三角形内接正方形(专题)
六年级上册数学素材-【六暑】尖端班讲义第四讲直线型计算综合(一)(无答案) 全国通用
第4讲 直线型计算综合(一)知识点回顾一、等积变形等底等高的两个三角形面积相等,这就是说两个三角形的形状可以不同,但只要底与高分别相等,它们的面积就相等。
第一类:两个三角形有一个公共顶点,而这个公共顶点所对的边在一条直线上且相等。
第二类:两个三角形有一条公共的底边,而这条底边上的高相等,即这条底边所对的顶点在一条与底边平行的直线上。
二、比例模型两个三角形的高相等,面积比等于它们的底边之比 两个三角形的的底相等,面积之比等于它们的高之比三、鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵EDCBAEDCB A四、蝴蝶模型任意四边形中的比例关系(“蝶形定理”或“蝴蝶模型”): ①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径。
通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。
本讲重点1. 等积变形2. 三角形内接正方形3. 鸟头模型4. 蝴蝶模型A BCDO ba S 3S 2S 1S 4热身小练习1.如下图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,三角形ABC的面积是平方厘米。
2.图中两个正方形的边长分别是5cm和3cm,阴影部分的面积是2cm。
3.下图的三角形ABC 中,AD:DC=2:3,AE=EB,则甲乙两个图形面积的比是。
典型例题例1:如图,正方形ABCD的边长为12,P是AB边上任意一点,点M,N,I,H分别是边BC,AD的三等分点,点E,F,G是边CD的四等分点,求图中阴影部分面积。
形内有形引人入胜——例析三角形的内接正方形问题的解法
在 初 中数 学 竞 赛 中 ,经 常 出 现 以 三 角 彤 的 内接 正
’
‘
为 这 i 个 内 接 正 方 形 的面 积 相 等 ,
贝 0 有 = ^ = , 所以 a +h 。 = b+h = c+ h ,
例 1 ( 第 1 1届 江苏 省初 中数 学竞 赛 ) 设 AA B C
证明 ‘ . D E ∥B C ,
‘ . .
I
一
别为
一 ~ ~
△A DE △A BC.
又‘ . ‘A P J _ B C,
‘ . .
长 ,再利用相似三角形对应 高 的 比等于相 似 比列 m关
系式 .
AP 上 DE .
.
一
证明 ( 1 )如 图4,作 AA B C的高 A D,交
…
( ÷ 一 ) = 2 ∞ s ( a - c ) .
高A 尸交 G F于 点 Q , 设 AA B C 的
因为 n ≠c ,所 以 ∞ =2 S=a h ,即 c =h .
这 样 AA B C就 是 以 LA B C 为 直 角 的 三 角 形 ,于 是
B D P E C
面积为 S ,B C边上 的高为 h 。 ,B C
边上 的 内接 正 方形 D E F G 的 边 长
为 。 .
图1
b> n ,这 就 与 a=b 相 矛 盾 ,故 必 有 0=c ,从 而 0= b: C ,即 AA B C为 正 三 角 形 .
例 2 如图 2 ,边 长 为 。的 正
莆 i角 形 、 一元 二 次 方 程 等 知 识 ,通 过 构 造 一 元 二 次 方 ∥ 问题转化 穆 乡 程把几何 为代数 问题 来解 决 ,现 撷取 数 例进
相似三角形内接正方形问题例析
证: P Q : = P D’ Q G . 分析 : ( 1 )根 据 同角的余 角相 等 即可证 得
AA D E =/ - - - B , 然后根 据有 两个 角对应 相等的 三
图 5
角 形 相 似 即 可证 得 ; ( 2 ) 设正方形 D E F G 的边 长 是 , 根 据 AC D G一 △ B, 相 似 三 角 形 对 应 边
一
图 3
图 4
由三 角形 面积 公 式得 :
、
求 边 长
-  ̄ - - A B × A c ÷B C X A M ,
‘ . ‘
例 1 已知正方形 D E F G 内接 于 △A B C 中, 且 E、 F 在B C上 , 点 D、 G分别在 A B . AC上.
B=4, A C=3, BC=5 . AM =2 . 4,
・
.
‘
四边形 D EF G是 正 方形 ,
.
DG =G F = E F - = DE= MN : , DG/ / BC,
AADG∽ AABC, DG AN
,
・
. .
.
‘
旦 : 5 2 . 4
6U
’
5 加=1 , S △ 肋E =3, S△ m产 1 ,
。
‘
.
・ . .
a , A N = b ,根据 三 角形的 面积公 式求 出 B E = 3 b ,
0 6 = 1 , 船 ‘ n 3 , } ‘ 。 = 1 ,
BE=3 b, CF= -b,
‘
C F = b , a b = 2 ,推 出 6 = ① ,根 据 S
j /
;
对“三角形的内接正方形作法”的再研究
对“三角形的内接正方形作法”的再研究作者:杜斌来源:《中学数学杂志(初中版)》2013年第06期近日拜读《中学数学杂志》(初中)2013年第8期王宁老师的文章“三角形内接多边形的作法探讨”一文(下称文[1]),有许多启发.同时笔者继续对三角形的内接正方形问题进行了深入研究,发现文[1]中的结论3(对于任意三角形,一般情况下可以作出3个内接正方形)还需要完善.现撰文商榷如下,请同行赐教.1什么样的三角形可以作出3个内接正方形?文[1]认为,对于任意三角形,一般情况下可以作出3个内接正方形.事实上三角形的内接正方形的个数取决于三角形的形状.(1)当三角形是直角三角形时,可以作出2个符合条件的内接正方形.如图1,在△ABC中,∠BAC为直角,在AB边上适当的位置取点D,作DE⊥BC于E,再以DE为边在三角形内部作正方形DEFG,此时点F在BC上,连接BG并延长交AC于点H,作IH∥BC交AB于点I,作IJ∥DE交BC于点J,再作HK∥IJ交BC于点K,这样得到的四边形HIJK即为满足条件的第一个内接正方形.理由如下:通过作图和四边形DEFG是正方形易证明四边形HIJK是矩形.因为△DBG∽△IBH,所以DG1HI=BG1BH.同样地,由△BGF∽△BHK得GF1HK=BG1BH.所以GF1HK=DG1HI,又因为DG=GF,所以HI=HK,因此四边形HIJK是正方形.图1图2如图2,我们也可以作出两条边在直角边上的第二个内接正方形.所以对于直角三角形,存在2个大小不同的内接正方形.(2)当三角形是钝角三角形时,只能作出一个三角形的内接正方形.如图3,类似上述作法,我们可以作出一个一条边落在钝角三角形最大边上的内接正方形.如图4,当正方形的一条边落在AC上时,按以上作法过AB上一点画AC的垂线时,垂足将落在线段CA延长线上,此时得到的正方形不是三角形的内接正方形.因此,钝角三角形中只存在1个内接正方形.图3图4(3)如图5-7,当三角形是不等边锐角三角形时,分别让正方形的一边落在不同的边上,利用位似放大的方法我们可以作出3个大小不同的内接正方形.图5图6图7通过以上的分析,笔者认为,应将文[1]的结论修正为:在钝角三角形中存在1个内接正方形,在直角三角形中存在2个内接正方形,在不等边锐角三角形中存在3个大小不同的内接正方形.2不等边锐角三角形的3个内接正方形中哪一个最大?从以上分析可知,不等边锐角三角形存在3个内接正方形,而且这3个正方形的大小不同,那么这3个正方形中哪一个是面积最大的正方形呢?图8如图8,已知△ABC,不妨假设a同理,分别落在a,b边上的内接正方形的边长是la=2S1a+2S1a,lb=2S1b+2S1b.下面比较la,lb,lc的大小.lb-la=2S1b+2S1b-2S1a+2S1a=2S·(a-b)+(2S1a-2S1b)1(b+2S1b)(a+2S1a)=2S1(b+2S1b)(a+2S1a)(a-b)(1-2S1ab).因为S=112absin∠ACB,所以2S1ab=sin∠ACB,而00.又因为a通过计算我们发现,这3个内接正方形中,有一条边落在原三角形最短边a上的这个正方形边长最大,因此面积最大.3三角形的内接正方形还有其他作法吗?文[1]介绍了“以退为进”作三角形的内接正方形:先构造一个满足局部条件的小正方形,然后利用位似放大后得到.笔者在深入研究这个问题后发现:既然放大可以构造正方形,那么是否缩小也可以类似构造正方形呢?研究发现确实可以先构造一个满足局部条件的较大正方形然后再利用位似进行缩小构造内接正方形.以锐角三角形为例说明如下:如图9,要作一个有一边在AC边上的内接正方形,以AC为边长作正方形ADEC,然后从AC边的对角顶点B作BF∥AD交AC边于点F,连结DF交边AB于点G,过点G作GH∥AC交BC于点H,最后分别过点G、H作AD的平行线交边AC于点J、I,则得到的正方形GHIJ即为所求内接正方形.图9图10理由如下:通过作图和四边形ADEC是正方形易证明四边形GHIJ是矩形,又因为△FGJ∽△FDA,所以GJ1AD=FG1FD.同理,由△BGH∽△BCA,得GH1AC=BG1AB.因为△BGF∽△AGD,所以BG1AB=FG1FD,等量代换可得GJ1AD=GH1AC.又因为AD=AC,所以GJ=GH,所以可得四边形GHIJ是正方形.事实上,这种通过位似缩小来构造的方法,与前面放大构造的区别在于位似中心不再是原三角形的顶点,而是以过顶点作平行线与对边相交的点为位似中心.类似地,如图10,我们也可以利用位似缩小的方法构造长、宽符合一定比例要求的三角形的内接矩形.参考文献[1]王宁.三角形内接多边形的作法探讨[J].中学数学杂志,2013(8):37-38.作者简介杜斌,男,1979年生,浙江宁波人,中学一级教师,有多篇文章在省、市级获奖.。
专题43 根据正方形的性质与判定求面积(原卷版)
专题43 根据正方形的性质与判定求面积一、单选题1.如图,三个边长均为4的正方形重叠在一起,1O ,2O 是其中两个正方形的对角线交点,则阴影部分面积是( )A .2B .4C .6D .82.如图,在Rt△ABC 中,△B=90°,AB=BC ,AC=.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上).则此正方形的面积为( )A .25.B ..C .5.D .10.3.图中有三个正方形,若阴影部分面积为4个平方单位,则最大正方形的面积是( )平方单位.A .48B .12C .24D .364.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )cm 2△A .6B .8C .16D .不能确定5.如图,四边形ABCD 中,AB =BC ,△ABC =△CDA =90°,BE△AD 于点E ,且四边形ABCD 的面积为36,则BE 的长是( )A .4B .5C .6D .96.如图,等边ABC ∆与正方形DEFG 重叠,其中D ,E 两点分别在AB ,BC 上,且BD BE =,若6AB =,2DE =,则EFC ∆的面积为( )A .1BC .2D .7.如图,正方形ABCD 和□AEFC ,点B 在EF 边上,若正方形ABCD 和□AEFC 的面积分别是S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法确定8.如图,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A ′B ′C ′,若两个三角形重叠部分的面积为0.5cm 2,则它移动的距离AA ′等于( )A .12cmB cmC .14cm 或34cmD cm 9.如图,正方形ABCD 内有两点E 、F 满足AE=FC= 4,EF =6,AE△EF ,CF△EF ,则正方形ABCD 的面积为 ( )A .24B .25C .48D .5010.正方形ABCD 的边长为1,其面积记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2,…按此规律继续下去,则S 2019的值为( )A .201912⎛⎫ ⎪⎝⎭B .201812⎛⎫ ⎪⎝⎭C .20192⎛ ⎝⎭D .20182⎛⎫ ⎪ ⎪⎝⎭11.如图,等边ABC ∆与正方形DEFG 重叠,其中D 、E 两点分别在AB 、BC 上,且BD BE =.若6AB =,2DE =,则EFC ∆的面积为( )A .1B .2C .D .412.如图,在正方形ABCD 中,E 是对角线BD 上一点,且满足BE =AD ,连接CE 并延长交AD 于点F ,连接AE ,过点B 作BG AE ⊥于点G ,延长BG 交AD 于点H .在下列结论中:△AH DF =;△45AEF ∠=︒;△DEF AGH EFHG S S S =+四边形 . 其中不正确...的结论有( )A .0个B .1个C .2个D .3个13.如图,点E 在正方形ABCD 的边AD 上,已知AE△7△CE△13,则阴影部分的面积是( )A .114B .124C .134D .14414.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,则正方形ABCD 被纸板覆盖部分的面积为( )A .13 a 2B .14 a 2C .12 a 2D .14a 15.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .23a 2B .14a 2C .59a 2D .49a 2 16.如图,正方形ABCD 的对角线交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,而且这两个正方形的边长相等.无论正方形A 1B 1C 1O 绕点O 怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )A .12B .13C .14D .1517.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形BAHI ,正方形BCFG 与正方形CADE .延长BG ,FG 分别交AD ,DE 于点K ,J ,连结DH ,IJ .图中两块阴影部分面积分别记为1S ,2S ,若12:1:4S S =,四边形18BAHE S =,则四边形MBNJ 的面积为( )A .5B .6C .8D .918.如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A B C D '''',图中阴影部分的面积为( )A .12a 2B .3a 2C .(1﹣4)a 2D .(1﹣3)a 2 19.已知:如图,正方形ABCD 中,AB =2,AC ,BD 相交于点O ,E ,F 分别为边BC ,CD 上的动点(点E ,F 不与线段BC ,CD 的端点重合)且BE=CF ,连接OE ,OF ,EF .在点E ,F 运动的过程中,有下列四个结论:△△OEF 是等腰直角三角形;△△OEF 面积的最小值是12;△至少存在一个△ECF ,使得△ECF 的周长是2△四边形OECF 的面积是1.所有正确结论的序号是( )A .△△△B .△△C .△△△D .△△△△20.如图,点E 是正方形ABCD 外一点,连接AE 、BE 和DE ,过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB =3.下列结论:△△APD△△AEB ;△EB△ED ;△点B 到直线AE ;△S 正方形ABCD= )A .1B .2C .3D .421.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG ∆的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .223aB .214aC .25a 9 D .249a 22.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,依此下去,第n 个正方形的面积为( )A .△n ﹣1B .2n ﹣1C .nD .2n23.ABCD 是边长为1的正方形,BPC 是等边三角形,则BPD 的面积为( )A .14BC.1 8D.1 8第II卷(非选择题)请点击修改第II卷的文字说明二、填空题24.如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.25.如图,在四边形ABCD中,△BAD=△BCD=90°,AB=AD,AC=5,四边形ABCD的面积是__________.26.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是______.27.在直角三角形ABC中,△ACB=90°,AC=12,BC=16,点M在三角形ABC边上,到点M到三角形另外两边的距离相等,求MC的长______28.如图,正方形EFGH的顶点均在正方形ABCD的边上,若正方形EFGH的面积比正方形ABCD的面积小32,则AF×BF=______.29.两个边长为10cm的正方形按如图所示的方式重叠在一起,点O是其中一个正方形的中心,则重叠部分的面积为_____cm2.30.如图,正方形ABCD的边长为a,对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为_____(用含a的代数式表示)31.如图,正方形ABCD的周长为20cm,顺次连结正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的面积等于________.32.在矩形ABCD 内放置正方形甲、正方形乙、等腰直角三角形丙,它们的摆放位置如图所示,已知:5:9AB BC =,图中阴影部分的面积之和为31,则矩形ABCD 的周长为___________.33.正方形ABCD 中,点E 在边CD 上,点P 在线段AE 上,且到A 、B 、D 、、6,则四边形BCDP 的面积为_____.34.如图,点A 在线段BG 上,正方形ABCD 和正方形DEFG 的面积分别为3和7,则△CDE 的面积为_________.35.如图,在正方形ABCD 中,6AB =,点E ,F 分别在CD ,AD 上,CE DF =,BE ,CF 相交于点G .若图中阴影部分的面积与正方形ABCD 的面积之比为2△3,则(1)四边形DFGE 的面积为______________;(2)BCG ∆的周长为_____________.36.如图,已知四边形ABCD 是正方形,直线l 经过点D ,分别过点A 和点C 作AE △l 和CF △l ,垂足分别为E 和F ,若DE =1,则图中阴影部分的面积为_____.37.如图,四边形纸片ABCD 中,90A C ︒∠=∠=,BC DC =.若8cm AB AD +=,则该纸片的面积为________ 2cm .三、解答题38.如图,点E 在正方形ABCD 内,AE=3,BE=4,AE ⊥BE ,请求出阴影部分的面积S.39.作图题:如图是每一个小方格都是边长为1的正方形网格,(1)利用网格线作图:找一格点P ,使点P 到AB 和AC 的距离相等,并且PB PC =.(2)求四边形ABPC 的面积.40.如图,四边形ABCD 是正方形,//BE DF ,分别交对角线AC 于点E ,F ,连接ED ,BF △(1)求证:四边形BEDF 是菱形:(2)若2AE =,6CE =,求菱形BEDF 的周长和面积△41.如图,已知正方形ABCD 的边长为2,两条对角线相交于点O ,以O 为顶点作正方形OEFG ,将正方形OEFG 绕点O 旋转.(1)旋转过程中,正方形OEFG 与正方形ABCD 重叠部分的面积为________(2)连接BG ,EC ,延长EC 交BG 于点H ,判断EC 与BG 的位置关系,并说明理由;(3)连接DE ,当以B 、D 、E 、C 为顶点的四边形是平行四边形时,求点D 到OE 的距离42.如图,两个正方形,ABCD OEFG 的边长都是a ,其中O 是正方形ABCD 的中心,](1)请你说出图2到图3是经过怎样的变化形成的?(2)求出图4中四边形OPCQ 的面积.43.如图,用两个边长为.(1)大正方形的边长长度是___________;(2)若沿次大正方形边的方向剪出一个长方形,使长方形的边与大正方形的边重合或平行,能否使剪出的长方形的长宽之比3:2,且面积400cm 2?说明理由.44.如图,以正方形的中心O 为顶点作一个直角,直角的两边分别交正方形的两边BC 、DC 于E 、F 点,问:(1)△BOE 与△COF 有什么关系?证明你的结论(提示:正方形的对角线把正方形分成全等的四个等腰直角三角形,即正方形的对角线垂直相等且相互平分);(2)若正方形的边长为2,四边形EOFC 的面积为多少?45.如图,在等腰直角三角形ABC 中, 90,4ACB AC BC ∠=︒==,D 是AB 的中点,E ,F 分别是AC ,BC△上的点(点E 不与端点A ,C 重合),且AE CF =连接EF 并取EF 的中点O ,连接DO 并延长至点G ,使GO OD =,连接DE ,DF ,GE ,GF(1)求证:四边形EDFG 是正方形;(2)直接写出当点E 在什么位置时,四边形EDFG 的面积最小?最小值是多少?46.阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为x =a 的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,需要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为两个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解,各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想﹣转化,即把未知转化为已知来求解.用“转化“的数学思想,我们还可以解一些新的方程.例如,解一元三次方程x 3+x 2﹣2x =0,通过因式分解把它转化为x (x 2+x ﹣2)=0,通过解方程x =0和x 2+x﹣2=0,可得原方程x3+x2﹣2x=0的解.再例如,x,通过两边同时平方把它转化为2x+3=x2,解得:x1=3,x2=﹣1.因为2x+3≥0,且x≥0,所以x=﹣1不是原方程的根,x=3是原方程的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=.(2x﹣1的解;(3)应用:在一个边长为1的正方形中构造一个如图所示的正方形;在正方形ABCD边上依次截取AE=BF=CG=DH=1n,连接AG,BH,CE,DF,得到正方形MNPQ,若小正方形MNPQ(图中阴影部分)的,求n的值.47.已知:正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA上,且AE=BF=CG=DH.(1)四边形EFGH是正方形吗?为什么?(2)若正方形ABCD的边长为4cm,且BE=CF=DG=AH=1cm,请求出四边形EFGH的面积.48.如图,在正方形ABCD中,点P是AD边上的一个动点,连接PB,过点B作一条射线与边DC的延长线交于点Q,使得△QBE=△PBC,其中E是边AB延长线上的点,连接PQ.(1)求证:△PBQ是等腰直角三角形;(2)若PQ2=PB2+PD2+1,求△PAB的面积.49.已知矩形ABCD 中,E 是AD 边上的一个动点,点F ,G ,H 分别是BC ,BE ,CE 的中点. (1)求证:△BGF△△FHC ;(2)设AD=a ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.50.正方形ABCD 与正方形CEFG 的位置如图所示,点G 在线段CD 或CD 的延长线上,分别连接BD 、BF 、FD ,得到BFD△(1)在图1、图2、图3中,若正方形CEFG 的边长分别为1、3、4,且正方形ABCD 的边长均为3,请通过计算填写下表:BFD 的面积(2)若正方形CEFG 的边长为a ,正方形ABCD 的边长为b ,猜想BPD S 的大小,并结合图3证明你的猜想.51.如图所示,在正方形上连接等腰直角三角形和正方形,无限重复同一过程,第一个正方形的边长为1,第一个正方形与第一个等腰直角三角形的面积和为S1,第二个正方形与第二个等腰直角三角形的面积和为S2,…,第n个正方形与第n个等腰直角三角形的面积和为S n.(1)计算S1、S2、S3、S4.(2)总结出S n与S n-1的关系,并猜想出S1+S2+S3+S4+…+S n与n的关系.52.已知正方形ABCD的边长为4,E是CD上一个动点,以点E为直角顶点,在正方形外侧等腰直角三角形CEF,连结BF、BD、FD.(1)BD与CF的位置关系是__________.CE=(即点E与点D重合)时,BDF的面积为_________.(2)△如图1,当4CE=(即点E为CD的中点)时,BDF的面积为________.△如图2,当2CE=时,BDF的面积为_______.△如图3,当3(3)如图4,根据上述计算的结果,当E是CD上任意一点时,请提出你对BDF面积与正方形ABCD的面积之间关系的猜想,并证明你的猜想.53.如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A1B1C1O的一个顶点,如果这两个正方形全等,正方形A1B1C1O绕点O旋转.(1)求两个正方形重叠部分的面积;(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.。
三角形内接正方形的一个关系式及其应用
三角形内接正方形的一个关系式及其应用-权威资料本文档格式为WORD,若不是word文档,则说明不是原文档。
最新最全的学术论文期刊文献年终总结年终报告工作总结个人总结述职报告实习报告单位总结如果正方形的四个顶点都在三角形的边上,那么这个正方形称为此三角形的内接正方形.关于三角形的内接正方形问题,有一个应用广泛的关系式:若三角形的一边长为a,这边上的高为h,则立在这边上的内接正方形的边长为aha+h.证明如图1,设△ABC的内接正方形边长为x,BC=a,AD=h,则因为OR∥BC,所以△AOR∽△ABC,所以ORBC=AFAD,即xa=h-xh,所以x=aha+h.这一关系式即为北师大版义务教育课程标准实验教科书《数学》八年级下册第147页的例题.利用这个关系式,可以解答三角形的内接正方形的有关问题,现以部分竞赛题为例说明如下.例1 (1991年全国初中数学联赛试题)如图1,正方形OPQR内接于△ABC,已知△AOR、△BOP和△CRQ的面积分别是S1=1、S2=3和S3=1,那么,正方形OPQR的边长是()A.2B.3C.2D.3解作AD⊥BC于D,交OR于F,设正方形OPQR的边长为x,则1=S1=12x·AF,从而有AF=2x,同理可得BP=6x,QC=2x,于是BC=x+8x,AD=x+2x.所以由上述关系式得x=(x+8x)(x+2x)x+8x+x+2x,化简整理得x4=16,因为x为正,所以x=2,故选C.点评本题通过设内接正方形的边长为x,先利用三角形的面积公式,求得AF、BP、QC用x表示的分式,再运用三角形内接正方形的关系式列出一个分式方程,最后求得x,由于运用代数方法解决了几何问题,因而数形结合,问题也由繁变简了.例2 (第五届美国数学邀请赛试题)如图2,△ABC (∠C=Rt∠)的两个内接正方形DFCE、PQMN的面积分别是S1=441、S2=440,求AC+BC的值.解令BC=a,AC=b,AB=C,斜边上的高为h,则由上述关系式得S1=aba+b,S2=chc+h.注意到ab=ch,a2+b2=c2,即有S1=c2h2c2+2ch,而有c2+2ch=c2h2S1,于是S2=c2h2c2+2ch+h2=c2h2c2h2S1+h2=c2S1c2+S1,由此解得c2=S1S2S1-S2.再注意到ad=S1(a+b),即有c2=a2+b2=(a+b)2-2ab=(a+b)2-2S1(a+b),从而有c2+S1=(a+b-S1)2,于是S1S2S1-S2+S1=(a+b-S1)2,由此可解得ab=S1+S1S1-S2.将S1=441,S2=440代入上式即得a+b=462,即AC+BC的值为462.点评本题比较复杂,如用常规方法求解,将很困难.然而两次运用了三角形内接正方形的关系式,结合三角形面积化简轻松求得结果.本题又是一道代数与几何融为一体的综合题,解题关键是通过数形结合方法直观解题,因而有明显的选拔功能和考查功能.例3 (1986年美国第四届数学邀请赛试题)证明边长为2的正方形必不能被三边分别为3、4、5的三角形所覆盖.证明令△ABC的边AC=3,BC=4,AB=5,则∠ACB=Rt∠,如图3可知,正方形DECF为内接于Rt△ABC的最大正方形,设CE=x,由上述关系式得x=3×43+4=127.因为127<2,所以边长为2的正方形必不能被三边分别为3、4、5的三角形所覆盖.点评本题设计比较新颖,难度不太大,只要运用三角形内接正方形的关系式求得正方形边长127,再通过与已知正方形边长2比较就可以了.例4 如图4,在锐角△ABC中内接一正方形PQMN,试证明这正方形的面积不超过三角形ABC面积之半,(1978年广东省中学生数学竞赛题).证明设△ABC的底边BC=a,高AD=h,正方形边长为x,由三角形的内接正方形的关系式得xa+xh=1. ①又SPQMN=x2,即xa·xh=SPQMNah②所以由①、②知xa、xh是方程z2-z+SPQMNah=0的两个实数根.所以Δ≥0,即(-1)2-4×1×SQPMNah≥0.从而得SPQMN≤ah4=12.12ah=12S△ABC,即SPQMN≤12S△ABC.点评本题是一道几何与韦达定理,一元二次方程根的判别式构成的综合题.解题关键是先利用三角形内接正方形的关系式求得x=aha+h推出xa+xh=1①,再由SPQMN=x2推出xa·xh=SPQMNah②,然后利用韦达定理的逆定理,利用①、②构造出一元二次方程z2-z+SPQMNah=0,最后应用根的判别式Δ≥0得证,这种解题主法充分体现了构造法解题的科学性,符合新课程的理念要求,利于激发学生的学习数学的积极性,利于培养学生的创新和探索精神.例5 如图5,正方形EFGH内接于△ABC,设BC=ab(这是一个两位数),EF=C,三角形的高AD=d,已知a,b,c,d 恰好是从小到大的四个连续正整数,试求△ABC的面积,(1997年安徽省部分地区初中数学竞赛题)解由上述关系式得 1d+ 1 ab=1c,依题意有b=a+1,c=a+2,d=a+3,则ab=10a+b=11a+1,所以1a+3+111a+1=1a+2.化简得(a-3)2=4,所以a-3=±2,a1=1,a2=5.当a=1时,S△ABC=12·ab·d=12×12×4=24;当a=5时,S△ABC=12·ab·d=12×56×8=224.点评本题是一道几何与代数相结合的综合题,解题关键是先利用关系式写出1d+1ab=1c再结合b=a+1,c=a+2,d=a+3,通过化简变形求得a的值,最后求得S△A BC.这是一道创新的竞赛题,由于数形结合,因而符合新课程改革的理念要求.综上所述可知,应用本文中的关系式解竞赛问题,其关键在于要从问题的实际出发,根据题设去灵活运用,通过教学实践,笔者认为,注意对学生进行课本内容的探究应用的研究,有利于培养学生的思维品质,有利于调动学生学习的积极性,有利于提高学生的专题总结水平,有利于融会贯通所学过的几何代数知识,有利于培养学生研究数学的兴趣,有利于提高教与学的质量.阅读相关文档:140例口腔颌面部恶性肿瘤临床病理分析国内职教动态信息若干则厄贝沙坦氢氯噻嗪治疗原发性高血压疗效观察颅脑外伤术后应激性溃疡护理研究结合Illustrator教学实例探讨直接教学模式中职项目Access数据库的有效教学实践藏药涂抹药的应用前景研究白内障术前术后护理体会《数控系统数据备份与恢复》单元教学设计案例研究 50例脑梗塞并肺部感染致气道阻塞病人的护理体会电视节目低俗化的深层反思截瘫患者临床护理体会 1例骨盆肿瘤切除及人工骨盆重建术的护理体会浅谈胃切除患者手术后早期经口饮食的护理对32例妊娠高血压患者的综合护理分析护理干预配合临床中西医*本文若侵犯了您的权益,请留言。
几个常见几何图形内接正方形的作图方法及其应用
几个常见几何图形内接正方形的作图方法及其应用本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!几何是中学数学课程里的传统主要内容之一,不仅仅是因为它对培养人的逻辑思维能力、推理论证能力具有重要教育价值,更是在现代科技中也有重要的地位,因此学习几何和几何教育受到了全世界的广泛关注,然而几何的教育在我国的中学生身上总存在很多困难,畏惧几何。
由于数学向来有着枯燥乏味的坏名声,它的高度抽象和概括性,严谨的逻辑思维让一部分人在小学就开始觉得它晦涩难懂,在中学的几何更是严格的逻辑要求使学生觉得学习几何太难太抽象了。
现在的学生缺乏学习的主动钻研和创新精神,动手能力差,都习惯与一步一步的跟着老师的套路学习,不会画图、不会看图,同时书上的图形没有进行研究和利用,反而成了学习的障碍,不善于与周围的实际生活联想,解决问题的意识淡薄,还停留在只会做现成题的水平,思维和眼界狭隘。
本为主要通过对一些中学里常见的几何图形的内接正方形的作图方法及其应用的整理和研究,从而使之成为几何学习有趣的一个例子,在学习几何不仅仅是书本上的东西,每个有兴趣的同学可以通过自己的看法和想法去研究相关的东西,这与我们想要的创新有着密切的联系,达到激发更多的人喜爱和研究几何这门学科,希望给读者以启发。
1几何学的起源及其发展几何是数学的一门分科,在古代埃及为兴建尼罗河水利工程,曾经进行过测地工作,使它逐渐发展成为几何学。
公元前约三百年,,古希腊数学家欧几里德把前人生产实践中长期积累的几何学的研究加以整理总结为演绎体系,写成了《几何原本》。
我国对几何学的研究也有悠久的历史。
早在上古时期,我国劳动人民就已利用规矩来制作方圆。
秦汉五百年成书的《周髀算经》和《九章算术》中,对图形面积的计算已有记载,刘徽、祖冲之、王孝通等对几何学都有重大贡献。
十七世纪欧洲工业迅速发展起来,以前所用的几何方法不能满足实际需要,这就使笛卡尔利用代数方法研究几何问题,建立了解析几何。
九年级巧解三角形内接正方形
巧解三角形内接正方形北师版八年级下册第147页的例题:如图,AD 是△ABC 的高,点P 、Q 在BC 边上, 点R 在AC 边上,点S 在AB 边上,BC =60cm ,AD=40 cm ,四边形PQRS 是正方形。
(1)△ASR 与△ABC 相似吗?为什么? (2)求正方形PQRS 的边长。
思考与探究:由正方形PQRS 可知SR ∥BC ,于是△ASR ∽△ABC ,依此有SR AS BC AB =①; 同理△BPS ∽△BDA ,又得SP SB AD AB=②. 由①+②,得SR SP 1BC AD+=(*). 又SR=SP ,则(*)式变为111BC AD SR +=. 至此,例题中的两个小题可轻松方便地解答完毕。
不仅如此,我们还顺便得到了两个优美漂亮的结论,它们的应用较为广泛,特别是在解答某些较难的问题时作用更大,常化难为易化繁为简,收到出奇制胜的效果,以部分中考与竞赛试题为例说明如下:例1(广东佛山中考题)如果正方形的一边落在三角形的一边上,其余两个顶点分别在三角形的另外两边上,则这样的正方形叫做三角形的内接正方形。
(1)如图1,在△ABC 中,BC=a ,BC 边上的高AD=h a ,EFGH 是△ABC 的内接正方形,设正方形EFGH 的边长是x ,求证:a aah x a h =+;(2)在Rt △ABC 中,AB=4,AC=3,∠BAC=90º,请在图2、图3中分别画出可能的内接正方形,并根据计算回答哪个内接正方形的面积大。
解析:(1)依本文结论,有111a a a a h x a h ah +=+=,a a ah x a h ∴=+。
(2)可能的内接正方形分别如图2、图3中的EFGH 、EGAH.在图2中作AD ⊥BC 于点D ,易知BC=5.据三角形的面积公式,有AD 5214321⨯⨯=⨯⨯,∴512AD =. 对图2、图3分别运用本文结论,得603712551AD 1BC 1HG 1=+=+=,60351273141AC 1AB 1HE 1==+=+=. ∴HG 1>HE1,HG <HE . ∴在直角三角形中,内接正方形的一边落在直角边上时,正方形的面积最大。
三角形内接正方形
三角形内接正方形一、概念三角形的内接正方形是指正方形四个顶点都在三角形边上的正方形,正方形有4个顶点,而三角形只有3条边,所以,正方形一定有两个顶点在同一条边上,即正方形一定有一条边落在三角形的边上.二、个数分情况讨论:1.在锐角三角形中:(1)如果三角形为等边三角形,则它的内接正方形只有一个.(正方形的边无论落在哪一条边上,根据对称性可知,都是在同一位置).(2)如果三角形为等腰三角形(底与腰不等),则它的内接正方形有2个.一个是正方形的边落在等腰三角形底边上;另一种是正方形的边落在腰上(无论哪个腰,位置是相同的);(3)如果三角形为不等边三角形(三边两两不等),则它的内接正方形有3个.2.在直角三角形中:内接正方形有2个:一个是正方形的边落在斜边上;另一个是正方形的边落在直角边上.3.在钝角三角形中:内接正方形只有1个:即正方形一条边落在斜边上.三、画法1.计算法通过计算,求出三角形内接正方形的边长a,然后在某一边上作三角形的高h,在h上截取一段长度为a 的线段,记下截点,通过截点作这边上的平行线,交另两边于两点,最后通过这两点作h的平行线即可. 2.尺规法利用位似图形的原理,选择一个位似中心和再作出一个正方形便可作出三角形内接最大正方形.方法一:先作个小正方形,再利用位似作出所求的内接正方形。
方法二:1)以△ABC的一边BC为一边,向下作正方形BCYX; 2)连接AX.BY与BC交于E,F.3)分别过E,F作ED,FG分别交AB,AC于D,G. 4)连结DG四边形EFGD便是所求图形由此便探索出了三角形内接最大正方形的一种尺规作法,我们是选顶点A作为位似中心,那么点B,点C可不可以做位似中心呢?答案是肯定的。
一共是四种做法。
四、教材衔接1.如图,四边形EFGH是△ABC内接正方形,BC=27cm,高AD=21cm,求内接正方形EFGH的面积.解:设正方形EFGH的边长为x,设AD与GH的交点为I,∵HG∥BC,∴△AHG∽△ABC,∴AI:AD=GH:BC,正方形EFGH的边长为xcm.∵BC=27,AD=21,∴(21-x):21=x:27,即可求解.点评:本题主要考查正方形的面积、相似三角形的判定与性质,关键在于通过求证△AHG∽△ABC,推出正方形的边长.2. 如图,Rt△ABC(∠C=90°)中有三个内接正方形,DF=9厘米,GK=6厘米,猜想第三个正方形的边长PQ 的长.解:GF=EF-EG=9-6=3,设PQ=x,∵GK∥PQ,∴∠FKG=∠KQP.又∵∠FGK=∠KPQ=90°,∴△FGK∽△KPQ.∴ FGKP=GKPQ.∴ 36-x=6x.解得x=4.答:第三个正方形的边长为4厘米.点评:本题利用了平行线的性质,相似三角形的判定和性质求解.3. 如图所示,四边形EFGH是三角形ABC的内接矩形,AD⊥BC,垂足为D,BC=21cm,AD=14cm,EF:FG=1:2,求矩形EFGH的面积.解:如图,设矩形的边长EF=x,则FG=2x,∵四边形EFGH是三角形ABC的内接矩形,∴EH∥BC,EH=FG,∴△AEH∽△ABC,又∵AD⊥BC,则ID=x,AI=AD-ID,∴ EHBC= AIAD,BC=21cm,AD=14cm,∴ 2x21= 14-x14,解得,x=6cm,即2x=12cm,∴S矩形EFGH=EF×FG=6×12=72cm2.答:矩形EFGH的面积为72cm2.点评:本题主要考查了矩形的性质和相似三角形的判定与性质,知道相似三角形的对应高之比就等于对应边之比,即相识比.五、中考应用(几何综合题,规律型)1.2.把边长为40厘米的正方形ABCD 沿对角线AC 截成两个三角形,在两个三角形内如图所示剪下两个内接正方形M 、N ,则M 、N 的的面积的差是4009平方厘米. 解:正方形M 的面积=20cm ×20cm=400cm 2,设:正方形N 的边长为x ,则存在:x2+ 12×x2+ 12×x2+ 12× 12×x2= 40×402,解得:x2= 32009cm 2,故M 、N 的面积的差为(400- 32009)cm2= 4009cm 2,故答案为 4009cm 2.点评:本题考查了正方形,等腰三角形面积的计算方法,考查了正方形四边相等,各内角均为直角的性质,解本题的关键是正方形N 的面积的计算.3.如图1,在△ABC 中,∠C=90°,AC=4,BC=3,四边形DEFG 为△ABC 的内接正方形,若设正方形的边长为x ,容易算出x 的长为 60/37.探究与计算:(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为 60/49;(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为 60/61;(3)如图4,若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,请你猜想正方形的边长是多少?并对你的猜想进行证明.解:(1) 6049;(2分) (2) 6061;(2分)(3)若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,正方形的边长是 6025+12n . 证明,如图,过点C 作CN ⊥AB ,垂足为N ,交GF 于点M ,设小正方形的边长为x ,∵四边形GDEF 为矩形,∴GF ∥AB ,CM ⊥GF ,易算出CN= 125,∴ CMCN=GFAB ,即 125-x125=nx5, ∴x= 6025+12n .即小正方形的边长是 6025+12n .(4分)点评:主要考查了正方形,矩形的性质和相似三角形的性质.会利用三角形相似中的相似比来得到相关的线段之间的等量关系是解题的关键. 4. (2009•湘西州)如图,等腰直角△ABC 腰长为a ,现分别按图1,图2方式在△ABC 内内接一个正方形ADFE 和正方形PMNQ .设△ABC 的面积为S ,正方形ADFE 的面积为S1,正方形PMNQ 的面积为S2. (1)在图1中,求AD :AB 的值;在图2中,求AP :AB 的值; (2)比较S1+S2与S 的大小.。
专题37 正多边形和圆-中考数学二轮复习之难点突破+热点解题方法
专题37 正多边形和圆一、单选题1.如图所示,ABC 为O 的内接三角形,2,30AB C =∠=︒,则O 的内接正方形的面积( )A .2B .4C .8D .16【答案】C【分析】 先连接BO ,并延长交⊙O 于点D ,再连接AD ,根据同圆中同弧所对的圆周角相等,可得⊙ADB=30°,而BD 是直径,那么易知⊙ADB 是直角三角形,再利用直角三角形中30°的角所对的边等于斜边的一半,那么可求BD ,进而可知半径的长,任意圆内接正方形都是以两条混响垂直的直径作为对角线的四边形,故利用勾股定理可求正方形的边长,从而可求正方形的面积.【详解】解:连接BO ,并延长交⊙O 于点D ,再连接AD ,如图,⊙⊙ACB=30°,⊙⊙BDA=30°,⊙BD 是直径,⊙⊙BAD=90°,在Rt⊙ADB 中,BD=2AB=4,⊙⊙O 的半径是2,⊙⊙O 的内接正方形是以两条互相垂直的直径为对角线的,⊙正方形的边长=⊙S 正方形=8=.【点睛】本题考查了圆周角定理、含有30角的直角三角形的性质,解题的关键是作辅助线,构造直角三角形. 2.如图,在一张正六边形纸片中剪下两个全等的直角三角形(阴影部分),拼成一个四边形,若拼成的四边形的周长为12,则纸片的剩余部分拼成的五边形的面积为( )A .B .C .8D .16【答案】B【分析】 由题可知,求解剩余部分拼成的五边形的面积,需要利用Rt⊙OBC ,求解正六边形面积和两个直角三角形面积;最后正六边形面积减去两倍Rt⊙OBC 的面积即可.【详解】依题意,如图,根据题意得:⊙BOC =30°,设BC =x ,则OB =2x ,OC =, ⊙2(x +2x )=12,解得x =2,⊙OC =⊙ 11222OBC S BC OC ∆=⨯⨯=⨯⨯=⊙ 正六边形的面积=1212OBC S ∆⨯=⨯=⊙ 拼成一个四边形的面积为:2OBC S ∆⨯=⊙纸片的剩余部分拼成的五边形的面积为:=故选:B .本题考查正六边形的性质及面积求法,重点在于利用正六边形分解成12个全等直角三角形的方法. 3.如图,两个正六边形ABCDEF 、EDGHIJ 的顶点A 、B 、H 、I 在同一个圆上,点P 在ABI 上,则tan⊙API 的值是( )A .B .C .2D .1【答案】A【分析】 连接AE ,EI ,AH ,过点J 作JM ⊙EI 于M ,证明90AIH ∠=︒,设HI JI JE a ===,求出AI 即可.【详解】解:如图,连接AE ,EI ,AH ,过点J 作JM ⊙EI 于M .⊙ABCDEF 是正六边形,⊙⊙DEF =⊙F =120°,⊙F A =FE ,⊙⊙FEA =⊙F AE =30°,⊙⊙AED =90°,同法可证,⊙DEI =⊙EIH =90°,⊙⊙AED +⊙DEI =180°,⊙A ,E ,I 共线,设HI JI JE a ===,⊙JM ⊙EI ,⊙EM =MI, ⊙AI =2EI =a ,⊙⊙API =⊙AHI ,⊙tan⊙API =tan⊙AHI =AI HI=a= 故选:A .【点睛】本题考查了正多边形和圆,解直角三角形,圆周角定理等知识,解题关键是正确添加辅助线,构造直角三角形解决问题.4,这个正六边形的面积为( )A .12B.C.D.【答案】B【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【详解】解:如图,连接OA 、OB ;过点O 作OG ⊙AB 于点G .在Rt⊙AOG 中,OG =⊙AOG =30°,⊙OG =OA •cos 30°, ⊙OA 30OG cos ===︒2,⊙这个正六边形的面积=6S ⊙OAB =612⨯⨯2=.故选:B【点睛】此题主要考查正多边形和圆,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.5.已知⊙O的半径是2,一个正方形内接于⊙O,则这个正方形的边长是()A.B.2C D.4【答案】A【分析】利用正方形的性质结合勾股定理可得出正方形的边长.【详解】解:如图所示:⊙⊙O的半径为2,四边形ABCD是正方形,⊙OA=OB=2,⊙AOB=90°,⊙AB==故选:A.【点睛】此题主要考查了正多边形和圆,熟练掌握正方形的性质是解题的关键.6.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A .12B .25C .35D .23【答案】A【分析】算出白色区域的面积与整个图形的面积之比即为所求概率.【详解】解:如图,过点A 作AG BF ⊥于点G⊙ 六边形ABCDEF 为正六边形,⊙BAF=120∠︒,=60FAG ∠︒设正六边形的边长为a,则22aAG FG ==⨯=,BF=2⊙空白部分的面积为:13322ABF a S S ==⨯⨯=△空白正六边形的面积为:226S ==六⊙飞镖落在白色区域的概率为:12S P S ==空白六故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键.7.已知正六边形ABCDEF内接于O,若O的直径为2,则该正六边形的周长是()A.12B.C.6D.【答案】C【分析】如图,连接OA、OB,由正六边形ABCDEF内接于O可得⊙AOB=60°,即可证明⊙AOB是等边三角形,根据O直径可得OA的长,进而可得正六边形的周长.【详解】如图,连接OA、OB,⊙O的直径为2,⊙OA=1,⊙正六边形ABCDEF内接于O,⊙⊙AOB=60°,⊙OA=OB,⊙⊙AOB是等边三角形,⊙AB=OA=1,⊙该正六边形的周长是1×6=6,故选:C.【点睛】本题考查正多边形和圆,正确得出⊙AOB=60°是解题关键.8.若正六边形的半径长为6,则它的边长等于()A.6B.3C.D.【答案】A【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】正六边形的中心角为360660,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于6,则正六边形的边长是6.故选:A.【点睛】此题主要考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题关键.9.如图,AB,AC分别为O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A .8B .10C .12D .14【答案】C【分析】 连接OB ,OC ,OA ,根据圆内接正三角形,正方形可求出AOB ∠,AOC ∠的度数,进而可求BOC ∠的度数,利用360BOC n︒∠=,即可求得答案. 【详解】如图:连接OB ,OC ,OA ,ABE △为圆内接正三角形3601203AOB ︒∴∠==︒ 四边形ACDF 为圆内接正方形 360904AOC ︒∴∠==︒ 1209030BOC AOB AOC ∴∠=∠-∠=︒-︒=︒ 若以BC 为边的圆内接正n 边形,则有36030BOC n ︒∠==︒ 12n ∴=故选:C .【点睛】本题考查了圆内接正多边形中心角的求法,熟练掌握圆内接正多边形的中心角等于360n︒(n 为正多边形的边数)是解题关键.10.如图,圆内接正方形的边长为2,以其各边为直径作半圆,则图中阴影部分的面积为( )A.4B.24π-C.2πD.2π+【答案】A【分析】设正方形的中心为O,连接OA,OB首先求出其长度,再根据阴影部分面积等于四个直径为2的半圆面积之和加上一个边长为2的圆的面积求解即可.【详解】解:设正方形的中心为O,连接OA,OB,由题意可得OA=OB,⊙AOB=90°,AB=2⊙在Rt⊙AOB中,⊙2221=42424 22ABS AB OAππππ⎛⎫⨯⨯+-⨯=+-=⎪⎝⎭阴影故选:A【点睛】本题考查正多边形和圆,勾股定理,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.如图,螺母的外围可以看作是正六边形ABCDEF,己知这个正六边形的半径是2,则它的周长是()A.B.C.12D.24【答案】C【分析】如图,先求解正六边形的中心角AOB ∠,再证明AOB 是等边三角形,从而可得答案.【详解】解:如图,O 为正六边形的中心,,OA OB 为正六边形的半径,1360606AOB ∴∠=⨯︒=︒,2OA OB ==,AOB ∴为等边三角形,2AB ∴=,∴ 正六边形ABCDEF 的周长为62=12.⨯故选:.C【点睛】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键.12.如图,有一个半径为4cm 的圆形纸片,若在该纸片上沿虚线剪一个最大正六边形纸片,则这个正六边形纸片的边心距是( ).AB .2cmC .D .4cm【答案】C【分析】 连接OA 、OB ,根据圆内接正六边形的性质得到⊙AOB 是等边三角形,作OC⊙AB 于C ,求得⊙AOC=30,由OA=4cm ,得到AC=2cm ,根据勾股定理求出=.【详解】如图,连接OA、OB,则⊙AOB是等边三角形,作OC⊙AB于C,⊙⊙AOB是等边三角形,⊙⊙OAB=60︒,⊙⊙AOC=30,⊙OA=4cm,⊙AC=2cm,=,故选:C..【点睛】此题考查圆内接正六边形的性质,等边三角形的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半的性质,熟记圆内接正六边形的性质是解题的关键.13.如图,正六边形ABCDEF内接于O,连接AC,则BAC∠的度数是()A.60︒B.50︒C.40︒D.30【答案】D【分析】连接BO、CO,根据正六边形的性质可求⊙BOC,再根据圆周角的性质可求BAC∠.【详解】解:连接BO、CO,在正六边形ABCDEF中,⊙BOC=3606︒=60°,⊙⊙BAC=12⊙BOC=30°, 故选:D .【点睛】本题考查了正六边形的性质和圆周角的性质,连接半径,求圆心角是解题关键.14.如图,正ABC 内接于半径是1的圆,则阴影部分的面积是( )A .4π-B .4π-C .2π-D .2π- 【答案】A【分析】设该圆的圆心为O ,连接OA 、OB ,延长AO 交BC 于点D ,根据题意可知:O 为ABC 的中心,OA=OB=1,⊙ABC=60°从而求出⊙1,然后根据30°所对的直角边是斜边的一半和勾股定理即可求出OD 和BD ,然后根据垂径定理求出BC ,最后根据S 阴影=S 圆-S ⊙ABC 即可求出结论.【详解】解:设该圆的圆心为O ,连接OA 、OB ,延长AO 交BC 于点D ,⊙正ABC内接于半径是1的圆,⊙O为ABC的中心,OA=OB=1,⊙ABC=60°⊙⊙1=12⊙ABC=30°,AD⊙BC在Rt⊙ODB中,OD=12OB=12,=⊙AD=OA+OD=32,⊙S阴影=S圆-S⊙ABC=21π-12 BC·AD=π-4故选A.【点睛】此题考查的是正多边形与圆、垂径定理、等边三角形的性质和直角三角形的性质,掌握正多边形中心的性质、垂径定理、等边三角形的性质和直角三角形的性质是解题关键.15.公元3世纪,刘徽发现可以用圆内接正多边形的周长近似地表示圆的周长.如图所示,他首先在圆内画一个内接正六边形,再不断地增加正多边形的边数;当边数越多时,正多边形的周长就越接近于圆的周长.刘徽在《九章算术》中写道:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”我们称这种方法为刘徽割圆术,它开启了研究圆周率的新纪元.小牧通过圆内接正n边形,使用刘徽割圆术,得到π的近似值为()A .360sin 2n n ︒⋅B .3602sin n n ︒⋅C .3602sin 2n n ︒⋅D .360sin n n︒⋅ 【答案】A【分析】如详解图,先利用三角函数的知识把正n 边形的边长用含有n 的式子表达出来,求解出正n 边形的周长,再利用正n 边形的周长无限接近圆的周长即可求解.【详解】如图:36012n︒∠= , 360sin 2a b n︒= 360sin 2a b n︒=, 则正n 边形的周长为:36022sin 2L an bn n︒== , 圆的周长为:2L b π=, 由圆的内接正n 边形的周长无限接近圆的周长可得:3602sin22bn b n π︒≈ 整理得:360sin2n nπ︒≈ 故选:A .【点睛】本题考查了极限的思想,抓住圆内接正n 边形的周长无限接近圆的周长是解题关键.16.如图,O 的内接正六边形ABCDEF 的边长为1,则BC 的长为( )A .14πB .13π C .23π D .π【答案】B【分析】如图(见解析),先根据圆内接正六边形的性质求出中心角60BOC ∠=︒,再根据等边三角形的判定与性质可得1OB OC BC ===,然后利用弧长公式即可得.【详解】如图,连接OB 、OC ,由题意得:1BC =,正六边形ABCDEF 是O 的内接正六边形,∴中心角360606BOC ︒∠==︒, 又OB OC =, BOC ∴是等边三角形,1OB OC BC ∴===,则BC 的长为60111803ππ⨯=, 故选:B .【点睛】本题考查了圆内接正六边形的性质、弧长公式等知识点,熟练掌握圆内接正六边形的性质是解题关键.17.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,点M为劣弧FG的中点.若FM=,则⊙O的半径为()A.2B C.D.【答案】C【分析】连接OM,根据正六边形OABCDE和点M为劣弧FG的中点,可得⊙OFM是等边三角形,进而可得⊙O的半径.【详解】解:如图,连接OM,⊙正六边形OABCDE,⊙⊙FOG=120°,⊙点M为劣弧FG的中点,⊙⊙FOM=60°,OM=OF,⊙⊙OFM是等边三角形,⊙OM=OF=FM=则⊙O的半径为.故选:C.【点睛】本题考查正多边形与圆,解题的关键是学会添加常用辅助线.18.如图,正方形ABCD 和正三角形AEF 内接于O ,DC 、BC 交EF 于G 、H ,若正方形ABCD 的边长是4,则GH 的长度为( )A .B .CD 【答案】A【分析】 连接AC 交EF 于M ,连接OF ,根据正方形的性质、等边三角形的性质及等腰三角形的性质即可求解.【详解】解:连接AC 交EF 于M ,连接OF ,四边形ABCD 是正方形,90B ∴∠=︒,AC ∴是O 的直径,ACD ∴∆是等腰直角三角形,AC ∴==OA OC ∴==AEF ∆是等边三角形,AM EF ∴⊥,30OFM ∠=︒,12OM OF ∴==CM ∴=45ACD ∴∠=︒,90CMG ∠=︒,45CGM ∴∠=︒,CGH ∴∆是等腰直角三角形,2GH CM ∴==故选:A .【点睛】本题考查正多边形与圆的关系,涉及到特殊锐角三角函数值、正方形的性质、等边三角形的性质及等腰三角形的性质,解题的关键是综合运用所学知识.19.如图,圆内接正八边形的边长为1,以正八边形的一边AB 作正方形ABCD ,将正方形ABCD 绕点B 顺时针旋转,使AB 与正八边形的另一边BC '重合,则正方形ABCD 与正方形A BC D '''重叠部分的面积为( )A 1B .12CD 【答案】A【分析】 先计算出正八边形的内角⊙ABC′=135°,再利用旋转的性质得⊙ABC=⊙A′BC′=90°,⊙BA′D′=⊙BAD=90°,所以⊙ABA′=135°-90°=45°,则延长BA′过点D ,如图,然后利用正方形ABCD 与正方形A′BC′D′重叠部分的面积=S ⊙BDC -S ⊙DA′E 进行计算.【详解】 正八边形的内角(82)1801358ABC ︒'︒-⨯∠==,正方形ABCD 绕点B 顺时针旋转,使BC 与正八边形的另一边BC '重合,90,90ABC A BC BA D BAD ∴∠=∠''=︒∠''=∠=︒.1359045ABA ∴∠'=︒-︒=︒.如解图,延长BA '至点D ,DC 与A D ''相交于点E ,,,11AB A B AB BD =∴'==='1A D ∴=.⊙正方形ABCD 与正方形A BC D '''重叠部分的面积11111)1)122BDC DA E S S '=-=⨯⨯-⨯⨯= 故选:A .【点睛】本题考查正多边形与圆,把一个圆分成n 等分,依次连接各点所得的多边形是这个圆的内接正多边形,也考查了正方形和正八边形的性质.20.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .BC .2D .【答案】A【分析】 如图,连接OB 、OC .首先证明⊙OBC 是等边三角形,求出BC 、BM ,根据勾股定理即可求出OM .【详解】解:如图,连接OB 、OC .⊙ABCDEF是正六边形,⊙⊙BOC=60°,OB=OC=4,⊙⊙OBC是等边三角形,⊙BC=OB=OC=4,⊙OM⊙BC,⊙BM=CM=2,在Rt⊙OBM中,2222OM OB BM=-=-=,4223故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.21.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.则正方形ABCD与正六边形AEFCGH的周长之比为()A.⊙ 3B C D.【答案】A【分析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出.【详解】解:设此圆的半径为R,R ,它的内接正六边形的边长为R ,内接正方形和内接正六边形的周长比为:R :6R =.故选:A .【点睛】本题考查了正多边形和圆,找出内接正方形与内接正六边形的边长关系,是解决问题的关键.22.如图,正五边形ABCDE 和等边AFG 内接于O ,则GFD ∠的度数是( )A .10︒B .12︒C .15︒D .20︒【答案】B【分析】 如图(见解析),先根据正五边形的内角和定理与性质可得108ABC BCD ∠=∠=︒,BC CD =,再根据三角形的内角和定理、等腰三角形的性质可得36CBD ∠=︒,从而可得72ABD ∠=︒,然后根据圆周角定理可得72AFD ABD ∠=∠=︒,最后根据等边三角形的性质可得60AFG =︒∠,据此即可得出答案.【详解】如图,连接BD ,五边形ABCDE 是正五边形,()521801085ABC BCD -⨯︒∴∠=∠==︒,BC CD =, 1(180)362CBD CDB BCD ∴∠=∠=︒-∠=︒, 72ABD ABC CBD ∴∠=∠-∠=︒,由圆周角定理得:72AFD ABD ∠=∠=︒,又AFG 是等边三角形,60AFG ∴∠=︒,726012GFD AFD AFG ∴∠=∠-∠=︒-︒=︒,故选:B .【点睛】本题考查了正五边形的内角和与性质、等腰三角形和等边三角形的性质、圆周角定理等知识点,通过作辅助线,利用到圆周角定理是解题关键.23.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,得到正六边形i i i i i OA B C D E ,则正六边形(2020)i i i i i OA B C D E i =的顶点i C 的坐标是( )A .(1,B .C .(1,2)-D .(2,1)【答案】A【分析】 如图,以O 为圆心,OC 为半径作,O 得到将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,即把OC 绕点O 顺时针旋转i 个45°,2020C 与4C 重合,利用正六边形的性质与锐角三角函数求解C 的坐标,利用4,C C 关于原点成中心对称,从而可得答案.【详解】解:如图,以O 为圆心,OC 为半径作,O将边长为1的正六边形OABCDE 绕点O 顺时针旋转i 个45°,即把OC 绕点O 顺时针旋转i 个45°,C 旋转后的对应点依次记为12,...C C , 1周角=360,︒OC ∴绕点O 顺时针旋转顺时针旋转8次回到原位置,20208252...4,÷=2020C ∴与4C 重合,4,C C 关于原点成中心对称,连接,CE正六边形OABCDE ,,120.DC DE CDE DEO EOA ∴=∠=∠=∠=︒30,90,60,DEC CEO COE ∴∠=︒∠=︒∠=︒1,OE =tan tan 60CE COE OE∴∠=︒==CE ∴= (,C ∴- 4,C C 关于原点成中心对称,((420201,,1,.C C ∴故选A .【点睛】本题考查的是旋转的旋转,正六边形的性质,圆的对称性,锐角三角函数,掌握以上知识是解题的关键. 24.设边长为a 的等边三角形的高、内切圆的半径、外接圆的半径分别为h 、r 、R ,则下列结论不正确...的是( )A .h R r =+B .2R r =C .4r a =D .3R a = 【答案】C【分析】 将图形标记各点,即可从图中看出长度关系证明A 正确,再由构造的直角三角形和30°特殊角证明B 正确,利用勾股定理求出r 和R,即可判断C 、D .【详解】如图所示,标上各点⊙AO 为R⊙OB 为r ⊙AB 为h,从图象可以得出AB=AO+OB⊙即h R r =+⊙A 正确⊙⊙三角形为等边三角形⊙⊙⊙CAO=30°⊙根据垂径定理可知⊙ACO=90°⊙⊙AO=2OC⊙即R=2r ⊙B 正确⊙在Rt⊙ACO 中,利用勾股定理可得⊙AO 2=AC 2+OC 2⊙即22212R a r ⎛⎫=+ ⎪⎝⎭⊙由B 中关系可得⊙()222122r a r ⎛⎫=+ ⎪⎝⎭,解得6=r a ⊙则3R a =⊙所以C 错误,D 正确;故选:C .【点睛】本题考查圆与正三角形的性质结合,关键在于巧妙利用半径和构建直角三角形.25.如图,在边长为1的正六边形ABCDEF 中,M 是边DE 上一点,则线段AM 的长可以是()A .1.4B .1.6C .1.8D .2.2【答案】C【分析】连接AE,AD,过点F作FH⊙AE于点H,则AM的长介于AE和AD之间,分别求出AE,AD的长,再结合选项即可得到问题答案.【详解】解:连接AE,AD,,过点F作FH⊙AE于点H,⊙多边形ABCDEF是正六边形,⊙⊙AFE=⊙DEF=(6-2) ×180°÷6=120°,⊙⊙FEH=30°,⊙AEM=90°,⊙HF=12AF=12,=,<AM<2,故选:C.【点睛】本题考查了正多边形,以及勾股定理等知识,熟记和正多边形有关的各种性质以及正确的添加出图形的辅助线是解题的关键.26.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A .4πB .4πC .8πD .4π 【答案】A【分析】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果.【详解】解:正六边形的面积为:1462⨯⨯=, 六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=,所以阴影部分的面积为:12164πππ+-=-,故选:A .【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键. 27.如图,AB 是O 的直径,O 的半径为2,AD 为正十边形的一边,且//AD OC ,则劣弧BC 的长为( )A .πB .32πC .43πD .65π 【答案】D【分析】 利用正十边形的中心角求法得⊙AOD=36º,再根据等腰三角形的性质及由平行线的性质求得⊙AOC 的度数,进而求得⊙BOC ,然后用弧长公式求解即可.【详解】⊙AD 为正十边形的一边, ⊙⊙AOD=36010=36º, ⊙OA=OD , ⊙⊙OAD=⊙ODA=180362-=72º, ⊙AD⊙OC ,⊙⊙AOC=⊙OAD=72º,⊙⊙BOC=180º-⊙AOC=180º-72º=108º,⊙劣弧BC 的长为108261805ππ⨯=, 故选D .【点睛】本题考查了正多边形的中心角、圆的定义、等腰三角形的性质、平行线的性质、弧长公式,熟练掌握基本图形的性质,会利用弧长公式求解弧长是解答的关键.二、填空题28.公元263年左右,我国数学家刘徽发现当正多边形的边数无限增加时,这个正多边形面积可无限接近它的外接圆的面积,因此可以用正多边形的面积来近似估计圆的面积,如图,O 是正十二边形的外接圆,设正十二边形的半径OA 的长为1,如果用它的面积来近似估计O 的面积,那么O 的面积约是___.【答案】3【分析】设AB 为正十二边形的边,连接OB ,过A 作AD OB ⊥于D ,由正十二边形的性质得出30AOB ∠=,由直角三角形的性质得出1122AD OA ==,求出AOB 的面积1124OB AD ⨯==,即可得出答案. 【详解】解:设AB 为正十二边形的边,连接OB ,过A 作AD OB ⊥于D ,如图所示:3601130,,1222AOB AD OB AD OA ∠∴==⊥∴==, AOB ∴的面积111112224OB AD =⨯=⨯⨯= ∴正十二边形的面积11234=⨯=, O ∴的面积≈正十二边形的面积3=,故答案为:3.【点睛】本题考查了正多边形和圆、正十二边形的性质、直角三角形的性质以及三角形面积等知识;熟练掌握正十二边形的性质是解题的关键.29.如图,在正五边形ABCDE 中,AC 为对角线,以点A 为圆心,AE 为半径画圆弧交AC 于点F ,连结EF ,则⊙1的度数为__.【答案】54°【分析】根据五边形的内角和公式求出⊙ABC ,根据等腰三角形的性质,三角形内角和的定理计算⊙BAC ,再求⊙EAF ,利用圆的性质得AE=AF ,最后求出⊙1即可.【详解】解:⊙五边形ABCDE 是正五边形,⊙⊙EAB =⊙ABC =()5-21805⨯︒=108°, ⊙BA =BC ,⊙⊙BAC=⊙BCA=180-1082︒︒=36°,⊙⊙EAF=108°﹣36°=72°,⊙以点A为圆心,AE为半径画圆弧交AC于点F,⊙AE=AF,⊙⊙1=180-722︒︒=54°.故答案为:54°.【点睛】本题考查了正多边形的内角与圆,熟练掌握正多边形的内角的计算公式、和圆的性质,等腰三角形的性质是解题的关键.30.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=____;r:b=____;正六边形T1,T2的面积比S1:S2的值是____.【答案】1:1 2 3:4【分析】根据圆内接正六边形的边长等于它的半径可得r与a比值,在由圆的半径和正六边形的半边及正六边形对角线的一半组成的直角三角形中,根据锐角三角函数即可求得r与b的比值;根据相似多边形的面积比是相似比的平方,由r:a与r:b 可求a:b,继而即可求解.【详解】连接OE,OG,OF,⊙EF=a,T1为正六边形,⊙⊙OEF为等边三角形,OE为圆O的半径r,⊙a:r=1:1,即r:a=1:1⊙,由题意可知:OG为⊙FOE的平分线,即⊙EOG=12⊙EOF=30°,在Rt⊙OEG中,OE=r,OG=b,⊙OE OG =r b=cos⊙EOG=cos30°,即r b⊙r :2⊙,⊙由⊙⊙得,a :2,且两个正六边形T 1,T 2相似,⊙S 1:S 2=a 2:b 2=3:4,故答案为:1:12;3:4.【点睛】本题考查正多边形与圆的有关知识,解题的关键是学会构造由正多边形半径,边心距、半边组成的直角三角形,掌握锐角三角函数,注意相似多边形的面积比即是相似比的平方.31.如图,正六边形ABCDEF 的边长为2,以点A 为圆心,AB 的长为半径,作扇形ABF ,则图中阴影部分的面积为_____(结果保留根号和π).【答案】43π 【分析】 设正六边形的中心为点O ,连接OD 、OE ,作OH⊙DE 于H ,根据正多边形的中心角公式求出⊙DOE ,求出OH 和正六边形ABCDEF 的面积,再求出⊙A ,利用扇形面积公式求出扇形ABF 的面积,即可得出结果.【详解】解:设正六边形的中心为点O ,连接OD 、OE ,作OH⊙DE 于H ,如图所示:⊙DOE =3606︒=60°, ⊙OD =OE =DE =2,⊙OH⊙正六边形ABCDEF 的面积=12= ⊙A =()621801206-⨯︒=︒, ⊙扇形ABF 的面积2120243603ππ⨯==,⊙图中阴影部分的面积43π=,故答案为:43π. 【点睛】本题考查的是正多边形和圆、扇形面积计算,掌握正多边形的中心角、内角的计算公式、扇形面积公式是解题的关键.32.如图,等边⊙ABC 内接于⊙O ,BD 为⊙O 内接正十二边形的一边,CD=等于_________.【答案】252542π- 【分析】首先连接OB,OC,OD,由等边⊙ABC内接于⊙O,BD为内接正十二边形的一边,可求得⊙BOC,⊙BOD 的度数,则证得⊙COD是等腰直角三角形,并利用勾股定理求得圆的半径,最后利用S阴影=S扇形OCD-S⊙OCD 进行计算后即可得出答案.【详解】解:连接OB,OC,OD,⊙等边⊙ABC内接于⊙O,BD为内接正十二边形的一边,⊙⊙BOC=13×360°=120°,⊙BOD=112×360°=30°,⊙⊙COD=⊙BOC−⊙BOD=90°,⊙OC=OD,⊙⊙OCD=45°,⊙OC2+ OD2=CD2.即2OC2=50,⊙OC=5,⊙S阴影=S扇形OCD-S⊙OCD=90251252555360242ππ-⨯⨯=-.故答案为:2525 42π-.【点睛】此题考查了正多边形与圆、扇形面积的计算等知识,掌握辅助线的作法以及数形结合思想的应用是解题的关键.三、解答题33.已知:如图,A为⊙O上一点;求作:⊙O的内接正方形ABCD.【答案】见解析【分析】先作直径AC,再过O点作AC的垂线交⊙O于D、B,然后连接AB、AD、CD、CB即可.【详解】解:如图,四边形ABCD为所作.【点睛】本题考查了作图——复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.的余角34.如图,正五边形ABCDE内接于O,P为DE上的一点(点P不与点,D E重合),求CPD的度数.【答案】54°【分析】连接OC,OD.求出⊙COD的度数,再根据圆周角定理即可解决问题.【详解】如图,连接,OC OD.⊙五边形ABCDE是正五边形,⊙360725COD︒∠==︒,⊙1362CPD COD∠=∠=︒,⊙90°-36°=54°,⊙CPD∠的余角的度数为54°.【点睛】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.35.如图1,等边ABC内接于⊙O,连接CO并延长交⊙O于点D.(1)可以证明CD垂直平分AB,写出AD与DB的数量关系:___.(2)请你仅使用无刻度的直尺按要求作图:⊙在图1中作出一个正六边形,保留作图痕迹(作图过程用虚线表示,作图结果用实线表示).⊙请在图2中作出⊙O的内接正六边形ADBECF的一条不经过顶点的对称轴,保留作图痕迹(作图过程用虚线表示,作图结果用实线表示).【答案】(1)AD DB=;(2)⊙见解析,⊙见解析【分析】(1)结合外心的定义和等边三角形的性质推断出CD垂直平分AB,从而利用垂径定理得出结论即可;(2)⊙结合(1)的结论,可直接连接AO,BO,分别延长与圆相交,再顺次连接各交点即可;⊙如图,延长AF,EC,交于一点,此时可构成等边三角形,从而连接交点与圆心的直线即为所求的对称轴.【详解】(1)AD DB=,⊙O为三角形的外心,⊙O为三角形三边中垂线的交点,又⊙三角形为等边三角形,⊙可得CD垂直平分AB,根据垂径定理可得:AD DB=;(2)⊙如图所示,在(1)的基础之上,连接AO,并延长至E,连接BO,并延长至F,顺次连接圆周上各点即可;⊙如图所示:(方法不唯一)【点睛】本题主要考查复杂作图,以及正多边形与圆之间的关系,熟练掌握正多边形的性质是解题关键.36.如图M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON(1)求图1中⊙MON 的度数(2)图2中⊙MON 的度数是 ,图3中⊙MON 的度数是(3)试探究⊙MON 的度数与正n 边形边数n 的关系是____【答案】(1)120︒;(2)90︒,72︒;(3)360MON n︒∠=. 【分析】(1)如图(见解析),先根据圆内接正三角形的性质可得3603120BOC ,再根据圆内接正三角形的性质可得30OBM OCN ∠=∠=︒,然后根据三角形全等的判定定理与性质可得BOM CON ∠=∠,最后根据角的和差、等量代换即可得;(2)如图(见解析),先根据圆内接正方形的性质可得360904BOC ︒∠==︒,再根据(1)同样的方法可得90MON BOC ∠=∠=︒;先根据圆内接正五边形的性质可得中心角360725BOC ︒∠==︒,再根据(1)同样的方法可得72MON BOC ∠=∠=︒;(3)根据(1)、(2)归纳类推出一般规律即可得.【详解】(1)如图,连接OB 、OC ,则OC OB =,ABC 是O 内接正三角形,∴中心角3603120BOC, ⊙点O 是O 内接正三角形ABC 的内心,⊙1130,3022OBM ABC OCN ACB ∠=∠=︒∠=∠=︒, ⊙OBM OCN ∠=∠,在OMB △和ONC 中,BM CN OBM OCN OB OC =⎧⎪∠=∠⎨⎪=⎩,。
三角形内接正方形
课题学习――三角形的内接正方形探索一 三角形内接正方形的定义如果一个正方形的四个顶点都在一个三角形的边上,那么,我们就把这个正方形叫做三角形的内接正方形.如图(1),正方形DEFG 是△ABC 的内接正方形.评注:1.正方形有4个顶点,三角形有3条边,因此,三角形的内接正方形必有2个顶点在同一条 图(1) 边上,另2个顶点分别在另2条边上.2.因为顶点都在边上,所以正方形必在三角形的内部,而图(2)中的正方形,因为顶点F 在BC边的延长线上,所以它不是△ABC 的内接正方形. 探索二 怎样画三角形的内接正方形? 图(2) 如图(3),在△ABC 中,画正方形D′E′F′G′,使点D′在AB 上,点E′、F′在BC 上,连结BG′,并延长交AC 于G ,过G 作GD//G ′D ′、GF// G ′F ′,分别交AB 、BC 于D 、F ,作DE ⊥BC ,垂足为E.则四边形DEFG ,就是△ABC 的内接正方形.(请读者利用相似三角形的知识自行证明)评注:以上画三角形的内接正方形的方法叫做位似作图 法,简称位似法,用位似法亦可画三角形的内接矩形. 图(3) 探索三 一个三角形有几个内接正方形三角形可分类为:锐角三角形、直角三角形、钝角三角形,下面我们据这样的分类研究一个三角形有几个内接三角形。
在锐角三角形中,如图(1),正方形的一边EF 与BC 重合,我们还可以将EF 与AB 或AC 重合,因此,锐角三角形有3个内接正方形.在直角三角形中,如图(4),正方形DEFG 的一边与斜边BC 重合;正方形AMNK 的一边与AB 重合,同时另一边与AC 重合.,即直角三角形有2个内接正方形. 在钝角三角形中,如图(5),只有1个内接正方形.A D GB E FC AD BE CFG A D M G KA D G A D GD ′ G ′E ′F ′ B E F C图(4)图(5)评注:1.分类讨论是解决此类问题常用的思想方法.2.正方形是特殊的矩形,任何一个三角形都有无数个内接矩形.探索四一个直角三角形的两个内接正方形的面积大小有何关系问题1:Rt△ABC中,∠C=90°,AC=BC=1,求它的两个内接正方形的面积.问题2:猜想一个直角三角形的两个内接正方形的面积大小关系,并证明你的结论.由此可知:在直角三角形中,一边与斜边重合的内接正方形的面积小于两边与直角边重合的内接正方形的面积。
人教版初三数学下册三角形内接正方形
解得:x=48
B
G
答:这个正方形的边长为48mm.
A F
K DH C
方法二
解:设正方形的边长为x,依题得
x2x(8 0 x)x(12 x)012 800
2
2
2
解得:x=48mm A
答:这个正方形的边长为48mm.
E
F
K
面积法
B
G
DH C
归纳总结:
1.本题考查相似三角形的应用,在章节复 习中链接了相似三角形的判定和性质知识 点的联系,有助于学生构建知识框架,引 导学生探索数学问题的解题方法。
EF AE BC AB
难点突破
E/F B / C
AEF∽ ABC
EF
AADK-KD
B1C20 A8D0
1E2F0 AD80E F设EF=x
80mm
K
D
方法一
解: 正方形EGHF的边GH在BC上
EF//BC
AEF∽ ABC
EF AK BC AD
设EF=xmm ,则EF=FH=KD=xmm E
x2=____________, 按如此方法继续作正方形,第 x n 个正
方形的边长 =____________.
A
意图:学生在了解原题的解法后,通 过观察、猜想和验证,探索其中的规 律,这是对原题方法的总结和提升, 发展学生推理解题的思维能力。 B
I
N
E
F
J KM
G
DH C
图1
变式二:现把△ABC按照图2加工成三个相同大 小的正方形零件(边长为x),△ABC的边BC与高 AD需要满足一定的数量关系.则这一数量关系是 :_______________.
三角形内接正方形的一个关系式及其应用
三角形内接正方形的一个关系式及其应用作者:肖维松来源:《中学数学杂志(初中版)》2013年第02期如果正方形的四个顶点都在三角形的边上,那么这个正方形称为此三角形的内接正方形.关于三角形的内接正方形问题,有一个应用广泛的关系式:若三角形的一边长为a,这边上的高为h,则立在这边上的内接正方形的边长为aha+h.证明如图1,设△ABC的内接正方形边长为x,BC=a,AD=h,则因为OR∥BC,所以△AOR∽△ABC,所以ORBC=AFAD,即xa=h-xh,所以x=aha+h.这一关系式即为北师大版义务教育课程标准实验教科书《数学》八年级下册第147页的例题.利用这个关系式,可以解答三角形的内接正方形的有关问题,现以部分竞赛题为例说明如下.例1 (1991年全国初中数学联赛试题)如图1,正方形OPQR内接于△ABC,已知△AOR、△BOP和△CRQ的面积分别是S1=1、S2=3和S3=1,那么,正方形OPQR的边长是()A.2B.3C.2D.3解作 AD⊥BC于D,交OR于F,设正方形OPQR的边长为x,则1=S1=12x·AF,从而有AF=2x,同理可得BP=6x,QC=2x,于是BC=x+8x,AD=x+2x.所以由上述关系式得x=(x+8x)(x+2x)x+8x+x+2x,化简整理得x4=16,因为x为正,所以x=2,故选C.点评本题通过设内接正方形的边长为x,先利用三角形的面积公式,求得AF、BP、QC 用x表示的分式,再运用三角形内接正方形的关系式列出一个分式方程,最后求得x,由于运用代数方法解决了几何问题,因而数形结合,问题也由繁变简了.例2 (第五届美国数学邀请赛试题)如图2,△ABC(∠C=Rt∠)的两个内接正方形DFCE、PQMN的面积分别是S1=441、S2=440,求AC+BC的值.解令BC=a,AC=b,AB=C,斜边上的高为h,则由上述关系式得S1=aba+b,S2=chc+h.注意到ab=ch,a2+b2=c2,即有S1=c2h2c2+2ch,而有c2+2ch=c2h2S1,于是S2=c2h2c2+2ch+h2=c2h2c2h2S1+h2=c2S1c2+S1,由此解得c2=S1S2S1-S2.再注意到ad=S1(a+b),即有c2=a2+b2=(a+b)2-2ab=(a+b)2-2S1(a+b),从而有c2+S1=(a+b-S1)2,于是S1S2S1-S2+S1=(a+b-S1)2,由此可解得ab=S1+S1S1-S2.将S1=441,S2=440代入上式即得a+b=462,即AC+BC的值为462.点评本题比较复杂,如用常规方法求解,将很困难.然而两次运用了三角形内接正方形的关系式,结合三角形面积化简轻松求得结果.本题又是一道代数与几何融为一体的综合题,解题关键是通过数形结合方法直观解题,因而有明显的选拔功能和考查功能.例3 (1986年美国第四届数学邀请赛试题)证明边长为2的正方形必不能被三边分别为3、4、5的三角形所覆盖.证明令△ABC的边AC=3,BC=4,AB=5,则∠ACB=Rt∠,如图3可知,正方形DECF 为内接于Rt△ABC的最大正方形,设CE=x,由上述关系式得 x=3×43+4=127.因为127点评本题设计比较新颖,难度不太大,只要运用三角形内接正方形的关系式求得正方形边长127,再通过与已知正方形边长2比较就可以了.例4 如图4,在锐角△ABC中内接一正方形PQMN,试证明这正方形的面积不超过三角形ABC面积之半,(1978年广东省中学生数学竞赛题).证明设△ABC的底边BC=a,高AD=h,正方形边长为x,由三角形的内接正方形的关系式得xa+xh=1. ①又SPQMN=x2,即xa·xh=SPQMNah②所以由①、②知xa、xh是方程z2-z+SPQMNah=0的两个实数根.所以Δ≥0,即(-1)2-4×1×SQPMNah≥0.从而得SPQMN≤ah4=12.12ah=12S△ABC,即SPQMN≤12S△ABC.点评本题是一道几何与韦达定理,一元二次方程根的判别式构成的综合题.解题关键是先利用三角形内接正方形的关系式求得x=aha+h推出xa+xh=1①,再由SPQMN=x2推出xa·xh=SPQMNah②,然后利用韦达定理的逆定理,利用①、②构造出一元二次方程z2-z+SPQMNah=0,最后应用根的判别式Δ≥0得证,这种解题主法充分体现了构造法解题的科学性,符合新课程的理念要求,利于激发学生的学习数学的积极性,利于培养学生的创新和探索精神.例5 如图5,正方形EFGH内接于△ABC,设BC=ab(这是一个两位数),EF=C,三角形的高AD=d,已知a,b,c,d恰好是从小到大的四个连续正整数,试求△ABC的面积,(1997年安徽省部分地区初中数学竞赛题)解由上述关系式得 1d+ 1 ab=1c,依题意有b=a+1,c=a+2,d=a+3,则ab=10a+b=11a+1,所以1a+3+111a+1=1a+2.化简得(a-3)2=4,所以a-3=±2,a1=1,a2=5.当a=1时,S△ABC=12·ab·d=12×12×4=24;当a=5时,S△ABC=12·ab·d=12×56×8=224.点评本题是一道几何与代数相结合的综合题,解题关键是先利用关系式写出1d+1ab=1c 再结合b=a+1,c=a+2,d=a+3,通过化简变形求得a的值,最后求得S△ABC.这是一道创新的竞赛题,由于数形结合,因而符合新课程改革的理念要求.综上所述可知,应用本文中的关系式解竞赛问题,其关键在于要从问题的实际出发,根据题设去灵活运用,通过教学实践,笔者认为,注意对学生进行课本内容的探究应用的研究,有利于培养学生的思维品质,有利于调动学生学习的积极性,有利于提高学生的专题总结水平,有利于融会贯通所学过的几何代数知识,有利于培养学生研究数学的兴趣,有利于提高教与学的质量.。
初中奥数几何面积练习题
初中奥数几何面积练习题(1)(面积。
折叠)正方形ABCD中,M为BC中点,将正方形折起来使A与M重合,折痕EF分在BA、CD上,正方形面积为64,求△AEM面积折叠是经常出现的题,折叠的过程隐含了垂直、对称等信息条件,也需要大家有一些空间想象感。
这道折叠题和面积有关,收进这周精选题。
(2)(面积)在一个等腰直角三角形中画内接正方形有两种画法,作出这两种画法,并比较两个正方形的面积第2、3、4题都是三角形内接正方形,题的条件不同,考验的解题要点也不同,大家将这3道题联系起来做会很有趣味。
(3)(面积)有一直角三角形木板,一直角边长为3m,斜边长为5m,把他们加工成面积的正方形桌面,选哪种方式(4)(面积)如图,任意三角形ABC内接正方形DEHG。
S△ADE=1,S△DGB=3,S△EHC=1。
求正方形面积(5)(面积)如图,正方形ABCD和CEFG的边长分别为m,n,求三角形AEG面积的值这是一道选择题,答案也比较出乎意料,有兴趣的同学可以进一步想想,为什么这个条件会消失。
(6)(面积)P是边长为8的正方形ABCD外一点,PB=PC,△PBD的面积等于48。
求△PBC的面积这是一道竞赛题,难度较大,通常的解法是平行线分线段成比例。
这道题有更为简洁痛快的解法,很考验大家的观察和直觉。
(7)(面积)如图,正方形ABCD边长为8厘米,三角形ABF面积比三角形CEF面积大10平方厘米。
求阴影部分面积(8)(面积)如图,三角形ABC中,EF和AB平行,DE和BC平行,四边形BDEF面积是120平方米。
求三角形AEF(阴影部分)面积又一道“移形换位”的题。
(9)(面积)ABCD是个梯形,已知ABD的面积是12平方厘米,三角形AOD的面积比三角形BOC的面积少12平方厘米,求梯形ABCD面积又一道“查缺补漏”的题,经过前面的习题,这题就很easy了,轻松一下。
(10)(面积)如图,将三角形ABC沿EF折叠,阴影部分面积与原三角形面积比是2比5,重叠部分面积是6平方厘米,求原来三角形面积。
人教版九年级数学中考复习专题折纸中的数学——三角形的内接矩形模型
∆ 是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻
t的值;若不存在,请说明理由.
∆ 放飞思维:
∆ 如 图 , 四 边 形 ABCD 纸片 满 足 AD∥BC, AD<BC,AB⊥BC,AB=8,CD=10,小 明把该纸片折叠,得到叠合矩形恰好为正 方形,请你帮助画出所有可能的叠合正方 形的示意图,并求出AD,BC的长.
1. 2
①
①
② ②
③ ③
活动三 拓展应用 ——多边形中的叠合矩形 ∆ 在平行四边形中折一个叠合矩形,有没有可能会出现 如图的折法? ∆ 此时如何确定矩形的四个顶点?
操作型问题都可 以转化为我们学
习过的知识
小结与作业 ∆ 你学习到了什么? 操作探究型问题是中考热点 一般:内接矩形—>特殊:内接正方形、叠合矩形—>拓展 ∆ 你感悟到了什么? 建立数学模型 数学思想:方程、转化 ∆ 你还想探究什么?更多精彩等你发现!!!
∆ 方程思想:相似比=对应高的比
活动二 探索新知 在三角形中折一个面积尽可能大的矩形
∆ 结论:上题中,若改为“已知三角形底BC=a,高AD=b”,
用a、b表示这个正方形的边长为 ab . ab
∆ 折出这个内接正方形
活动二 探索新知 在三角形中折一个面积尽可能大的矩形
第三环节
∆ 已知原三角形和底和高,怎么折出面积最大的内接矩形?
活动一 操作引入 折出与三角形有关的线段
活动一 操作引入
A
折出与三角形有关的线段
A
B
C' D C
折出三角形一边的高
A
C'
BDCຫໍສະໝຸດ 折出三角形一角的角平分线A
三角形内接正方形(专题)
三角形内接正方形一、概念三角形的内接正方形是指正方形四个顶点都在三角形边上的正方形,正方形有4个顶点,而三角形只有3条边,所以,正方形一定有两个顶点在同一条边上,即正方形一定有一条边落在三角形的边上.二、个数分情况讨论:1.在锐角三角形中:(1)如果三角形为等边三角形,则它的内接正方形只有一个.(正方形的边无论落在哪一条边上,根据对称性可知,都是在同一位置).(2)如果三角形为等腰三角形(底与腰不等),则它的内接正方形有2个.一个是正方形的边落在等腰三角形底边上;另一种是正方形的边落在腰上(无论哪个腰,位置是相同的);(3)如果三角形为不等边三角形(三边两两不等),则它的内接正方形有3个.2.在直角三角形中:内接正方形有2个:一个是正方形的边落在斜边上;另一个是正方形的边落在直角边上.3.在钝角三角形中:内接正方形只有1个:即正方形一条边落在斜边上.三、画法1.计算法通过计算,求出三角形内接正方形的边长a,然后在某一边上作三角形的高h,在h上截取一段长度为a 的线段,记下截点,通过截点作这边上的平行线,交另两边于两点,最后通过这两点作h的平行线即可. 2.尺规法利用位似图形的原理,选择一个位似中心和再作出一个正方形便可作出三角形内接最大正方形.方法一:先作个小正方形,再利用位似作出所求的内接正方形。
方法二:1)以△ABC的一边BC为一边,向下作正方形BCYX; 2)连接AX.BY与BC交于E,F.3)分别过E,F作ED,FG分别交AB,AC于D,G. 4)连结DG四边形EFGD便是所求图形由此便探索出了三角形内接最大正方形的一种尺规作法,我们是选顶点A作为位似中心,那么点B,点C可不可以做位似中心呢?答案是肯定的。
一共是四种做法。
四、教材衔接1.如图,四边形EFGH是△ABC内接正方形,BC=27cm,高AD=21cm,求内接正方形EFGH的面积.解:设正方形EFGH的边长为x,设AD与GH的交点为I,∵HG∥BC,∴△AHG∽△ABC,∴AI:AD=GH:BC,正方形EFGH的边长为xcm.∵BC=27,AD=21,∴(21-x):21=x:27,即可求解.点评:本题主要考查正方形的面积、相似三角形的判定与性质,关键在于通过求证△AHG∽△ABC,推出正方形的边长.2. 如图,Rt△ABC(∠C=90°)中有三个内接正方形,DF=9厘米,GK=6厘米,猜想第三个正方形的边长PQ 的长.解:GF=EF-EG=9-6=3,设PQ=x,∵GK∥PQ,∴∠FKG=∠KQP.又∵∠FGK=∠KPQ=90°,∴△FGK∽△KPQ.∴ FGKP=GKPQ.∴ 36-x=6x.解得x=4.答:第三个正方形的边长为4厘米.点评:本题利用了平行线的性质,相似三角形的判定和性质求解.3. 如图所示,四边形EFGH是三角形ABC的内接矩形,AD⊥BC,垂足为D,BC=21cm,AD=14cm,EF:FG=1:2,求矩形EFGH的面积.解:如图,设矩形的边长EF=x,则FG=2x,∵四边形EFGH是三角形ABC的内接矩形,∴EH∥BC,EH=FG,∴△AEH∽△ABC,又∵AD⊥BC,则ID=x,AI=AD-ID,∴ EHBC= AIAD,BC=21cm,AD=14cm,∴ 2x21= 14-x14,解得,x=6cm,即2x=12cm,∴S矩形EFGH=EF×FG=6×12=72cm2.答:矩形EFGH的面积为72cm2.点评:本题主要考查了矩形的性质和相似三角形的判定与性质,知道相似三角形的对应高之比就等于对应边之比,即相识比.五、中考应用(几何综合题,规律型)1.2.把边长为40厘米的正方形ABCD 沿对角线AC 截成两个三角形,在两个三角形内如图所示剪下两个内接正方形M 、N ,则M 、N 的的面积的差是4009平方厘米. 解:正方形M 的面积=20cm ×20cm=400cm 2,设:正方形N 的边长为x ,则存在:x2+ 12×x2+ 12×x2+ 12× 12×x2= 40×402,解得:x2= 32009cm 2,故M 、N 的面积的差为(400- 32009)cm2= 4009cm 2,故答案为 4009cm 2.点评:本题考查了正方形,等腰三角形面积的计算方法,考查了正方形四边相等,各内角均为直角的性质,解本题的关键是正方形N 的面积的计算.3.如图1,在△ABC 中,∠C=90°,AC=4,BC=3,四边形DEFG 为△ABC 的内接正方形,若设正方形的边长为x ,容易算出x 的长为 60/37.探究与计算:(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为 60/49;(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为 60/61;(3)如图4,若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,请你猜想正方形的边长是多少?并对你的猜想进行证明.解:(1) 6049;(2分) (2) 6061;(2分)(3)若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,正方形的边长是 6025+12n . 证明,如图,过点C 作CN ⊥AB ,垂足为N ,交GF 于点M ,设小正方形的边长为x ,∵四边形GDEF 为矩形,∴GF ∥AB ,CM ⊥GF ,易算出CN= 125,∴ CMCN=GFAB ,即 125-x125=nx5, ∴x= 6025+12n .即小正方形的边长是 6025+12n .(4分)点评:主要考查了正方形,矩形的性质和相似三角形的性质.会利用三角形相似中的相似比来得到相关的线段之间的等量关系是解题的关键. 4. (2009•湘西州)如图,等腰直角△ABC 腰长为a ,现分别按图1,图2方式在△ABC 内内接一个正方形ADFE 和正方形PMNQ .设△ABC 的面积为S ,正方形ADFE 的面积为S1,正方形PMNQ 的面积为S2. (1)在图1中,求AD :AB 的值;在图2中,求AP :AB 的值; (2)比较S1+S2与S 的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内接正方形
一、概念
三角形的内接正方形是指正方形四个顶点都在三角形边上的正方形,正方形有4个顶点,而三角形只有3条边,所以,正方形一定有两个顶点在同一条边上,即正方形一定有一条边落在三角形的边上.
二、个数
分情况讨论:
1.在锐角三角形中:
(1)如果三角形为等边三角形,则它的内接正方形只有一个.(正方形的边无论落在哪一条边上,根据对称
性可知,都是在同一位置).
(2)如果三角形为等腰三角形(底与腰不等),则它的内接正方形有2个.一个是正方形的边落在等腰三角
形底边上;另一种是正方形的边落在腰上(无论哪个腰,位置是相同的);
(3)如果三角形为不等边三角形(三边两两不等),则它的内接正方形有3个.
2.在直角三角形中:
内接正方形有2个:一个是正方形的边落在斜边上;另一个是正方形的边落在直角边上.
3.在钝角三角形中:
内接正方形只有1个:即正方形一条边落在斜边上.
三、画法
1.计算法
通过计算,求出三角形内接正方形的边长a,然后在某一边上作三角形的高h,在h上截取一段长度为a的线段,记下截点,通过截点作这边上的平行线,交另两边于两点,最后通过这两点作h的平行线即可.
2.尺规法
利用位似图形的原理,选择一个位似中心和再作出一个正方形便可作出三角形内接最大正方形. 方法一:先作个小正方形,再利用位似作出所求的内接正方形。
方法二:
1)以△ABC的一边BC为一边,向下作正方形BCYX; 2)连接AX.BY与BC交于E,F.
3)分别过E,F作ED,FG分别交AB,AC于D,G. 4)连结DG四边形EFGD便是所求图形
由此便探索出了三角形内接最大正方形的一种尺规作法,我们是选顶点A作为位似中心,那么点B,点C可不可以做位似中心呢?答案是肯定的。
一共是四种做法。
四、教材衔接
1.如图,四边形EFGH是△ABC内接正方形,BC=27cm,高AD=21cm,求内接正方形EFGH的面积.
解:设正方形EFGH的边长为x,设AD与GH的交点为I,
∵HG∥BC,
∴△AHG∽△ABC,
∴AI:AD=GH:BC,
正方形EFGH的边长为xcm.
∵BC=27,AD=21,
∴(21-x):21=x:27,即可求解.
点评:本题主要考查正方形的面积、相似三角形的判定与性质,关键在于通过求证△AHG∽△ABC,推出正方形的边长.
2. 如图,Rt△ABC(∠C=90°)中有三个内接正方形,DF=9厘米,GK=6厘米,猜想第三个正方形的边长PQ的长.
解:GF=EF-EG=9-6=3,设PQ=x,
∵GK∥PQ,∴∠FKG=∠KQP.
又∵∠FGK=∠KPQ=90°,∴△FGK∽△KPQ.
∴ FGKP=GKPQ.
∴ 36-x=6x.
解得x=4.
答:第三个正方形的边长为4厘米.
点评:本题利用了平行线的性质,相似三角形的判定和性质求解.
3. 如图所示,四边形EFGH是三角形ABC的内接矩形,AD⊥BC,垂足为D,BC=21cm,AD=14cm,EF:FG=1:2,求矩形EFGH的面积.
解:如图,设矩形的边长EF=x,则FG=2x,
∵四边形EFGH是三角形ABC的内接矩形,
∴EH∥BC,EH=FG,
∴△AEH∽△ABC,
又∵AD⊥BC,则ID=x,AI=AD-ID,
∴ EHBC= AIAD,BC=21cm,AD=14cm,
∴ 2x21= 14-x14,
解得,x=6cm,即2x=12cm,∴S矩形EFGH=EF×FG=6×12=72cm2.
答:矩形EFGH的面积为72cm2.
点评:本题主要考查了矩形的性质和相似三角形的判定与性质,知道相似三角形的对应高之比就等于对应边之比,即相识比.
五、中考应用(几何综合题,规律型)
1.
2.把边长为40厘米的正方形ABCD沿对角线AC截成两个三角形,在两个三角形内如图所示剪下两个内接正方形M、N,则M、N的的面积的差是4009平方厘米.
解:
正方形M的面积=20cm×20cm=400cm2,设:正方形N的边长为x,则存在:
x2+ 12×x2+ 12×x2+ 12× 12×x2= 40×402,解得:x2= 32009cm2,
故M、N的面积的差为(400- 32009)cm2= 4009cm2,故答案为 4009cm2.
点评:本题考查了正方形,等腰三角形面积的计算方法,考查了正方形四边相等,
各内角均为直角的性质,解本题的关键是正方形N的面积的计算.
3.如图1,在△ABC中,∠C=90°,AC=4,BC=3,四边形DEFG为△ABC的内接正方形,若设正方形的边长为x,容易算出x的长为 60/37.探究与计算:
(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为60/49;
(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为60/61;
(3)如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,请你猜想正方形的边长是多少?并对你的猜想进行证明.
解:(1) 6049;(2分)
(2) 6061;(2分)
(3)若三角形内有并排的n个全等的正方形,它们组成的矩形内接于
△ABC,正方形的边长是 6025+12n.
证明,如图,过点C作CN⊥AB,垂足为N,交GF于点M,设小正方形的
边长为x,
∵四边形GDEF为矩形,∴GF∥AB,CM⊥GF,易算出CN= 125,∴ CMCN=GFAB,即 125-x125=nx5,
∴x= 6025+12n.即小正方形的边长是 6025+12n.(4分)
点评:主要考查了正方形,矩形的性质和相似三角形的性质.会利用三角形相似中的相似比来得到相关的线段之间的等量关系是解题的关键.
4. (2009•湘西州)如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.
(1)在图1中,求AD:AB的值;在图2中,求AP:AB的值;
(2)比较S1+S2与S的大小.。