产黄青霉生产青霉素的流程及原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产黄青霉生产青霉素的流程及原理
青霉素的基本结构是6-氨基青霉酸,青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。
菌种
青霉素生产菌株一般为产黄青霉,根据深层培养中菌丝体的形态,分为球状菌和丝状菌。在发酵过程中,产黄青霉的生长发育可分为六个阶段。
1. 分生孢子的I期;
2. 菌丝繁殖,原生质嗜碱性很强,有类脂肪小颗粒产生为II期;
3. 原生质嗜碱性仍很强,形成脂肪粒,积累贮藏物为III期;
4. 原生质嗜碱性很弱,脂肪粒减少,形成中、小空泡为IV期;
5. 脂肪粒消失,形成大空泡为V期;
6. 细胞内看不到颗粒,并有个别自溶细胞出现为VI期;
工艺流程
1.丝状菌三级发酵工艺流程
冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:1.5vvm)——一级种子培养液(27°C,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26°C,发酵,7天,1:0.95vvm)——发酵液。
2.球状菌二级发酵工艺流程
冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24°C,发酵,7天,1:0.8vvm)——发酵液。
培养基
1. 碳源产黄青霉菌可利用的碳源有乳糖、蕉糖、葡萄糖等。目前生产上普遍采用的是淀粉水解糖、糖化液(DE 值50% 以上) 进行流加。
2. 氮源氮源常选用玉米浆、精制棉籽饼粉、麸皮,并补加无机氮源(硫酸氨、氨水或尿素)。
3. 前体生物合成含有苄基基团的青霉素G, 需在发酵液中加人前体。前体可用苯乙酸、苯乙酰胺, 一次加入量不大于0.1%, 并采用多次加入, 以防止前体对青霉素的毒害。
4. 无机盐加人的无机盐包括硫、磷、钙、镁、钾等, 且用量要适度。另外, 由于铁离子对青霉菌有毒害作用, 必须严格控制铁离子的浓度, 一般控制在30 μg/ml 。
发酵条件的控制
1.基质浓度在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制, 苯乙酸的生长抑制), 而后期基质浓度低限制了菌丝生长和产物合成, 为了避免这一现象, 在青霉素发酵中通常采
用补料分批操作法, 即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。这里必须特别注意的是葡萄糖的流加, 因为即使是超出最适浓度范围较小的波动, 都将引起严重的阻遏或限制, 使生物合成速度减慢或停止。目前, 糖浓度的检测尚难在线进行, 故葡萄糖的流加不是依据糖浓度控制, 而是间接根据pH 值、溶氧或C02 释放率予以调节。
2.温度青霉素发酵的最适温度随所用菌株的不同可能稍有差别, 但一般认为应在25 °C 左右。温度过高将明显降低发酵产率, 同时增加葡萄糖的维持消耗, 降低葡萄糖至青霉素
的转化率。对菌丝生长和青霉素合成来说, 最适温度不是一样的, 一般前者略高于后者, 故有的发酵过程在菌丝生长阶段采用较高的温度,以缩短生长时间, 到达生产阶段后便适当降低温度, 以利于青霉素的合成。
3. pH 值青霉素发酵的最适pH 值一般认为在6. 5 左右, 有时也可以略高或略低一些, 但应尽量避免pH 值超过7.0, 因为青霉素在碱性条件下不稳定, 容易加速其水解。在缓冲能力较弱的培养基中, pH 值的变化是葡萄糖流加速度高低的反映。过高的流加速率造成酸性中间产物的积累使pH 值降低;过低的加糖速率不足以中和蛋白质代谢产生的氨或其他生理碱性物质代谢产生的碱性化合物而引起pH 值上升。
4.溶氧对于好氧的青霉素发酵来说, 溶氧浓度是影响发酵过程的一个重要因素。当溶氧浓度降到30% 饱和度以下时, 青霉素产率急剧下降, 低于10% 饱和度时, 则造成不可逆的损害。溶氧浓度过高, 说明菌丝生长不良或加糖率过低, 造成呼吸强度下降, 同样影响生产能力的发挥。溶氧浓度是氧传递和氧消耗的一个动态平衡点, 而氧消耗与碳能源消耗成正比, 故溶氧浓度也可作为葡萄糖流加控制的一个参考指标。
5.菌丝浓度发酵过程中必须控制菌丝浓度不超过临界菌体浓度, 从而使氧传递速率与氧消耗速率在某一溶氧水平上达到平衡。青霉素发酵的临界菌体浓度随菌株的呼吸强度(取决于维持因数的大小, 维持因数越大,呼吸强度越高) 、发酵通气与搅拌能力及发酵的流变学性质而异。呼吸强度低的菌株降低发酵中氧的消耗速率,而通气与搅拌能力强的发酵罐及黏低的发酵液使发酵中的传氧速率上升, 从而提高临界菌体浓度。
6.菌丝生长速度用恒化器进行的发酵试验证明,在葡萄糖限制生长的条件下,青霉素比生产速率与产生菌菌丝的比生长速率之间呈一定关系。当比生长速率低于0.015h-1时,比生产速率与比生长速率成正比, 当比生长速率高于O. 015h-1时, 比生产速率与比生长速率
无关D 因此, 要在发酵过程中达到并维持最大比生产速率, 必须使比生长速率不低
0.015h-1 。这一比生长速率称为临界比生长速率。对于分批补料发酵的生产阶段来说, 维持0.015h斗的临界比生长速率意味着每46h 就要使菌丝浓度或发酵液体积加倍, 这在实际工业生产中是很难实现的。事实上, 青霉素工业发酵生产阶段控制的比生长速率要比这一理论临界值低得多, 却仍然能达到很高的比生产速率。这是由于工业上采用的补料分批发酵过程不断有部分菌丝自溶, 抵消了一部分生长, 故虽然表观比生长速率低, 但真比生长速率却要高一些。
7.菌丝形态在长期的菌株改良中, 青霉素产生菌在沉没培养中分化为主要呈丝状生长和
结球生长两种形态。前者由于所有菌丝体都能充分和发酵液中的基质及氧接触, 故一般比生产速率较高;后者则由于发酵液黏度显著降低, 使气-液两相间氧的传递速率大大提高, 从而允许更多的菌丝生长(即临界菌体浓度较高), 发酵罐体积产率甚至高于前者。
8.加糖控制加糖量的控制是根据残糖量及发酵过程中的pH 值确定, 最好是根据排气中CO2 量及O2 量来控制, 一般在残糖降至0.6% 左右, pH 值上升时开始加糖。
9. 补氮及加前体补氮是指加硫酸铵、氨水或尿素, 使发酵液氨氮控制在O. 01%-0.05%,补前体以使发酵液中残存苯乙酰胺浓度为0.05%-0.08% 。-
10. pH 值控制对pH 值的要求视不同菌种而异, 一般为pH 6.4-6.8, 可以补加葡萄糖来控制。目前一般采用加酸或加碱控制pH值。
11. 温度控制前期2 5- 2 6 °C, 后期23 °C, 以减少后期发酵液中青霉素的降解破坏。
12. 溶解氧的控制一般要求发酵中溶解氧量不低于饱和溶解氧的30% 。通风比一般为1 : 0. 8L/(L • min), 搅拌转速在发酵各阶段应根据需要而调整。