第二章-自动控制原理习题集

合集下载

自动控制原理习题及其解答 第二章

自动控制原理习题及其解答 第二章

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。

解:(1) 设输入为y r ,输出为y 0。

弹簧与阻尼器并联平行移动。

(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有021=-+K K f F F F其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。

(3) 写中间变量关系式220110)()(y K F Y Y K F dty y d f F K r K r f =-=-⋅=(4) 消中间变量得 020110y K y K y K dtdy f dt dy f r r=-+- (5) 化标准形 r r Ky dtdyT y dt dy T +=+00 其中:215K K T +=为时间常数,单位[秒]。

211K K K K +=为传递函数,无量纲。

例2-2 已知单摆系统的运动如图2-2示。

(1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。

(2)由牛顿定律写原始方程。

h mg dtd l m --=θθsin )(22其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。

(3)写中间变量关系式)(dtd lh θα= 式中,α为空气阻力系数dtd l θ为运动线速度。

(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。

(5)线性化由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为022=++θθθmg dt d al dtd ml 例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。

解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。

(2)列写运动方程式f M f dtd J+-=ωω式中, f ω为阻尼力矩,其大小与转速成正比。

自动控制原理C作业(第二章)答案

自动控制原理C作业(第二章)答案

4 3
0.1
图 3-1 二阶控制系统的单位阶跃响应
解 在单位阶跃作用下响应的稳态值为 3,故此系统的增益不是 1,而是 3。系统模型为
(s)
s2
3
2 n
2n s
2 n
然后由响应的 p % 、 t p 及相应公式,即可换算出 、 n 。
p%
c(t p ) c() c()
4
3
3
33%
t p 0.1(s)
P1 G1G2
1 1
P2 G2G4
2 1
因此,传递函数为
C(s) P11 P2 2
R(s)
G2G1 G4G2 1 G1G2G3
3
自动控制原理 C 习题答案(第二章)
2.4 用梅森公式求系统传递函数。
R(S)

_
+ G1(s)
- _
G2(s)
+ C(S)
+
图 2-4 解: 单独回路 5 个,即
L1
1 R
1 C1S
1 R1C1S
11
1
L2
R2
C2S
R2C2 S
L3
1 C1S
1 R2
1 R2C1S
回路相互不接触的情况只有 L1 和 L2 两个回路。则
L12
L1L2
1 R1C1R2C2S 2
由上式可写出特征式为:
1
( L1
L2
L3 )
L1 L2
1
1 R1C1S
1 R2C2 S
1 R2C1S
1 R1C1R2C2S 2
益 K1 和速度反馈系数 Kt 。同时,确定在此 K1 和 Kt 数值下系统的延迟时间、上升时间和调节时间。

自动控制原理(胡寿松)课后习题答案详解

自动控制原理(胡寿松)课后习题答案详解

N
G3
G2
1+G1G2H1

- C
再进一步化简得:
1+G1G2H1
G1
G2
20
胡寿松自动控制原理习题解答第二章
N

G3
G2
C
1+G1G2H1

1+G1G2H1
G1
G2
再进一步化简得:
N G2G3-1-G1G2H1 1+G1G2H1
G2
C
G2+G1 (1+G1G2H1)
所以: C(s) =
G2 (G2G3 − 1 − G1G2 H1 )
10 6s + 10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
E(s) =
10
=
10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
=
(6s
200(20s + 5) + 10)(20s + 5) +
200
=
200(20s + 5) 120s 2 + 230s + 250
Z2
=
R2
+
1 C2s
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

自动控制原理第二章习题答案详解

自动控制原理第二章习题答案详解

习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。

),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。

习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。

图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。

自动控制原理第2章练习题

自动控制原理第2章练习题

第二章 控制系统的数学模型习题及答案2-1 试建立图2-27所示各系统的微分方程。

其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数。

解(a )以平衡状态为基点,对质块m 进行受力分析(不再考虑重力影响),如图解2-1(a)所示。

根据牛顿定理可写出22)()(dty d m dt dy f t ky t F =-- 整理得)(1)()()(22t F m t y m k dt t dy m f dt t y d =++(b )如图解2-1(b)所示,取A,B 两点分别进行受力分析。

对A 点有 )()(111dtdydt dx f x x k -=- (1) 对B 点有 y k dtdydt dx f 21)(=- (2) 联立式(1)、(2)可得:dtdx k k k y k k f k k dt dy2112121)(+=++(c) 应用复数阻抗概念可写出)()(11)(11s U s I cs R cs R s U c r ++= (3) 2)()(R s Uc s I = (4) 联立式(3)、(4),可解得: CsR R R R Cs R R s U s U r c 212112)1()()(+++=微分方程为: r r c c u CR dt du u R CR R R dt du 121211+=++(d) 由图解2-1(d )可写出[]Css I s I s I R s U c R R r 1)()()()(++= (5) )()(1)(s RI s RI Css I c R c -= (6) []Css I s I R s I s U c R c c 1)()()()(++= (7)联立式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c 微分方程为 r r r c c c u RC dt du CR dt du u R C dt du CR dt du 222222221213++=++2-2 试证明图2-28中所示的力学系统(a)和电路系统(b)是相似系统(即有相同形式的数学模型)。

自动控制原理课后习题答案第二章

自动控制原理课后习题答案第二章
图2-6控制系统模拟电路
解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为

第2章-自动控制原理习题答案

第2章-自动控制原理习题答案

习题2-1 试证明图2-1(a)的电网络与(b)的机械系统有相同的数学模型。

1C 1f 1(a)电网络(b)机械系统图2-1解:对于电网络系统有:电路中的总电流:dtu u d C R u u i o i o i )(11-+-=对o u :)()()(1211121222o i o i o i o i to u u C C R t u u C dt u u d C R R u u R idt C i R u -+-+-+-=+=⎰综上得:dtdu C R u R tC C C R R dt du C R u R t C C C R R i i o o 1211211212112112)()1(+++=++++对机械系统:并联部分受力:dtx x d f x x k F )()(211211-+-= 对串联部分的位移:)()()()(21212121212121212x x f f t x x f k dt x x d k f x x k k x -+-+-+-=整理得:dtdx k f x f f t f k k k dt dx k f x f f t f k k k 12122121212211212121)()1(+++=++++所以,两系统具有相同的数学模型2-5求图2-2中RC 电路和运算放大器的传递函数c ()/()i U s U s 。

1R1R(a) RC 电路 (b) RC 电路1R(c) RC 电路 (d) 运算放大器图2-2解:21212)()()R sCR R R R s u s u a r c ++=οο1)()()()()()()3122112322121121211231212112++++++++=S R C R C R C S R R C C R R C C SR C R C S R R C C R R C C s u s u b rc οο2121212)()()()R R S CR CR R R CS R s u s u c r c +++=οο21212112)()()()S LCR R R S CR R LR R LS s u s u d r c ++++=οο2-6求图2-3所示系统的传递函数C(s)/D(s)和E(s)/D(s)。

自动控制原理第二章课后习题答案(免费)

自动控制原理第二章课后习题答案(免费)

自动控制原理第二章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换 (1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。

解:211(1)()(1)()0(0.8)(0.1)lim lim limt z z z z f t z E z z z →∞→→-=-==-- 2-3* 已知()(())E z L e t =,试证明下列关系成立:(1)[()][];n z L a e t E a =证明:0()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。

证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。

自动控制原理第二版课后答案第二章精选全文完整版

自动控制原理第二版课后答案第二章精选全文完整版

x kx ,简记为
y kx 。
若非线性函数有两个自变量,如 z f (x, y) ,则在
平衡点处可展成(忽略高次项)
f
f
z xv
|( x0 , y0 )
x y |(x0 , y0 )
y
经过上述线性化后,就把非线性关系变成了线性 关系,从而使问题大大简化。但对于如图(d)所示的 强非线性,只能采用第七章的非线性理论来分析。对于 线性系统,可采用叠加原理来分析系统。
Eb (s) Kbsm (s)
Js2 m(s) Mm fsm(s)
c
(s)
1
i
m
(s)
45
系统各元部件的动态结构图
传递函数是在零初始条件下建立的,因此,它只 是系统的零状态模型,有一定的局限性,但它有现 实意义,而且容易实现。
26
三、典型元器件的传递函数
1. 电位器
1 2
max
E
Θs
U s
K
U
K E
max
27
2. 电位器电桥
1
2
E
K1p1
K1 p 2
U
Θ 1
s
Θ
K1 p
Θ 2
s
U s
28
3.齿轮
传动比 i N2 N1
G2(s)
两个或两个以上的方框,具有同一个输入信号,并 以各方框输出信号的代数和作为输出信号,这种形
式的连接称为并联连接。
41
3. 反馈连接
R(s)

C(s) G(s)
H(s)
一个方框的输出信号输入到另一个方框后,得 到的输出再返回到这个方框的输入端,构成输 入信号的一部分。这种连接形式称为反馈连接。

自动控制原理课后习题答案第二章

自动控制原理课后习题答案第二章

第二章2-3试证明图2-5( a )的电网络与(b)的机械系统有相同的数学模型。

分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找岀两者之间系数的对应关系。

对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列岀系统的方程,最后联立求微分方程。

证明:(a)根据复阻抗概念可得:即取A、B两点进行受力分析,可得:整理可得:经比较可以看岀,电网络( a)和机械系统(b)两者参数的相似关系为2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指岀各方程式的模态。

(1)(2 )2-7由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数U c ( s )/Ur ( s)。

图2-6 控制系统模拟电路解:由图可得联立上式消去中间变量U1和U2,可得:2-8某位置随动系统原理方块图如图2-7所示。

已知电位器最大工作角度,功率放大级放大系数为K3,要求:(1) 分别求岀电位器传递系数K 0、第一级和第二级放大器的比例系数 K 1和K 2;(2) 画岀系统结构图; (3) 简化结构图,求系统传递函数。

图2-7 位置随动系统原理图(2)假设电动机时间常数为 Tm 忽略电枢电感的影响,可得直流电动机的传递函数为 式中Km 为电动机的传递系数,单位为。

又设测速发电机的斜率为,则其传递函数为由此可画岀系统的结构图如下:(3)简化后可得系统的传递函数为2-9若某系统在阶跃输入 r(t)=1(t) 时,零初始条件下的输岀 响应,试求系统的传递函数 和脉冲响应。

分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求岀系统的脉冲响应函数。

解:(1),则系统的传递函数 (2)系统的脉冲响应2-10试简化图2-9中的系统结构图,并求传递函数 C(s)/R(s ) 和C(s)/N(s) 分析:分别假定R(s)=o 和N(s)=O ,画出各自的结构图,然后对系统结构图进行等效变换, 将其化成最简单的形式,从而求解系统的传递函数。

自动控制原理第2章习题解

自动控制原理第2章习题解

习 题 22-1 试证明图2-77(a )所示电气网络与图2 77(b )所示的机械系统具有相同的微分方程。

图2-77习题2—1图证明:首先看题2-1图中(a )()()()s U s U s U C R R -=()()()()s U Cs R s CsU s U R s I R R R R ⎪⎭⎫⎝⎛+=+=11 ()()s I s C R s U C ⎪⎪⎭⎫⎝⎛+=221()()()[]s U s U s C R s C R s U C R C -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=112211 ()()s U s C R s C R s U s C R s C R R C ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+1122112211111 ()()()()()()s U R s C R s C s C R s U R s C R s C s C R R C11122211122211111+⨯+=⎥⎦⎤⎢⎣⎡++⨯+2—2试分别写出图2-78中各有源网络的微分方程。

图2-78 习题2-2图解: (a )()()()t u R t u R dt t du Co r r 211-=+ (b )()()()⎥⎦⎤⎢⎣⎡+-=t u R dt t du C t u R r o 2o 111(c)()()()⎥⎦⎤⎢⎣⎡+-=t u dt t du C R t u R r c c 211 2—3某弹簧的力一位移特性曲线如图2—79所示。

在仅存在小扰动的情况下,当工作点分别为x 0=-1.2,0,2.5时,试求弹簧在工作点附近的弹性系数。

解:由题中强调“仅存在小扰动"可知,这是一道非线性曲线线性化处理的问题。

于是有,在x 0=—1.2,0,2。

5这三个点处对弹簧特性曲线做切线,切线的导数或斜率分别为:1)()()35.5625.2805.175.040402.1==----=-=x dx df2)20020400=--==x dx df 3)65.2155.0320355.2==--==x dx df2- 4图2—80是一个转速控制系统,其中电压u 为输入量,负载转速ω为输出量。

自动控制原理第2章 习题及解析

自动控制原理第2章 习题及解析

第二章 习题解析2-4 当系统处于零初始条件下时,给系统输入单位阶跃响应信号,其输出响应为2()1t t y t e e --=-+试求该系统的传递函数。

参考解答:2111421()()21(2)(1)s s Y s R s s s s s s s s++=-+==++++ 22()42()()32Y s s s G s R s s s ++==++2-5 某可控硅整流器的输出电压d 2cos U KU αΦ=式中,K 为常数;2U Φ为整流变压器副边相电压有效值;α为可控硅的控制角。

设α在0α附近作微小变化,试将d U 与α的关系式线性化。

参考解答:将非线性微分方程d 2cos U KU αΦ=进行线性化,即在平衡点α0 附近将其展为泰勒级数取一次近似,线性化后用变量增量的线性方程ΔU d = C Δα 代替原来的非线性方程,式中常数2020sin sin dd dU C KU U KU d ααααααΦΦ===-→∆=-∆略去增加量符号“Δ”,上式可简写为20sin d U KU ααΦ=- 2-6 试求图2-70所示电路的传递函数()/()y r U s U s 。

参考解答:图 a)可作出该无源电路的动态结构图(图a-1)亦可作成图(图a-2)所示由结构图等效变换可求得传递函数212()11()()11c r U s R Cs bTs U s R R Cs Ts ++==+++式中21212(),1R T R R C b R R =+=<+ ,该网络称为滞后网络。

图 b)由图(b )网络可作出其动态结构图(b-1),简化为(b-2)即可得传递函数:112221122112212()(1)(1)()()1y r U s R C s R C s U s R C R C s R C R C R C s ++=++++该网络称为滞后-超前网络(滞后-超前电路)。

2-7 试求图2-71所示有源电路的传递函数y r ()/()U s U s 。

自动控制原理习题详解(任彦硕版)-第2章

自动控制原理习题详解(任彦硕版)-第2章

第二章题2-1 :题2-1图中a 、b 所示电路为RC 无源网络,图c 和图d 为RC 有源网络试求以u r (t)为输入量,u c (t)为输出量的各电网络的传递函数。

ZZHF R 2 C 2R1-U c (t)c)u r (t)'I —□R b电网络C U2' 2RCn IT -> +d)题2-1图 (a) T(s 宀 U r (s)(b)T(S)庖 U r (S) (c) U r (s) R 1 (d) U r (s) R 1+ sC 2 1 1 R 1 R 2sC 1 sC 2 R 2 R 2C 1C 2s C 1 (R 1 R 2)C 1C 2S C 1 C 2•丄sC 2 1 1 // R , R ,SC 1sC ?R 2R&CGs 2 +(2 +R 2C 2)S + 1一 2R 1R 2C 1C 2s (R 1C 1 R 2C 2 R 1C 2 )s 1R 2C 2S 1 _^L = T(s)斗 R 2 丄 UgsC 2U c (s )二 T(s)-U c (s)』1) U r (s) % RC s 1R 1C 2S Bl自U j(t)至U o(t)信号传输的传递函数a) LC网络b) RLC网络U i(s)=sL1l L1(s)+U c(s)、U c(s) =sL2L2(s)+U°(s) u°(s) 1sGU c=l L1(s) -l L2(s) U j(s) LL2GC2S4 (L1C1 L2C2 LC2)S2 1S C Q U。

NGU i(s)=Rj R1(s)+U c(s厂U c(s) =S LI R2(S)+U°(s) u°(s) R2sCU c=I R1(S)—l R2(s) U i(s) LCR1S2+(RR2C+L)S +R1+& U0 =R21R2(s)题2-3:热敏电阻随温度变化的特性为R=10000eq2T,其中T为温度,R为阻值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-1a 试证明图2-1(a)所示电气网络与图2-1(b)所示的机械系统具有相同的传递函数。

2-2a 试分别写出图2-2中各有源网络的传递函数U c (s)/U r (s)。

解: 图2-2(a )所示的有源网络传递函数U c (s)/U r (s)可以求得为,
2111121212/11*1//1)()(R R cs R R cs
R cs
R R cs R z z s U s U r c +=+=== 图2-2(b )示的有源网络传递函数U c (s)/U r (s)可以求得为,
1
/1*1//1)()(21212212+=+==cs R R R R R cs R cs
R R cs s U s U r c 图2-2(c )所示的有源网络传递函数U c (s)/U r (s)可以求得为,
cs
R cs R R R cs s U s U r c 111211)()(+=+= (a) (c)
(b) 图2-2 (a ) 图2-1
(b )
2-7c 设系统处于静止状态,当输入单位阶跃函数时其输出响应为
2()1t t y t e e --=-+ t>0
试求该系统的传递函数。

解 由题意可知:系统的初始条件为零,r(t)=1(t)于是R(s)= L[1(t )]=1/s 。

对上述响应表达式的两边取拉氏变换,则有
211142()21(2)(1)
s s Y s s s s s s s ++=-+=++++ 令Y (s )=G(s)R(s)=G(s)/s,由上式便可求得系统的传递函数为
2()42()()(2)(1)
Y s s s G s R s s s s ++==++ 讨论 传递函数是线性定常单变量系统常用的输入输出模型,是经典控制理论的重要基础。

求取传递函数的常用方法有下列四种:(1)根据系统的工作原理绘制结构图(或信号流图)来求取。

(2)由系统的微分方程(或微分方程组)通过拉氏变换来导出。

(3)根据系统响应表达式来推导,如本例;(4)由系统的状态空间表达式转换而得。

2-8a 系统的结构图如图2-10所示,试求该系统的输入输出传递函数。

说明 由结构图求系统的传递函数既可通过结构图化简也可以用梅森公式来计算,所得结果(即传递函数)是唯一的,但是结构图等效变换的方案则不是唯一的。

而且等效性只保证总的输入输出关系(即传递函数)不变,而结构图内部则不等效,本题就是对此的一个实例说明。

解 (1) 结构图化简方案1
将G 3环节输出端的引出点前移并合并局部反馈环节,如图2-11(a)所示;然后进行串联和反馈的等效变换,如图2-11(b)和(c)所示;由图2-11 (c)通过并联的等效变换,则可求得系统的传递函数为
图2-10 系统结构图 (简记 G i (s)= G i ,H i (s)=H i ,R(s)=R ,Y(s)=Y) (a) (b)
12342
223
3122
()()1G G G Y s G R s G H G G H G G H =+++- (4)应用梅森公式求解
为了便于观察,先把结构图改画
成信号流图。

改画过程如下:将结构图
2-10上用符号“。

”标出各信号在信号
流图上设置相应的节点,则可将结构图
改画成图2-14所示的信号流图。

由图可知:它有3个单独的回路,其回路增益分别为
122L G H =- 2122L G G H = 3231L G G H =-
没有互不接触的回路,故信号流图的特征式为
123222311221()1L L L G H G G H G G H ∆=-++=++-
从输入到输出的前向通道有2条,它们的增益及相应得余因子式分别为
1123P G G G = 11∆= 24P
G = 2∆=∆ 于是根据梅森公式,则可求得该系统的传递函数为
2
1234122233122
()1()1i i i G G G Y s P G R s G H G G H G G H ==∆=+∆++-∑ 所得结果与结构图化简的结构相同。

讨论 (1)结构图简化虽然方案较多,但所得的结果(即传递函数)是唯一的。

化简的基本思路是:解除交叉,由里往外逐步地化简;相邻的相加点之间或相邻的引出点之间可互换位置,但是相邻的相加点与引出点之间一般不能简单地互换位置,若需要互换则必须保证其输入输出关系的等效性;对于多输入或多输出的复杂线性系统,则应用叠加原理以简化求传递函数的复杂性。

(2)对于复杂的结构图,应用梅森公式可不必进行繁杂的结构图化简工作。

为了便于观察往往先将结构图改画成信号流图。

应用梅森公式解题的关键是要细心观察,把所有的各种类型的回路,通向通道增益及其余因子式,一个不漏且一个也不多的找出来,谨防粗心出错。

2-9a 试化简图2-15所示的系统结构图,求传递函数,并试用梅逊公式求解。

图2-11 系统结构图化简方案1
图2-14 系统信号流图
解:1 将G 4前输出移到G 4后输出消
除交叉,得到多回路结构的等效框
图如图2-16所示: 345341G G G G G =+ 25
2346334423325411G G G G G G H G G H G G H G G G ==+++ 16
123472
3442331232
16411G G G G G G G H G G H G G H G G G H G G G ==++++ 2 由内到外进行反馈连接的等效变换,直到变换为一个等效方框,即得到所求的传递函数。

7123471344233123212341()()()11G G G G G C s G s R s G H G G H G G H G G G H G G G G H ===-+++- 3 试用梅逊公式求解
将系统结构图转换成信号流图
如图2-17所示:
一条前向通路
11234P G G G G = 11∆=
回路有四个:
L 1=344G G H -;L 2=233G G H -;
L 3=1232G G G H -;L 4=12341G G G G H 1232233344123411G G G H G G H G G H G G G G H ∆=+++-
则用梅逊公式可求得系统传递函数
123411123223334412341
()1()1G G G G C s P R s G G G H G G H G G H G G G G H =∆=∆+++-
2-10a 系统的信号流图如图2-18所示,试求C(S)/R(S)
图2-16
图2-17
解: 1211234215i L G G H G G G
G H
G G =----∑
1214212412()()i j L L G G H G H G G G H H =--=∑
11234P G G G G = 11∆=
2145P G G G = 21∆=
36P G = 3421G H ∆=+
12112342151241211i i j L L L GG H GG G G H GG GG G H H ∆=-+=+++++∑∑
1234145642121123421512412
(1)()()1i i P G G G G G G G G G H C s R s G G H G G G G H G G G G G H H ∆+++==∆+++++∑
2-12b 已知系统结构如图2-22所示。

1)求传递函数C(S)/R(S)和C(S)/N(S)。

2)若要消除干扰对输出的影响
(即 C(S)/N(S)=0),问0()G s =?
解: 1)令 N (S )=0,求 1232123
()()K K K C s R s TS S K K K =++ 令R (S )=0,求
()()C s N s 先作等效变换框图,如图2-23所示,
图2-18 图2-22 图2-23
01234301243012123(
)()()1()(1)11G K K K K K G K K K S C s S TS K G K K N s S TS K K K TS S --+==++++ 2)要使()0()C s N s =,则须30124()0K G K K K S -= 求得4012()K S G s K K =。

相关文档
最新文档