青霉素生产工艺过程

合集下载

青霉素生产的一般工艺流程及其注意点

青霉素生产的一般工艺流程及其注意点

青霉素生产的一般工艺流程及其注意点下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。

并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!青霉素是一种重要的抗生素,广泛应用于临床医学领域。

青霉素生产工艺流程

青霉素生产工艺流程

青霉素生产工艺流程
青霉素是一种重要的抗生素,广泛应用于医疗领域。

青霉素的
生产工艺流程是一个复杂的过程,需要经过多个步骤才能最终得到
高纯度的青霉素产品。

下面我们将详细介绍青霉素生产的工艺流程。

首先,青霉素的生产需要选择合适的青霉素产生菌株,如青霉
菌属、放线菌属等。

这些菌株具有较高的青霉素产生能力,是青霉
素生产的重要基础。

通过对这些菌株的筛选和培养,可以得到高产
青霉素的菌株。

接下来,青霉素的生产需要进行发酵过程。

在发酵罐中,将选
好的青霉素产生菌株进行培养,提供适宜的温度、pH值、氧气供应
等条件,促进青霉素的产生。

在发酵过程中,需要对发酵液进行监
测和控制,确保青霉素的产生达到最佳状态。

随后,青霉素的生产需要进行分离和提纯过程。

通过离心、过滤、结晶等操作,将发酵液中的青霉素分离出来。

然后经过溶解、
结晶、洗涤等步骤,得到相对纯度较高的青霉素产品。

最后,青霉素的生产需要进行检测和包装。

对青霉素产品进行
质量检验,确保产品符合相关标准。

然后将青霉素产品进行包装,以确保产品的质量和稳定性。

总的来说,青霉素的生产工艺流程包括菌株选择与培养、发酵过程、分离和提纯过程、检测和包装等多个环节。

每个环节都需要严格控制和操作,才能最终得到高质量的青霉素产品。

青霉素的生产工艺流程不仅涉及生物工程、发酵工程等多个学科领域,也需要工程技术和质量管理的综合运用。

希望通过本文的介绍,能够更加深入了解青霉素生产的工艺流程,为青霉素生产提供一定的参考和指导。

谈青霉素的生产工艺过程

谈青霉素的生产工艺过程

谈青霉素的生产工艺过程标题:青霉素的生产工艺过程与优化青霉素是一种具有重要抗菌消炎作用的抗生素,自1942年发现以来,已经成为医学领域中不可或缺的药物。

然而,青霉素的生产过程较为复杂,需要经过多个步骤和严格的质量控制。

本文将介绍青霉素的生产工艺过程、关键技术的优化以及质量控制等方面的内容。

青霉素的生产工艺过程可以大致分为以下几个步骤:菌种选育、发酵、提炼、精制和质量控制。

通过菌种选育得到适合生产青霉素的菌种,然后将其接种到培养基中进行发酵培养。

在发酵过程中,青霉素的化学结构逐渐形成并释放到培养基中。

接下来,通过提炼和精制工艺,将青霉素从发酵液中分离出来并进行纯化,最终得到高纯度的青霉素。

在青霉素的生产过程中,关键技术的优化对于提高产量和质量至关重要。

其中,发酵条件的控制是关键之一。

合适的温度、湿度、通气量和培养基成分等因素能够促进菌体的生长和青霉素的产生。

提炼和精制工艺的优化也至关重要,这关系到青霉素的收率和质量。

例如,通过选择高效的吸附剂和合适的洗脱条件,可以增加青霉素的吸附量和纯度。

为了保证青霉素的质量,生产过程中需要进行严格的质量控制。

质量控制包括对原材料、半成品和成品进行各项指标的检测和分析。

例如,对于原材料,需要检测其化学成分、微生物污染等情况。

对于发酵液和青霉素成品,需要检测青霉素的含量、纯度、稳定性等指标。

通过严格的质量控制,可以确保青霉素的生产符合相关法规和标准。

青霉素的生产工艺过程是一个复杂而精密的过程,需要经过多个步骤和严格的质量控制。

关键技术的优化对于提高产量和质量至关重要,包括发酵条件的控制和提炼、精制工艺的改进。

严格的质量控制可以确保青霉素的生产符合相关法规和标准,为患者提供安全有效的药物。

随着科技的不断进步和技术创新,相信未来青霉素的生产工艺将会更加优化,为人类健康事业做出更大的贡献。

青霉素是一种具有抗菌消炎作用的抗生素,其生产工艺过程涉及多个复杂的步骤和核心技术。

下面,我们将简要介绍青霉素的生产工艺过程,以帮助大家了解这一药物是如何从实验室走向临床的。

青霉素的生产工艺流程

青霉素的生产工艺流程

青霉素的生产工艺流程
青霉素(Penicillin)是一种广谱抗生素,对多种细菌有抑制作用。

以下是青霉素的生产工艺流程:
1. 青霉菌培养:选择优良的青霉菌菌株,如溶血性青霉菌(Penicillium chrysogenum),并将其接种于培养基中,培养基中包含有机物和无机盐等营养物质。

2. 静态培养:将培养瓶装入培养箱内,控制温度、湿度和通气条件,使细菌在培养基中进行繁殖。

细菌释放出的酸性物质可以抑制其他细菌的生长,因此其他细菌对青霉菌的影响较小。

3. 青霉素提取:培养一定时间后,将发酵液离心分离,然后将得到的混合物加入乙醇中,使其沉淀。

经过过滤和干燥,可以得到带有青霉素的粉末。

4. 绿色液相提取:将青霉素粉末加入溶剂中,形成绿色溶液。

通过溶剂萃取的方式,使青霉素和其他杂质分离。

5. 结晶提纯:通过酸化、碱化等反应,控制溶液的pH值,促使青霉素结晶。

青霉素结晶后,经过过滤和洗涤,可以得到较纯的青霉素晶体。

6. 干燥:将青霉素晶体进行干燥,去除多余的水分。

干燥后的青霉素可以作为药物原料使用。

7. 检测和包装:对青霉素进行质量检测,包括纯度和含量的检
测等。

合格的青霉素产品经过包装,可以用于制备药物。

以上就是青霉素的生产工艺流程的简要介绍。

青霉素的生产过程需要严格的卫生条件和控制,以确保产品的质量和安全性。

青霉素的生产过程也在不断改进和优化,以提高产量和纯度,并减少对环境的负面影响。

青霉素的工艺过程

青霉素的工艺过程

青霉素的工艺过程
青霉素(Penicillin)是一种广谱抗生素,其工艺过程如下:
1. 青霉菌培养:选择适宜的青霉菌菌株,如金黄色葡萄球菌、链球菌等,并将其转入培养基中进行培养。

培养基通常包含适量的碳源、氮源、矿物盐和其他必需营养物质。

2. 发酵:将培养基加入发酵罐中,并控制适当的温度、pH值和氧气供应,以提供最佳的生长环境。

青霉菌在发酵过程中会产生青霉素。

3. 静置培养:在发酵结束后,将发酵液进行离心分离,得到菌体和混合物。

菌体可以用于下一批的青霉素发酵,而混合物则需要经过后续处理。

4. 提取青霉素:混合物通常含有青霉素、其他杂质和溶剂,需要经过提取工艺进行分离。

常用的提取方法包括酸化、溶剂萃取和离子交换等。

通过这些方法可以将青霉素从混合物中纯化并得到高纯度的青霉素溶液。

5. 结晶:通过调节青霉素溶液的温度、浓度和pH值等条件,使其逐渐结晶。

结晶通常采用冷却结晶或浓缩结晶等方法。

6. 干燥:将青霉素结晶体进行过滤和干燥,以去除残留的溶剂和水分,得到纯净的青霉素晶体。

7. 包装和贮存:将干燥的青霉素晶体进行包装,并在适当的环境条件下进行贮存,以保证其质量和稳定性。

需要注意的是,以上是青霉素的一般工艺过程,不同的青霉素类别和生产厂家可能会有一些差异。

同时,生产过程中也要遵循相关的质量管理和安全规定,以确保产品的质量和安全性。

(完整版)青霉素生产工艺过程

(完整版)青霉素生产工艺过程

青霉素生产工艺过程一、青霉素的发酵工艺过程1、工艺流程(1)丝状菌三级发酵工艺流程冷冻管(25℃,孢子培养,7天)——斜面母瓶(25℃,孢子培养,7天)——大米孢子(26℃,种子培养56h,1:1.5vvm)——一级种子培养液(27℃,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26℃,发酵,7天,1:0.95vvm)——发酵液。

(2)球状菌二级发酵工艺流程冷冻管(25℃,孢子培养,6~8天)——亲米(25℃,孢子培养,8~10天)——生产米(28℃,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24℃,发酵,7天,1:0.8vvm)——发酵液。

2、工艺控制(1)影响发酵产率的因素基质浓度:在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制,苯乙酸的生长抑制),而后期基质浓度低限制了菌丝生长和产物合成,为了避免这一现象,在青霉素发酵中通常采用补料分批操作法,即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。

这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动,都将引起严重的阻遏或限制,使生物合成速度减慢或停止。

目前,糖浓度的检测尚难在线进行, 故葡萄糖释放率予以调节。

的流加不是依据糖浓度控制,而是间接根据pH 值、溶氧或C02(2)温度:青霉素发酵的最适温度随所用菌株的不同可能稍有差别,但一般认为应在25℃左右。

温度过高将明显降低发酵产率,同时增加葡萄糖的维持消耗,降低葡萄糖至青霉素的转化率。

对菌丝生长和青霉素合成来说,最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度,以利于青霉素的合成。

(3)pH值:青霉素发酵的最适pH值一般认为在6.5左右,有时也可以略高或略低一些,但应尽量避免pH值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。

青霉素生产工艺流程图

青霉素生产工艺流程图

青霉素生产工艺流程图
青霉素是一种广泛应用于临床治疗的抗菌药物,具有较好的杀菌作用。

下面将为您介绍青霉素的生产工艺流程。

青霉素的生产工艺流程主要包括四个主要步骤:通气培养、发酵、提取和精制。

首先,通气培养是青霉素生产的第一步。

选择合适的产菌菌株,将其接种到适当营养液中进行预培养。

随后,将培养物接种到发酵罐中,并辅以适宜的培养条件,如温度、pH值、氧气含
量等控制。

培养过程中还需不断添加适量的碳源、氮源和无机盐等营养物质,以满足青霉素发酵生长的要求。

其次,青霉素的发酵是整个生产工艺的核心步骤。

在发酵罐中,通过青霉菌的代谢活动,产生青霉素。

这个过程中需不断监测发酵产物的质量,确保高产率和稳定性。

接下来,是青霉素的提取环节。

将发酵液进行离心分离,分离出发酵液中的青霉素。

随后,通过酸碱调节,使青霉素溶出并得到粗提青霉素溶液。

最后,需要对粗提青霉素溶液进行精制步骤,包括过滤、结晶、洗涤和干燥等。

这个过程中需要高温高压进行洗涤和浓缩,以提高精制青霉素的纯度。

以上就是青霉素生产工艺的主要流程,经过这些步骤,最终可以得到高纯度的青霉素产品。

值得一提的是,在整个生产过程中,需要对每个步骤进行严格控制和监测,以确保产品的质量和安全性。

另外,还需要注意相关的环保和安全要求,尽量减少废水、废气和废弃物的产生,确保生产过程的可持续性。

青霉素作为一种重要的抗生素药物,对临床治疗具有重要意义。

通过合理的生产工艺流程,可以确保产品的质量和安全性,满足临床和患者的需求。

青霉素提炼工艺流程

青霉素提炼工艺流程

青霉素提炼工艺流程青霉素是一种广谱的抗生素,被广泛用于医疗领域。

它的提炼工艺流程经过多年的研究和改进,已经取得了很大的进展。

以下是青霉素提炼工艺流程的详细描述。

首先,青霉素的提炼通常从青霉菌的培养开始。

选择适当的青霉菌菌株,能够高效产生青霉素。

将选定的青霉菌菌株接种到培养基中,提供适宜的生长条件,如温度、pH和营养成分等。

通过培养,青霉菌能够生长并产生青霉素。

随后,对培养得到的青霉菌发酵液进行分离和除杂。

通常是通过离心、滤过和微生物膜的方法,将菌体和其他杂质分离开来,得到纯净的青霉菌发酵液。

然后,通过酸化和沉淀,将青霉素从发酵液中提取出来。

发酵液酸化后,青霉素会形成无溶性的盐,沉淀到底部。

然后将沉淀物进行过滤,将沉淀的青霉素与溶剂分离开来。

溶剂中含有水,可以有效地溶解青霉素。

接下来,将青霉素的溶液进行浓缩。

通常使用蒸发和冷冻干燥的方法,将青霉素溶液中的溶剂去除,使其浓缩成固体。

这样可以减少体积,便于储存和运输。

最后,通过结晶和纯化,将青霉素提纯。

青霉素溶液进行结晶,使其形成结晶体。

经过多次结晶和过滤,去除杂质,提高青霉素的纯度。

最后得到的青霉素经过干燥,得到纯净的青霉素产品。

整个青霉素提炼工艺流程中,需注意操作的质量控制。

在培养阶段,需要控制菌株选择和培养条件,以获得高产青霉素的青霉菌。

在分离和除杂阶段,需要控制分离效果,确保得到纯净的青霉菌发酵液。

在提取和浓缩阶段,需要控制提取效率和浓缩效果,以获得高纯度且无溶剂残留的青霉素溶液。

在结晶和纯化阶段,需要控制结晶和过滤效果,以获得高纯度的青霉素产品。

青霉素提炼工艺流程的不断改进和优化,使青霉素的生产效率和纯度得到了显著提高,大大满足了临床需求。

随着科学技术的不断进步,相信青霉素的提炼工艺会进一步完善,为医疗领域的抗生素治疗提供更好的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青霉素生产工艺过程 Document number:PBGCG-0857-BTDO-0089-PTT1998
青霉素生产工艺过程
一、青霉素的发酵工艺过程
1、工艺流程
(1)丝状菌三级发酵工艺流程
冷冻管(25℃,孢子培养,7天)——斜面母瓶(25℃,孢子培养,7天)——大米孢子(26℃,种子培养56h,1:)——一级种子培养液(27℃,种子培养,24h,1:)——二级种子培养液(27~26℃,发酵,7天,1:)——发酵液。

(2)球状菌二级发酵工艺流程
冷冻管(25℃,孢子培养,6~8天)——亲米(25℃,孢子培养,8~10天)——生产米(28℃,孢子培养,56~60h,1:)——种子培养液(26~25-24℃,发酵,7天,1:)——发酵液。

2、工艺控制
(1)影响发酵产率的因素
基质浓度:在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制,苯乙酸的生长抑制),而后期基质浓度低限制了菌丝生长和产物合成,为了避免这一现象,在青霉素发酵中通常采用补料分批操作法,即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。

这里必须特别注意的是葡萄糖的流加,因为即使是超出最适浓度范围较小的波动,都将引起严重的阻遏或限制,使生物合成速度减慢或停止。

目前,糖浓度的检测尚难在线进
行, 故葡萄糖的流加不是依据糖浓度控制,而是间接根据pH 值、溶氧或C02释放率予以调节。

(2)温度:青霉素发酵的最适温度随所用菌株的不同可能稍有差别,但一般认为应在25℃左右。

温度过高将明显降低发酵产率,同时增加葡萄糖的维持消耗,降低葡萄糖至青霉素的转化率。

对菌丝生长和青霉素合成来说,最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度,以利于青霉素的合成。

(3)pH值:青霉素发酵的最适pH值一般认为在左右,有时也可以略高或略低一些,但应尽量避免pH值超过, 因为青霉素在碱性条件下不稳定, 容易加速其水解。

在缓冲能力较弱的培养基中, pH值的变化是葡萄糖流加速度高低的反映。

过高的流加速率造成酸性中间产物的积累使pH值降低;过低的加糖速率不足以中和蛋白质代谢产生的氨或其他生理碱性物质代谢产生的碱性化合物而引起pH值上升。

(4)溶氧:对于好氧的青霉素发酵来说,溶氧浓度是影响发酵过程的一个重要因素。

当溶氧浓度降到30%饱和度以下时, 青霉素产率急剧下降, 低于10%饱和度时, 则造成不可逆的损害。

溶氧浓度过高,说明菌丝生长不良或加糖率过低,造成呼吸强度下降, 同样影响生产能力的发挥。

溶氧浓度是氧传递和氧消耗的一个动态平衡点, 而氧消耗与碳能源消耗成正比, 故溶氧浓度也可作为葡萄糖流加控制的一个参考指标。

(5)菌丝浓度:发酵过程中必须控制菌丝浓度不超过临界菌体浓度, 从而使氧传递速率与氧消耗速率在某一溶氧水平上达到平衡。

青霉素发酵的临界菌体浓
度随菌株的呼吸强度(取决于维持因数的大小, 维持因数越大,呼吸强度越高),发酵通气与搅拌能力及发酵的流变学性质而异。

呼吸强度低的菌株降低发酵中氧的消耗速率,而通气与搅拌能力强的发酵罐及黏度低的发酵液使发酵中的传氧速率上升, 从而提高临界菌体浓度。

(6)菌丝生长速度:用恒化器进行的发酵试验证明,在葡萄糖限制生长的条件下,青霉素比生产速率与产生菌菌丝的比生长速率之间呈一定关系。

当比生长速率低于时,比生产速率与比生长速率成正比, 当比生长速率高于时, 比生产速率与比生长速率无关。

因此,要在发酵过程中达到并维持最大比生产速率, 必须使比生长速率不低。

这一比生长速率称为临界比生长速率。

对于分批补料发酵的生产阶段来说, 维持的临界比生长速率意味着每46h就要使菌丝浓度或发酵液体积加倍, 这在实际工业生产中是很难实现的。

事实上,青霉素工业发酵生产阶段控制的比生长速率要比这一理论临界值低得多, 却仍然能达到很高的比生产速率。

这是由于工业上采用的补料分批发酵过程不断有部分菌丝自溶, 抵消了一部分生长, 故虽然表观比生长速率低, 但真比生长速率却要高一些。

(7)菌丝形态:在长期的菌株改良中,青霉素产生菌在沉没培养中分化为主要呈丝状生长和结球生长两种形态。

前者由于所有菌丝体都能充分和发酵液中的基质及氧接触, 故一般比生产速率较高;后者则由于发酵液黏度显着降低, 使气-液两相间氧的传递速率大大提高, 从而允许更多的菌丝生长 (即临界菌体浓度较高), 发酵罐体积产率甚至高于前者。

在丝状菌发酵中,控制菌丝形态使其保持适当的分支和长度, 并避免结球,是获得高产的关键要素之一。

而在球状菌发酵中, 使菌丝球保持适当大小和松紧,并尽量减少游离菌丝的含量, 也是充分发挥其生产能力的关键素之一。


种形态的控制与糖和氮源的流加状况及速率、搅拌的剪切强度及比生长速率密
切相关。

3、工艺控制要点
(1)种子质量的控制丝状菌的生产种子是由保藏在低温的冷冻安瓿管经甘
油、葡萄糖、蛋白胨斜面移植到小米固体上,25 ℃培养 7 天, 真空干燥并以这种形式保存备用。

生产时它按一定的接种量移种到含有葡萄糖、玉米浆、尿
素为主的种子罐内 ,26 ℃培养 56h 左右, 菌丝浓度达6%-8%, 菌丝形态正常, 按 10%-15%的接种量移人含有花生饼粉、葡萄糖为主的二级种子罐内,27℃培
养 24h, 菌丝体积 10%-12%, 形态正常, 效价在700D/ml左右便可作为发酵种子。

球状菌的生产种子是由冷冻管子孢子经混有O. 5% -1. 0 %玉米浆的三角瓶
培养原始亲米孢子, 然后再移人罗氏瓶培养生产大米抱子 (又称生产米), 亲米和生产米均为25 ℃静置培养, 需经常观察生长发育情况在培养到 3-4 天, 大
米表面长出明显小集落时要振摇均匀, 使菌丝在大米表面能均匀生长, 待10
天左右形成绿色孢子即可收获。

亲米成熟接人生产米后也要经过激烈振荡才可
放置恒温培养, 生产米的孢子量要求每粒米300万只以上。

亲米、生产米子孢
子都需保存在 5 ℃冰箱内。

工艺要求将新鲜的生产米 (指收获后的孢瓶在10天以内使用) 接人含有花生饼粉、玉米胚芽粉、葡萄糖、饴糖为主的种子罐内,28 ℃培养 50-60h当pH 值
由6. 0-6. 5 下降至 . 0, 菌丝呈菊花团状,平均直径在 100- 130μm, 每毫
升的球数为 6万 -8万只, 沉降率在 85% 以上, 即可根据发酵罐球数控制在8000-11000只/ml 范围的要求, 计算移种体积, 然后接入发酵罐, 多余的种子
液弃去。

球状菌以新鲜孢子为佳, 其生产水平优于真空干燥的孢子,能使青霉素发酵单位的罐批差异减少。

(2)培养基成分的控制
a. 碳源产黄青霉菌可利用的碳源有乳糖、蕉糖、葡萄糖等。

目前生产上普遍采用的是淀粉水解糖、糖化液 (DE 值 50% 以上) 进行流加。

b. 氮源氮源常选用玉米浆、精制棉籽饼粉、麸皮,并补加无机氮源(硫酸氨、氨水或尿素)。

c. 前体生物合成含有苄基基团的青霉素 G, 需在发酵液中加人前体。

前体可用苯乙酸、苯乙酰胺, 一次加入量不大于%, 并采用多次加入, 以防止前体对青霉素的毒害。

d. 无机盐加人的无机盐包括硫、磷、钙、镁、钾等, 且用量要适度。

另外, 由于铁离子对青霉菌有毒害作用, 必须严格控制铁离子的浓度, 一般控制在30 μg/ml 。

(3)发酵培养的控制
a. 加糖控制加糖量的控制是根据残糖量及发酵过程中的 pH 值确定 , 最好是根据排气中CO2 量及 O2 量来控制, 一般在残糖降至 % 左右, pH 值上升时开始加糖。

b. 补氮及加前体补氮是指加硫酸铵、氨水或尿素, 使发酵液氨氮控制在 O. 01%%,补前体以使发酵液中残存苯乙酰胺浓度为 %% 。

-
c. pH 值控制对pH 值的要求视不同菌种而异, 一般为 pH 可以补加葡萄
糖来控制。

目前一般采用加酸或加碱控制pH值。

d. 温度控制前期 2 5- 2 6 ℃, 后期 23 ℃, 以减少后期发酵液中青霉素的降解破坏。

e. 溶解氧的控制
一般要求发酵中溶解氧量不低于饱和溶解氧的30% 。

通风比一般为1 : 0.
8L/(L min), 搅拌转速在发酵各阶段应根据需要而调整。

f. 泡沫的控制在发酵过程中产生大量泡沫, 可以用天然油脂, 如豆油、玉米油等或用化学合成消泡剂 " 泡敌 " 来消泡, 应当控制其用量并要少量多次加入, 尤其在发酵前期不宜多用, 否则会影响菌体的呼吸代谢
g. 发酵液质量控制生产上按规定时间从发酵罐中取样 , 用显微镜观察菌丝形态变化来控制发酵。

生产上惯称" 镜检 ",根据" 镜检 "中菌丝形变化和代谢变化的其他指标调节发酵温度, 通过追加糖或补加前体等各种措施来延长发酵时间, 以获得最多青霉素。

当菌丝中空泡扩大、增多及延伸, 并出现个别自溶细胞, 这表示菌丝趋向衰老, 青霉素分泌逐渐停止, 菌丝形态上即将进入自溶期, 在此时期由于茵丝自溶, 游离氨释放, pH 值上升, 导致青霉素产量下降, 使色素、溶解和胶状杂质增多, 并使发酵液变蒙古稠, 增加下一步提纯时过滤的困难。

因此, 生产上根据" 镜检 "判断, 在自溶期即将来临之际, 迅速停止发酵, 立刻放罐, 将发酵液迅速送往提炼工段。

相关文档
最新文档