线性空间的维数 基底
线性空间的基与维数
2,
a
3,
a
T
4)
线性空间 V的任一元素在不同的基下所对的
坐标一般不同,一个元素在一个基下对应的坐标是
唯一的.
例2 所有二阶实矩阵组成的集合V,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性
空间.对于V中的矩阵
E
11
1 0
0 0
,
E
12
0 0
1 , 0
0 0
0 0
E
21
1
0
,
E
22
( x1, x2 , , xn )T
结论
1.数域 P上任意两个n 维线性空间都同
构2..同构的线性空间之间具有反身性、对称性
与传递性.
3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
( 2)
V中任一元素总可由1,2 ,
,
线
n
性
表示,
那末, 1,2 , ,n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为n 维线性空间,记作Vn . 当一个线性空间 V 中存在任意多个线性无关
的向量时,就称 V 是无限维的.
若1 ,2 , ,n为Vn的一个基,则Vn可表示为
一、线性空间的基与维数
已知:在 Rn中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?
基与维数的几种求法
线性空间基和维数的求法方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足:(1)n ααα,2,1 线性无关。
(2)V 中任一向量α总可以由n ααα,,21, 线性表示。
那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。
如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。
例1 设{}0V X AX ==,A 为数域P 上m n ⨯矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。
解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。
例2 数域P 上全体形如0a a b ⎛⎫⎪-⎝⎭的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。
解 易证0100,1001⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭为线性空间0,a V a b p a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭|的一组线性无关的向量组,且对V 中任一元素0a a b ⎛⎫ ⎪-⎝⎭有00100+1001a a b a b ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 按定义0100,1001⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭为V 的一组基,V 的维数为2。
方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。
例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----构成[]n R x 的基。
证明 考察()()1121110n n k k x k x -⋅+-++-=由1n x-的系数为0得0n k =,并代入上式可得2n x -的系数10n k -=依此类推便有110n n k k k -====,故()()11,1,,1n x x ---线性无关又[]nR x 的维数为n ,于是()()11,1,,1n x x ---为[]nR x 的基。
线形空间的维数与基
浅谈线性空间的维数与基摘要本文通过对有限维线性空间中基和维数的讨论,总结出了有限维线性空间的基和维数的求解方法,并且,用不同的方法对线性空间的基和维数的应用进行了探讨.关键词:线性空间;维数;基;同构;子空间THE DISCUSSING TO THE DIMENSIONS ANDBASES OF LINEAR SPACEABSTRACTIn this paper, by discussing dimensions and bases of finite dimensions linear space, we Summarizes the methods to soluting dimensions and bases of finite dimensional linear space. Moreover, the application of the bases and dimensions are discussed in different ways.Keywords: linear space; dimension; base; isomorphism; subspace .目录摘要 (1)关键词: (1)ABSTRACT (2)一、基本概念 (4)二、线性空间的基和维数求解方法 (5)2.1、定义法 (5)2.2、利用相关定理求维数与基 (8)三、线性空间基和维数的应用 (10)3.1、次子空间的应用 (10)3.2、在同构线性空间中的应用 (12)四、有限维线性空间基的扩充 (13)五、参考文献 (15)致谢 (15)一、基本概念定义1.2、U 中向量集H 如果满足下述两个条件,① 向量集H 是线性相关的;② U 中每一个向量可以由H 中有限个向量线性表出;则H 是U 的一个基,只含0向量的基是空集。
定义1.3、U 称为有限维的,如果U 有一个基包含有限多个向量,否则U 称为无限维的,有限维线性空间的一个基所含向量个数称为U 的维数。
线性空间-基和维数
(3)若向量组 1,2, ,r 线性无关,但向量组
1,2, ,r,线性相关,则 可被向量组
1,2, ,r线性表出,且表法是唯一的.
6.3 维数 基 坐标
二、线性空间的维数、基与坐标
1、无限维线性空间
若线性空间 V 中可以找到任意多个线性无关的向量, 则称 V 是无限维线性空间.
k1
k1 k2 k3
k2 2k3
0
0
②
k1 2k2 k3 0
其系数行列式
11 1
1 2 (1)(21)(2)0 1 2
6.3 维数 基 坐标
∴方程组②只有零解: k1k2k30 故 E, A, A2 线性无关. 又由①知,任意均可表成 E, A, A2 的线性组合, 所以V为三维线性空间, E, A, A2 就是V的一组基.
注意:
① n维线性空间 V的基不是唯一的,V中任意 n个 线性无关的向量都是V的一组基.
② 任意两组基向量是等价的.
例3(1)证明:线性空间P[x]n是n 维的,且 1,x,x2,…,xn-1 为 P[x]n 的一组基.
(2)证明:1,x-a,(x-a)2,…,(x-a)n-1 也为P[x]n的一组基.
则数组 a1,a2, ,an,就称为 在基1,2, ,n
下的坐标,记为 (a1,a2, ,an).
6.3 维数 基 坐标
有时也形式地记作 ( 1 , 2 ,
注意:
a1
,
n
)
a
2
a
n
向量 的坐标(a1,a2, ,an)是被向量 和基1,2, ,n
唯一确定的.即向量 在基 1,2, ,n 下的坐标唯一的.
线性空间的基与维数
线性空间的基与维数线性空间是线性代数中的重要概念,它是由一组元素构成的集合,这些元素之间满足线性运算的性质。
在线性空间中,基与维数是两个重要的概念。
一、线性空间的基线性空间的基是指线性空间中的一组线性无关的元素,通过这组元素可以表示整个线性空间中的任意元素。
换言之,线性空间中的每个元素都可以唯一地由基中的元素线性组合而成。
线性空间的基具有以下特性:1. 基中的元素线性无关,即任意一个基中的元素不能被其他基中的元素线性表示。
2. 基中的元素张成整个线性空间,即线性空间中的任意元素都可以由基中的元素线性组合而成。
3. 基中的元素个数是唯一的,即同一个线性空间中的不同基所包含的元素个数是相同的,这个个数称为线性空间的维数。
二、线性空间的维数线性空间的维数是指线性空间中的基所包含的元素的个数,用整数表示。
维数是衡量线性空间大小的一个重要指标。
线性空间的维数具有以下性质:1. 对于一个线性空间,如果存在一个有限的基,则该线性空间的维数是有限的。
2. 对于一个线性空间,如果不存在有限的基,则该线性空间的维数是无限的。
维数是线性空间一个重要的性质,它决定了线性空间的很多性质。
在线性代数中,我们可以通过求解线性方程组的秩来确定线性空间的维数。
三、基与维数的应用基与维数在线性代数的各个分支中有广泛的应用。
以下是一些典型的应用场景:1. 线性变换的表示:线性变换可以由一个矩阵表示,基的选择与线性变换的矩阵表示密切相关。
2. 向量空间的表示:向量空间中的向量可以由线性组合表示,基的选择可以简化向量空间中向量的表示和计算。
3. 子空间的判断:基与维数可以用来判断一个子集是否构成了线性空间的子空间。
4. 线性方程组的解空间:线性方程组的解空间可以由基与维数表示。
总结:线性空间的基与维数是线性代数中的重要概念。
基是线性空间中一组线性无关的元素,可以表示线性空间中的任意元素;维数是基所包含的元素的个数,它决定了线性空间的很多性质。
维数、基与坐标
对任意αV,kK成立.从而
(0) (0) 0 () 0
() ((1)) (1) () () (k11 k22 krr ) (k11) (k22 ) (krr )
k1 (1) k2 (2 ) kr (r )
(2) 若有不全为零的k1,k2,…,kr使
则有
(k11 k2 2 kr r ) 0
由于σ是单射,又只有零元素0才映射到0,
故
k11 k2 2 kr r 0 即若 (1), (2 ),, (r ) 线性相关也必有 α1,α2,…,αr线性相关;
(3) 由于维数就是线性空间中线性无
关元素的最大个数,设V与W同构,则若V 中最大的线性无关元素组为α1,α2,…,αm,那么 σ(α1), σ(α2),…,σ(αr)也是W中线性无关的,且 任何多于m个的元素组必线性相关.这样,W 的维数必等于V的维数;
设 ε1,ε2,…,εn与η1,η2, …,ηn是n维线性空 间V中的两组基.由基的定义,它们必可以 互相线性表出.设 η1,η2, …,ηn由ε1,ε2,…,εn线 性表出的关系式为
1 a111 a12 2 a1n n , 2a211a222 a2n n , n an11 an2 2 ann n .
(1, 2 ,3 , 4 ) (1, x, x 2 , x3 ) A
其中
(1, 2 , 3 , 4 ) (1, x, x 2 , x3 )B
1 1 1 1
A
2 0 2
1 2 0
0 2 0
3 03
1 1 1 1
B
0 0 0
1 0 0
2 1 0
3 13
于是
(1, 2 , 3 , 4 ) (1, 2 ,3 , 4 )A1B
高等代数 第6章线性空间 6.2 基底、坐标与维数
任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵
有
1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
基与维数的几种求法
基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。
(2)v中任一向量α总可以由α1,α2,,αn线性则表示。
那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。
如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。
基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。
解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。
基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。
⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。
⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。
基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。
证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。
方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。
例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。
§3.4线性空间、基、维数和坐标
一、线性空间的定义线性空间是线性代数最基本的概念之一,也是一个抽象的概念,它是向量空间概念的推广。
线性空间是为了解决实际问题而引入的,它是某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题。
定义设F 是数的集合,若其满足(1)F∈1,0 (2)F ,均有∈∀b a ,∈≠÷×−+)0(,,,b b a b a b a b a 则称F 是一个数域。
R ,实数域Q ,有理数域常用数域C ,复数域F},,1, |),,{(1n i a a a i n =∈=},,2,1,,2,1, |]{[n j m i a a ij n m ij ==∈=×;F [x ]F F m ×n F },2,1,0,,1,0 , |){2210 ==∈++++=n n i a x a x a x a a i nn ;Fn F }0)( ,)( ],[F )(|)({≡∈=x f n x f x x f x f 或的次数小于}],[)(|)({上的连续函数是闭区间b a x f x f =F [x ]n C [a ,b ]βαγ+=若对于任一数与任一元素,总有唯一的一个元素与之对应,称为与的数量积,记作∈k V ∈αV ∈δk ααδk =定义设是一个非空集合,F 为数域.如果对于任意两个元素,总有唯一的一个元素与之对应,称为元素与的和,记作V ∈βα,V ∈γαβV F对F ,总有,,,,V k l αβγ∈∈;,,)3(αθααθ=+∈都有对任何中存在在V V ;)1(αββα+=+ ()();)2(γβαγβα++=++ 如果上述的两种运算满足以下八条运算规律,那么就称为数域F 上的线性空间:V 零元素(5) 1αα=()()(6) k l kl αα=()(8)k k k αβαβ+=+()(7) k l k l ααα+=+;),,)(θααααα=−+∈−∈( 4使的都存在对任何V V 负元素说明1.凡满足以上八条规律的加法及数乘运算,称为线性运算;2.线性空间中的向量不一定是有序数组;3.若一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间。
线性空间的基与维数
线性空间的基与维数线性空间是线性代数中的重要概念,它是指具有加法和数乘运算的集合,并满足线性空间的定义和性质。
在线性空间中,基和维数是两个核心概念,它们对于理解线性空间的结构和性质具有重要意义。
一、线性空间的定义和性质线性空间是指满足以下定义和性质的集合:1. 集合中存在加法运算,即对于任意两个元素x和y,存在相应的元素x+y;2. 集合中存在数乘运算,即对于任意元素x和数k,存在相应的元素kx;3. 加法和数乘运算满足封闭性,即对于任意元素x和y,x+y和kx 仍然属于该集合;4. 加法满足结合律和交换律,即对于任意元素x、y和z,(x+y)+z=x+(y+z)和x+y=y+x;5. 加法满足单位元存在性,即存在一个元素0,对于任意元素x,有x+0=x;6. 加法满足逆元存在性,即对于任意元素x,存在相应的元素-y,使得x+(-y)=0;7. 数乘运算满足结合律和分配律,即对于任意元素x和k、l,有k(lx)=(kl)x和(k+l)x=kx+lx;8. 数乘运算满足单位元存在性,即对于任意元素x,有1x=x。
二、在线性空间中,基是指一个线性无关且能生成整个空间的向量组。
即对于线性空间V,存在向量组{v1, v2, ..., vn},满足以下条件:1. 线性无关性:向量组中的任意有限个向量线性无关,即不存在非零标量c1, c2, ..., cn,使得c1v1 + c2v2 + ... + cnvn = 0;2. 生成性:向量组的线性组合能够生成整个线性空间V,即对于任意向量v∈V,存在标量c1, c2, ..., cn,使得v = c1v1 + c2v2 + ... + cnvn。
线性空间的维数是指基中向量的个数,用n表示。
记作dim(V) = n。
三、线性空间的基与维数的性质线性空间的基与维数具有以下性质:1. 基的个数是唯一的:线性空间V的任意两个基所含向量个数相同;2. 维数的唯一性:线性空间V的维数唯一,与基的选择无关;3. 向量组的性质:线性空间V中的任意向量组若线性无关,则含有的向量个数不超过维数;4. 维数与子空间:线性空间V的任意非零子空间的维数小于等于V的维数;5. 维数与线性变换:线性空间V到线性空间W的线性映射T是满射时,有dim(W) ≤ dim(V);当T是一一映射时,有dim(W) ≥ dim(V)。
线性空间的基与维数及线性同构
有
1 E 11 = 0 0 E 21 = 1
0 0 , E 12 = 0 0 0 0 , E 22 = 0 0
1 , 0 0 1
k1 k 2 , k 1 E 11 + k 2 E 12 + k 3 E 21 + k 4 E 22 = k3 k4
1 ( a 0 − a 1 , a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同, 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的. 唯一的.
T
例2 所有二阶实矩阵组成的集合 V,对于矩阵 的加法和数量乘法, 的加法和数量乘法,构成实数域 R上的一个线性 空间. 空间.对于 V 中的矩阵
λα ↔ λ ( x1 , x2 ,⋯, xn )
T
结论 1.数域 P上任意两个n 维线性空间都同 构. 同构的线性空间之间具有反身性、对称性 2.同构的线性空间之间具有反身性、 与传递性. 与传递性. 3.同维数的线性空间必同构. 同维数的线性空间必同构.
同构的意义 在线性空间的抽象讨论中, 在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的, 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质. 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的, 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数. 维线性空间唯一本质的特征就是它的维数.
二、元素在给定基下的坐标
定义2 定义2 设α 1 , α 2 ,⋯ ,α n是线性空间 Vn的一个基 , 对
于任一元素 α ∈ Vn , 总有且仅有一组有序 数 x1 , x 2 ,⋯ , x n , 使
线形空间的维数与基
浅谈线性空间的维数与基摘要本文通过对有限维线性空间中基和维数的讨论,总结出了有限维线性空间的基和维数的求解方法,并且,用不同的方法对线性空间的基和维数的应用进行了探讨.关键词:线性空间;维数;基;同构;子空间THE DISCUSSING TO THE DIMENSIONS ANDBASES OF LINEAR SPACEABSTRACTIn this paper, by discussing dimensions and bases of finite dimensions linear space, we Summarizes the methods to soluting dimensions and bases of finite dimensional linear space. Moreover, the application of the bases and dimensions are discussed in different ways.Keywords: linear space; dimension; base; isomorphism; subspace .目录摘要 (1)关键词: (1)ABSTRACT (2)一、基本概念 (4)二、线性空间的基和维数求解方法 (5)2.1、定义法 (5)2.2、利用相关定理求维数与基 (8)三、线性空间基和维数的应用 (10)3.1、次子空间的应用 (10)3.2、在同构线性空间中的应用 (12)四、有限维线性空间基的扩充 (13)五、参考文献 (15)致谢 (15)一、基本概念定义1.2、U 中向量集H 如果满足下述两个条件,① 向量集H 是线性相关的;② U 中每一个向量可以由H 中有限个向量线性表出;则H 是U 的一个基,只含0向量的基是空集。
定义1.3、U 称为有限维的,如果U 有一个基包含有限多个向量,否则U 称为无限维的,有限维线性空间的一个基所含向量个数称为U 的维数。
线性空间的概念,维数、基与坐标
统计软202件1/4分/22析与应用
线性代数A
4
6.1-6.2 线性空间的概念,维数、基与坐标
(5) 1 ;
(6) ; (7) ; (8) .
那么,V 就称为数域 F上的线性空间(或向量空 间),V 中的元素称为向量(或元).
线性代数A
19
6.1-6.2 线性空间的概念,维数、基与坐标
三、线性空间的子空间
定义2 设 V 是一个线性空间, U 是 V 的一个 非空子集,如果 U 对于 V 中所定义的加法和乘数 运算也构成一个线性空间, 则称 U 是 V 的一个子 空间.
线性空间中的零元构成一子空间, 称为零空间. V 自身是V 的子空间. 我们称这两个子空间为V 的 平凡子空间.
记作
;
统计软202件1/4分/22析与应用
线性代数A
3
6.1-6.2 线性空间的概念,维数、基与坐标
如果上述两种运算满足以下八条运算规律
( 设 , , V;, F ):
(1) ;
(2) ;
(3) 在V中存在零元素 0 ,对任何 V ,都有 0 ;
于是有 定理2 线性空间V 的非空子集U 构成子空间的
充分必要条件是: ⑴ 如果 , U, 则 U;
⑵ 如果 U, k R,则 k U.
[证略]
统计软202件1/4分/22析与应用
线性代数A
22
6.1-6.2 线性空间的概念,维数、基与坐标
例7
证明: N 2
a 0
b
0
a, b R
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?
线性空间维数与基的求法
线性空间维数与基的求法维数与基是线性空间V 的一个基本属性,它的确立对于我们认识线性空间有着很大的作用。
因为确定了维数和基以后n 线性空间V 上任意向量的坐标(即n 元数组)也就相应确定了,在学习了线性空间的同构的知识后会知道,任意n 维线性空间V 都与n P 同构,这样,我们可以通过n P 的性质来研究任意n 线性空间V 的性质。
同时对维数与基概念的把握也是我们后面学习线性空间的同构、线性变换、欧氏空间的基础。
但是,鉴于它是线性空间的一个基本概念,多数教科书对于该部分的处理往往是泛泛而谈,比如文献1250P 例3更是一笔带过,这对学生深入理解相关概念造成了一定的障碍。
虽然它的求法没有统一的方法,但却有着一致的要求,即要符合定义。
本文计划从以下两方面对维数与基的求法做进一步的归纳和总结,同时也是对《高等代数》250P 例3的补充说明,希望对初学者认识线性空间以及后续的学习有一定的帮助。
一、数域P 上的线性空间V ——数域P 的作用和角色凡是涉及数与空间中向量(取自集合V 中的元素)的乘积,即通常所说的数量乘法,其中的数都是取自数域P 。
例如:线性变换、同构定义中的第二条保持数量乘法,判别向量的线性相关性等这些问题都是依赖数域P 的。
同一线性空间V 指定数域的不同,通常对于我们的结果也会造成很大差别。
1.数域P 对线性空间V 的线性变换判别的影响例1:把复数域看作复数域上的线性空间,ξξ=A解:举反例如下,系数k 取自复数域i k =,)())(()(ai b bi a i k +-A =+A =A αai b --=,而ai b bi a i bi a i k +=-=+A =A )())(()(α,显然)()(ααA ≠A k k ,故变换A 不是线性的。
例2:把复数域看作实数域上的线性空间,ξξ=A解:系数k 取自实数域R k ∈,kbi ka kbi ka bi a k k -=+A =+A =A )())(()(α, kbi ka bi a k bi a k k -=-=+A =A )())(()(α,容易验证A 也保持向量的加法,故A 是线性的。
线性空间的维数与基变换矩阵
线性空间的维数与基变换矩阵线性空间是线性代数中的重要概念,它是一个满足一定性质的集合,其中的元素可以进行线性组合并满足线性运算规则。
在线性空间中,维数是一个关键的性质,它反映了该空间的自由度以及其内部的结构。
与维数相关的还有基变换矩阵,它是在不同基底下表示同一个向量时所需要的矩阵。
1. 维数的定义在线性代数中,一个线性空间的维数定义为该空间的一个基底中所含元素的个数。
换句话说,维数表示了线性空间的最大线性无关向量的个数,也可以理解为该空间的坐标系的最少坐标数。
例如,二维平面上的点可以用两个坐标表示,因此该平面的维数为2。
类似地,三维空间的维数为3。
2. 维数的性质(1)维数是唯一确定的:对于一个给定的线性空间,其维数是唯一确定的,不受选取基底的影响。
(2)维数的加法性:如果两个线性空间V和W都是某个线性空间U的子空间,则V和W的维数之和等于U的维数。
换句话说,两个子空间的维数不会重合。
3. 基变换矩阵在线性空间中,我们可以通过改变基底来表示同一个向量。
基变换矩阵是一种描述基底变换关系的工具,它将一个基底下的坐标表示转换为另一个基底下的坐标表示。
具体来说,设有一个线性空间V,它有两个基底B和B',其中B={v1,v2,...,vn},B'={v'1,v'2,...,v'n}。
对于向量v∈V,可以用B和B'下的坐标表示为[x]B和[x]B'。
基变换矩阵P定义为:[x]B'=P[x]B。
4. 基变换矩阵的计算方法(1)基底向量的表示:假设B中的向量可以由B'中的向量线性表示,即vi=∑(j=1 to n)a_ij*v'j,其中a_ij是一个常数。
由此可得到B表示为B'的转置矩阵,记作A=[a_ij]。
(2)基变换矩阵的计算:由于基底之间的关系是线性的,因此可以用增广矩阵的消元法来计算基变换矩阵。
具体操作为,将矩阵[A|I]进行行变换直到左侧变为单位矩阵,右侧部分即为所求的基变换矩阵。
6.2线性空间的基.
, , 为 L 的一组基
1 2 3
当 a = - 1 时, L
1 2
3
例 设
(1,1,1) (2,3,4) (5,7,9)
1 2 3
(1,4,5) (0,1,2)
4 5
S L{ , , }
1 1 2 3
x x ( , ,, ) x
1 2 m 1 2
m
再规定
( , ,, ) ( , ,, )
1 2 m 1 2 m
, i 1,2,, m
i i
( , ,, ) ( , ,, )
11 21 1 2 t 1 2 m m1
b b b b b b
12 1t 22 2t m2 mt
2 线性空间的基、维数与坐标
定义 设 V 是数域 P 上的线性空间,若存在 , ,, V 满足 1° , ,, 线性无关
1 2 n 1 2 n
1 2 3
证明: , , 是 R 的一组基, 并求 (1,1,3) 在 , , 下的坐标
3
1 2 3 1 2 3
解
1 3 2 1 1 1 0 1 2 0 1 3
1 4 7 3 3 3
1 2
1 0 0 1 3 4 0 1 0 3 7 0 0 1 3
j
2j
nj
P
n
j 1,2,, s
, ,, V
1 2 s
线性相(无)关
a a a
1j
线性空间的基与维数
线性空间的基与维数线性空间是线性代数中的重要概念,它在数学和应用领域中都有广泛的应用。
本文将探讨线性空间的基与维数,以及它们在线性代数中的意义和应用。
一、线性空间的概念与性质线性空间是指一个具备了加法运算和数乘运算的集合,且满足以下性质:1. 封闭性:对于任意向量组成的集合S,如果对于任意向量a,b∈S和任意标量c∈F(其中F表示该线性空间定义域内的域),都有a + b和c·a仍然属于S,则称S是该线性空间的一个子空间;2. 零向量:对于线性空间V,存在一个特殊的向量0,使得对于任意向量v∈V,有v + 0 = v;3. 加法逆元:对于线性空间V中的任意向量v,存在一个逆元向量−v,使得v + (−v) = 0;4. 结合律和分配律:对于线性空间V中的任意向量a,b和c,有(a + b) + c = a + (b + c)和c(a + b) = ca + cb。
二、线性空间的基在线性空间V中,如果存在一组向量{v1, v2, ..., vn},满足:1. 这组向量线性无关;2. 任意向量v∈V都可以由这组向量线性表示。
那么,这组向量{v1, v2, ..., vn}被称为线性空间V的一个基。
基是线性空间中最重要的概念之一,它可以用来表示线性空间中的任意向量。
三、线性空间的维数线性空间的维数是指该线性空间的基所包含的向量个数。
记线性空间V的维数为dim(V),则对于线性空间V的任意基,它所包含的向量个数都相同,即dim(V)是唯一确定的。
维数的概念在线性代数中具有重要的意义。
它可以用来衡量线性空间的大小以及其所能表示的向量的种类。
维数为1的线性空间只包含一个向量,而维数为n的线性空间可以表示任意n维向量。
四、线性空间的维数与基的关系线性空间的维数与其基是密切相关的。
根据线性代数的基本定理,任意线性空间中的所有基都包含相同数量的向量,即具有相同的维数。
设线性空间V的维数为n,则任意一个基包含n个线性无关的向量。
线性空间基与维数-精选文档
机动 目录 上页 下页 返回 结束
二、元素在给定基下的坐标
定义2 设 , , , 是线性空间 V 的一个基 ,对 1 2 n n
于任一元素 V ,总有且仅有一组有 n 数 x ,x , ,x ,使 1 2 n
x x x ,
1 1 2 2 n n
维数为 n 的线性空间称为 n 维线性空 , 记作 V . n
当一个线性空间 V中存在任意多个线性无关 的向量时,就称 V是无限维的.
若 , , , 为 V 的一个基 , 则 V 可表 1 2 n n n
V x x x x , x , , x R n 1 1 2 2 n n 1 2 n
有序数组 x , x , , x 称为元素 在 , , , 这 1 2 n 1 2 n
T x , x , , x 基下的坐标 , 并记作 1 2 n.
机动 目录 上页 下页 返回 结束
2 例1 在线性空间 P [ x ] 中 , 1 , x , ,p p p p x 4 1 2 3 4
1 (a0 ,a , a2, a3, a4) a 1 1 2 注意 线性空间 V 的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
机动 目录 上页 下页 返回 结束
例2 所有二阶实矩阵组成的集合 V,对于矩阵 的加法和数量乘法,构成实数域 R 上的一个线性 空间.对于 V中的矩阵
机动 目录 上页 下页 返回 结束
一、线性空间的基与维数
已知:在 R 中,线性无关的向量组最多由 n 个向量组成,而任意 n1 个向量都是线性相关的.
n
问题:线性空间的一个重要特征——在线性空 间 V 中,最多能有多少线性无关的向量?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性空间是n维向量空间的推广, 这样向量 空间中的线性相关、线性无关、最大线性无 关组等概念及有关性质在线性空间中仍然成 立. 根据这些概念推导出的定理在线性空间中 也是成立的.
n维向量空间的最大线性无关组只含有n个 向量. 而实系数多项式全体构成的实线性空间 的最大无关组可为
1, x, x2 ,, xn ,
含有无穷多个元素.
定义 在线性空间V中,如果存在n个线性无
关的向量 1,2 ,,n 使V中任一元素
都可由这n个线性无关的元素线性表出, 则这n个线性无关的元素称为线性空间 V的一组基底(简称基base)
注 在向量组中, 最大线性无关组不唯一, 线性 空间的基也不唯一, 但任意两组不相同的基所 含元素的个数相同.
定义 非零线性空间V的基中所含元素的个数, 称为线性空间的维数, 记为dimV.
例如 全体n阶方阵组成的线性空间Mn n是n2维的.
对只含有零元素的线性空间----零空间, 没有 基, 规定dimV=0.实系数多项式的体构成的实线性空间是无 限维的.
n元齐次线性方程组Ax=0的解空间是n R(A) 维的.