
何意义、运算功能和应用
价值.
知识网络
4.1 平面向量的概念及线性运算
典例精析
题型一向量的有关概念
【例1】下列命题:
①向量AB的长度与BA的长度相等;
②向量a与向量b平行,则a与b的方向相同或相反;
③两个有共同起点的单位向量,其终点必相同;
④向量AB与向量是共线向量,则A、B、C、D必在同一直线上.
其中真命题的序号是.
【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④
错.故是真命题的只有①.
【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.
【变式训练1】下列各式:
①|a|=
a a•;
②(a•b) •c=a• (b•c);
③OA-OB=;
④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+=2;
⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为( )
A.1
B.2
C.3
D.4
【解析】选 D.| a|=a a •正确;(a •b) •c ≠a • (b •c); OA -OB =BA 正确;如下图所示,
MN =MD +DC +CN 且MN =MA +AB +BN ,
两式相加可得2MN =AB +DC ,即命题④正确;
因为a ,b 不共线,且|a|=|b|=1,所以a +b ,a -b 为菱形的两条对角线, 即得(a +b)⊥(a -b). 所以命题①③④⑤正确.
题型二 与向量线性运算有关的问题
【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且
DM =DO 31,点N 在线段OC 上,且ON =OC
31,设AB =a, AD =b,试用a 、b
表示AM ,AN ,MN .
【解析】在▱ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1
2
(a -b),
AO =OC =12
AC =12
(AB +AD )=12
(a +b).
又DM =13DO , ON =1
3OC ,
所以AM =AD +DM =b +1
3DO
=b +13×12(a -b)=16a +56
b ,
AN =AO +ON =OC +13
OC
=43OC =43×12(a +b)=2
3(a +b). 所以MN =AN -AM =23(a +b)-(16a +56b)=12a -16
b. 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点
P 满足OP =OA +λ(AB +AC ),若λ=1
2时,则PA •(PB +PC )的值为 .
【解析】由已知得OP -OA =λ(AB +AC ),
即AP =λ(AB +AC ),当λ=12时,得AP =1
2(AB +AC ),
所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC ,
所以PB +PC =PB +BP =0,
所以PA • (PB +PC )=PA •0=0,故填0. 题型三 向量共线问题
【例3】 设两个非零向量a 与b 不共线.
(1)若AB =a +b , BC =2a +8b , CD =3(a -b), 求证:A ,B ,D 三点共线;
(2)试确定实数k ,使ka +b 和a +kb 共线.
【解析】(1)证明:因为AB =a +b , BC =2a +8b , CD =3(a -b), 所以BD =BC +CD =2a +8b +3(a -b)=5(a +b)=5AB , 所以AB , BD 共线.又因为它们有公共点B ,
所以A ,B ,D 三点共线.
(2)因为ka +b 和a +kb 共线,
所以存在实数λ,使ka +b =λ(a+kb), 所以(k -λ)a=(λk-1)b.
因为a 与b 是不共线的两个非零向量,
所以k -λ=λk-1=0,所以k2-1=0,所以k =±1.
【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
【变式训练3】已知O 是正三角形BAC 内部一点,OA +2OB +3OC =0,则△OAC 的面积与△OAB 的面积之比是( ) A.32 B.23
C.2
D.13
【解析】如图,在三角形ABC 中, OA +2OB +3OC =0,整理可得OA +OC +2(OB +OC )
=0.令三角形ABC 中AC 边的中点为E ,BC 边的中点为F ,则点O 在点F 与点E 连线的1
3处,
即OE =2OF.
设三角形ABC 中AB 边上的高为h ,则S △OAC =S △OAE +S △OEC =12•OE • (h 2+h 2)=1
2OE ·h ,
S △OAB =12AB •12h =1
4
AB ·h ,
由于AB =2EF ,OE =2
3
EF ,所以AB =3OE ,
所以S △OAC S △OAB =h h AB OE ••41
21
=23
.故选B.
总结提高
1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.
2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.
3.当向量a 与b 共线同向时,|a +b|=|a|+|b|; 当向量a 与b 共线反向时,|a +b|=||a|-|b||; 当向量a 与b 不共线时,|a +b|<|a|+|b|.。

相关文档
最新文档