函数的极限.ppt
合集下载
《函数的极限与连续》课件
示例
考虑函数$f(x) = x^2$,在区间 $[0, 1]$上连续且单调增加。如果 $f(0) < c < f(1)$,则可以证明$c < frac{f(0) + f(1)}{2}$。
利用连续性求函数的零点
要点一
总结词
利用函数的连续性可以找到函数的零 点。
要点二
详细描述
如果函数在某区间上连续,且在该区 间上从正变负或从负变正,则可以利 用函数的连续性找到函数的零点。这 是因为函数在这一点上从增加变为减 少或从减少变为增加,的定义
函数在某点连续的定义
如果函数在某点的左右极限相等且等于该点的函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
连续性的性质
连续函数的和、差、积、商(分母不为零)仍为连续函数。
复合函数在复合点连续的定义:如果一个复合函数在某点的极限等于该点的函数值,则复合函数在该点 连续。
与其他数学知识的联系
探讨函数极限与连续性与中学数学、微积分等其他 数学知识的联系,理解其在数学体系中的地位。
理论严谨性
深入思考函数极限与连续性理论的严谨性和 完备性,理解数学严密性的重要性。
对后续学习的展望
导数与微分
预告后续将学习函数的导数与微分概念,了解它们与 极限和连续性的关系。
级数与积分
简要介绍级数和积分的基本概念,理解其在数学中的 重要性和应用。
01
和差运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)pm g(x)]=Apm B$。
02
03
乘积运算性质
幂运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)cdot g(x)]=Acdot B$。
§1.3.4-5函数极限的性质.ppt4
1 ∴当 x > 0 时,1− x < x ⋅ ≤1 ; x
1 当 x < 0 时,1− x > x ⋅ ≥1 , x
∵ lim 1= lim (1− x) =1 ,
x→0 x→0
1 ∴由夹逼定理可知 lim x ⋅ =1 。 x→0 x
基本初等函数
解: y = 2
sin 2 x
= 2 y= 2 u , u= v , = 由
复合而成. v = sin x 复合而成 .
(2) y = ln x 2 − 2
解 : y = ln x 2 − 2 由
y=lnu, =
u= v , v = x 2 − 2 复合而成. = 复合而成.
( 3 ) y = tan 5 3 lg(arcsin x )
且 lim x n = xo ,有 lim f ( x n ) = A 。
n →∞ n →∞
①若存在 {xn }, xn ≠ xo , lim x n = xo ,而
注意
n →∞
n →∞
lim f ( x n ) 不存在,则 lim f ( x) 不存在。
x → xo n →∞
′ ′′ ′ ′ ②若存在某两个数列 {x n }与 {x n }, x n ≠ xo , lim xn = xo ,
∋ x ∈ N ( xo , δ) 时,恒有 f ( x) ≤ g ( x) ,则 A ≤ B 。
x → xo o
x → xo
海涅定理) 定理 3(海涅定理) 它给出了函数极限与数列极限的关系。 它给出了函数极限与数列极限的关系。
x → xo
lim f ( x) = A ⇔ 对任意数列 {xn } , xn ≠ xo ,
1 当 x < 0 时,1− x > x ⋅ ≥1 , x
∵ lim 1= lim (1− x) =1 ,
x→0 x→0
1 ∴由夹逼定理可知 lim x ⋅ =1 。 x→0 x
基本初等函数
解: y = 2
sin 2 x
= 2 y= 2 u , u= v , = 由
复合而成. v = sin x 复合而成 .
(2) y = ln x 2 − 2
解 : y = ln x 2 − 2 由
y=lnu, =
u= v , v = x 2 − 2 复合而成. = 复合而成.
( 3 ) y = tan 5 3 lg(arcsin x )
且 lim x n = xo ,有 lim f ( x n ) = A 。
n →∞ n →∞
①若存在 {xn }, xn ≠ xo , lim x n = xo ,而
注意
n →∞
n →∞
lim f ( x n ) 不存在,则 lim f ( x) 不存在。
x → xo n →∞
′ ′′ ′ ′ ②若存在某两个数列 {x n }与 {x n }, x n ≠ xo , lim xn = xo ,
∋ x ∈ N ( xo , δ) 时,恒有 f ( x) ≤ g ( x) ,则 A ≤ B 。
x → xo o
x → xo
海涅定理) 定理 3(海涅定理) 它给出了函数极限与数列极限的关系。 它给出了函数极限与数列极限的关系。
x → xo
lim f ( x) = A ⇔ 对任意数列 {xn } , xn ≠ xo ,
函数的极限【高等数学PPT课件】
A(或f
( x0
0)
A)
右极限: 定理1
lim
xx0
f (x)
A(或f (x0
0)
A)
lim f (x) A lim f (x) lim f (x) A
xx0
xx0
xx0
x sin x, x 0
例1
试问函数f ( x)
10, x 0
(c) Sketch the graph of F.
例2 lim sin x不存在 x
lim sin 1 不存在.
x0
x
y sin 1 x
思考与练习
1. 若极限 lim f ( x) 存在, 是否一定有
x x0
lim f ( x) f ( x0 ) ?
x x0
2. 设函数 f ( x) a x2, x 1 且 2x 1, x 1
lim f ( x)
x1
存在, 则 a 3 .
3.Let F (x) x 2 1 .
x 1
(a) Find (i) lim F (x) x 2 1 .
x1
x 1
(ii) lim x1
F(x)
x2 1 .
x 1
(b) Does lim F(x). exist?
x1
lim f ( x) lim f ( x) lim f ( x) 不存在.
x0
x0
x0
二、函数极限的性质
1.惟一性
定理1 (极限的惟一性) 如果函数极限
存在,则极限值惟一.
2.有界性
定理2 (局部有界性)
如果极限 lim f (x) xx0
考研高数总复习函数的极限(讲义)PPT课件
无穷小是函数极限的必要条件,即如果函数在某点的极限存在,那么函数在该点的值必定是无穷小。
无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。
无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。
大学数学函数的极限-PPT
注
1)0 x x0 表示 x x0 , x x0 时 f ( x) 有无极限 与
f ( x0 ) 有无定义没有关系.
2) 任意给定后,才能找到 , 依赖于 ,且 ( ) 越小, 越小.
3) 不唯一,也不必找最大的,只要存在即可.
函数极限的几何解释
y
O x
如果函数f(x)当x→x0时极限为A,以任意给定一正数ε,作两条 平 行 于 x 轴 的 直 线 y=A+ε 和 y=A-ε, 存 在 点 x0 的 δ 邻 域 (x0-δ, x0+δ),当x在邻域(x0-δ, x0+δ)内,但x≠x0时,曲线y=f(x)上的点 (x,f(x))都落在两条平行线之间。
观察函数 y=1/x 的图像
y y=1/x
o
x
再考察函数 y = ln x
y y=lnx
o
x
无穷小和无穷大的关系
在同一极限过程中,无穷小与无穷大之间是通过取倒数互相转化。 即在自变量的同一变化过程中,如果f(x)为无穷大,则
1 f ( x) 为无穷小;反之,如果f (x)为无穷小,且 f ( x) 0 则 1 为无穷大
x
x
x
若lim f ( x)或lim f ( x)不存在,则 lim f ( x)不存在.
x
x
x
若 lim f ( x) lim f ( x) , 则lim f ( x) 不存在.
x
x
x
几何意义
如果函数f(x)当x→∞时极限为A,以 任意给定一正数ε,作两条平行于x轴 的 直 线 y=A-ε 和 y=A+ε, 则 总 存 在 一 个正数X,使得当x<-X或x>X时, 函 数 y=f(x) 的 图 形 位 于 这 两 条 直 线 之间.
高等数学-函数的极限PPT课件
则A是 f (x)当 x 的极限. 记为: lim f ( x) A. x
或者记为:当 x 时,f ( x) A.
从定义中得到: x X 包含了 x X 和x X .
所以: x 包含了 x 和 x . 于是有
定理:lim f ( x) A lim f ( x) A且 lim f ( x) A.
x
x
x
则有:lim(2 1 ) 2, limarctan x 不存在.
x
x
x
.
7
注意: 证明极限存在时,关键是任意给定 0, 寻找X.
求X的方法: 由 f (x) A 解出x
几何解释:
Aε f (x) Aε
AA
X
A X
或者记为:当 x 时,f ( x) A.
则有:lim (2 1 ) 2, limarctan x π
x
x
x
2
对于 y 2 1 ,lim (2 1 ) 2,lim (2 1 ) 2,那么 lim(2 1 ) ?
x x
x
x
或者从x0的两边同时接近于x0.
.
12
函数极限的几何意义
lim f ( x) A 0, 0, 使得当
xБайду номын сангаас x0
0 x x0 时, 恒有 f ( x) A 成立.
0
当 x U ( x0 ) 时,
函数f(x)的图形完全
y
y f (x)
落在以直线y=A为中
定义:如果 0, X 0, 使当 x X 时,恒有 f (x) A ,
函数的极限-课件
函数的极限-PPT课件
通过这个PPT课件,我们将深入了解函数的极限,探讨其定义、性质、求解方 法、连续性以及应用领域,帮助您更好地理解和应用相关知识。
什么是函数的极限
函数的极限是指随着自变量趋近某个特定值,函数取值的趋势。我们将讨论 其定义和概念,以及极限的基本性质。
如何求解函数的极限
重要极限公式、极限的运算法则以及夹逼定理等是求解函数极限的关键工 具。我们将学习它们的应用方法。
参考资料
常用函数极限表格
提供常见函数的极限值和性质的表格,作为学 习和记忆的参考。
相关专业书籍和资料
推荐一些深入学习函数极限的专业书籍和学术 资料,供进一步研究使用。
函数的极ห้องสมุดไป่ตู้与连续性
极限存在的充分条件
我们将研究函数极限存在的条件,并探讨它们与函 数连续性之间的关系。
极限与函数的连续性
了解极限与函数连续性之间的关联,以及在函数图 像上的表现。
函数极限的应用
1 极限与导数的关系
探索函数的极限与导数之间的联系,以及这种联系在微积分中的重要性。
2 极限在微积分中的应用
了解如何使用函数极限解决微积分问题,例如求曲线的切线、曲线的变率等。
3 极限在实际问题中的应用
通过实际问题案例,展示函数极限在科学、工程、经济等领域的实际应用。
练习与总结
练习题解析
通过解析一些典型练习题,加深对函数极限的理解 和应用能力。
总结和回顾
总结已学习的知识点,回顾整个课程,确保对函数 的极限有全面的理解。
通过这个PPT课件,我们将深入了解函数的极限,探讨其定义、性质、求解方 法、连续性以及应用领域,帮助您更好地理解和应用相关知识。
什么是函数的极限
函数的极限是指随着自变量趋近某个特定值,函数取值的趋势。我们将讨论 其定义和概念,以及极限的基本性质。
如何求解函数的极限
重要极限公式、极限的运算法则以及夹逼定理等是求解函数极限的关键工 具。我们将学习它们的应用方法。
参考资料
常用函数极限表格
提供常见函数的极限值和性质的表格,作为学 习和记忆的参考。
相关专业书籍和资料
推荐一些深入学习函数极限的专业书籍和学术 资料,供进一步研究使用。
函数的极ห้องสมุดไป่ตู้与连续性
极限存在的充分条件
我们将研究函数极限存在的条件,并探讨它们与函 数连续性之间的关系。
极限与函数的连续性
了解极限与函数连续性之间的关联,以及在函数图 像上的表现。
函数极限的应用
1 极限与导数的关系
探索函数的极限与导数之间的联系,以及这种联系在微积分中的重要性。
2 极限在微积分中的应用
了解如何使用函数极限解决微积分问题,例如求曲线的切线、曲线的变率等。
3 极限在实际问题中的应用
通过实际问题案例,展示函数极限在科学、工程、经济等领域的实际应用。
练习与总结
练习题解析
通过解析一些典型练习题,加深对函数极限的理解 和应用能力。
总结和回顾
总结已学习的知识点,回顾整个课程,确保对函数 的极限有全面的理解。
函数的极限函数的连续性PPT教学课件
一暴( pu) 十寒:
比喻做事不坚持,无 恒心
拒人千里:
形容对人态度傲慢
鲁国打算让乐正子治理国政。 孟子说:“听到这消息,我喜欢得睡不着觉。” 孟子的学生公孙丑问:“乐正子很有能力吗?有智慧 有远见吗?见闻广博吗?” 孟子说:“不是。” 公孙丑问:“那您为什么喜欢得睡不着呢?” 孟子回答说:“因为他能听取别人的意见。能听取别 人的意见就足以治理天下,四面八方的人会不远千里 赶来提意见;听不進别人的意见,说:‘喔喔,你说 的我早就知道了!’‘喔喔’的声音和脸色就会把别 人拒绝在千里之外。有志之士在千里之外停滞不前, 而那些阿谀奉承的人就会到来,想治理好国家,能办 得到吗?”
xx0
lim C C
x x0
lim
x x0
x
x0
lim f (x) a lim f (x) lim f (x) a
xx0
xx0
xx0
其趋中近于xlxim0x时0 f的(x左) 极 a限表,示当x从左侧
于xxl0im时x0 的f (右x)极 a限表示当x从右侧趋近
对于函数极限有如下的运算法则:
C.自己不喜欢做的事更 不应强加于人 D.准备充分才能做事完美 E.对人要守诚信 F.为人要光明磊落
G.要管好别人首先要 管好自己
H.兴趣是学习最好 的推动力
孟子名言
1.恻隐之心, 人皆有之 2.生于忧患,死于安乐 3.尽 信 书 不 如 无 书 4.不以规矩,不成方圆 5.仁者无敌 6.君子不怨天,不尤人 7.爱人者,人恒爱之; 敬人者,人恒敬之
室.他为何要在我家弹瑟啊? "
登堂入室:
表示学业已达一定程度 或是已得到老师专授指点
有人指责孟子不尽力帮助齐王。孟子便解 释说:“比如说,天下有些易活的植物, 假如把它放在太阳下晒一天,然后再把它 放在阴冷的地方冻十天,即使是生命力再 强的植物也会死。我见到齐王的机会少之 又少,即使给了他些良好的影响与帮助, 我一离开,一些和我主张不同的人,又带 给他许多不好影响。我怎么能使齐王的思 想、品质好起来呢?”
比喻做事不坚持,无 恒心
拒人千里:
形容对人态度傲慢
鲁国打算让乐正子治理国政。 孟子说:“听到这消息,我喜欢得睡不着觉。” 孟子的学生公孙丑问:“乐正子很有能力吗?有智慧 有远见吗?见闻广博吗?” 孟子说:“不是。” 公孙丑问:“那您为什么喜欢得睡不着呢?” 孟子回答说:“因为他能听取别人的意见。能听取别 人的意见就足以治理天下,四面八方的人会不远千里 赶来提意见;听不進别人的意见,说:‘喔喔,你说 的我早就知道了!’‘喔喔’的声音和脸色就会把别 人拒绝在千里之外。有志之士在千里之外停滞不前, 而那些阿谀奉承的人就会到来,想治理好国家,能办 得到吗?”
xx0
lim C C
x x0
lim
x x0
x
x0
lim f (x) a lim f (x) lim f (x) a
xx0
xx0
xx0
其趋中近于xlxim0x时0 f的(x左) 极 a限表,示当x从左侧
于xxl0im时x0 的f (右x)极 a限表示当x从右侧趋近
对于函数极限有如下的运算法则:
C.自己不喜欢做的事更 不应强加于人 D.准备充分才能做事完美 E.对人要守诚信 F.为人要光明磊落
G.要管好别人首先要 管好自己
H.兴趣是学习最好 的推动力
孟子名言
1.恻隐之心, 人皆有之 2.生于忧患,死于安乐 3.尽 信 书 不 如 无 书 4.不以规矩,不成方圆 5.仁者无敌 6.君子不怨天,不尤人 7.爱人者,人恒爱之; 敬人者,人恒敬之
室.他为何要在我家弹瑟啊? "
登堂入室:
表示学业已达一定程度 或是已得到老师专授指点
有人指责孟子不尽力帮助齐王。孟子便解 释说:“比如说,天下有些易活的植物, 假如把它放在太阳下晒一天,然后再把它 放在阴冷的地方冻十天,即使是生命力再 强的植物也会死。我见到齐王的机会少之 又少,即使给了他些良好的影响与帮助, 我一离开,一些和我主张不同的人,又带 给他许多不好影响。我怎么能使齐王的思 想、品质好起来呢?”
函数极限PPT课件
有|f(x)-A|<e
例例33 证 明 lim (2x -1) 1 x1
证明 因为e 0 de /2 当0|x-1|d 时 有
|f(x)-A||(2x-1)-1|2|x-1|e
所 以 lim (2x -1) 1 x1
分析 |f(x)-A||(2x-1)-1|2|x-1|
e >0 要使|f(x)-A|<e 只要|x-1|<e /2
证明 因为e 0 d e 当0|x-x0|d 时 有
|f(x)-A||x-x0|e
所以
lim
x x0
x
x0
分析
|f(x)-A||x-x0|
e >0 要使|f(x)-A|e 只要|x-x0|e
首页
上页
返回
下页
结束
铃
lim
x x0
f(x)A或fe(>x)0 Ad(>x0 当x0)。0<|x-x0|<d
首页
上页
返回
下页
结束
铃
lim
x x0
f(x)A或fe(>x)0 Ad(>x0 当x0)。0<|x-x0|<d
有|f(x)-A|<e
例6 当x 0时,lim x2 4. x2
证明 因为 x2 - 4 x - 2 x + 2.
令 x - 2 1,则有3 x + 2 5,
所以 x2 - 4 x - 2 x + 2 5 x - 2。
y=f(x)
A+e
A
A-e
x0-d x0 x0+d
首页
上页返回下页 Nhomakorabea结束
铃
函数的极限PPT课件
详细描述
函数极限的唯一性是函数极限的一个重要性质,它表明在某一点附近,函数的 极限值是唯一的。这个性质在研究函数的连续性和可导性等方面有着重要的应 用。
函数极限的局部有界性
总结词
函数极限的局部有界性是指,如果函数$f(x)$在点$x_0$处有极限,那么在点$x_0$的某个邻域内,函 数$f(x)$是有界的。
详细描述
函数极限的保号性是函数极限的一个重要性质,它表明在函数极限存在的区域内,函数 的符号与极限值的符号保持一致。这个性质在研究函数的单调性和不等式证明等方面有
着重要的应用。
03 函数极限的计算方法
直接代入法
总结词
直接代入法适用于求函数在某点的极限 值,当函数在该点的值已知时,可以直 接代入计算。
VS
详细描述
直接代入法是最基本的求函数极限的方法 。当函数在某点的值已知时,我们可以直 接将该点的值代入函数表达式中,得到该 点的极限值。这种方法适用于一些简单的 函数,如常数函数、一次函数等。
抓大头法
总结词
抓大头法适用于求函数在某点的极限值,当 函数在该点的值未知,但存在一个较大的项 或几个项的组合可以确定函数的极限值时。
详细描述
函数极限的局部有界性是函数极限的一个重要性质,它表明在函数极限存在的区域内,函数值是有界 的。这个性质在研究函数的单调性和收敛性等方面有着重要的应用。
函数极限的保号性
总结词
函数极限的保号性是指,如果函数$f(x)$在点$x_0$处的极限值大于0,那么在点$x_0$ 的某个邻域内,函数$f(x)$的值也大于0;如果极限值小于0,那么函数值也小于0。
详细描述
等价无穷小替换法是一种通过将函数中的某 些项替换为等价的无穷小量来估算函数的极 限值的方法。这种方法适用于一些复杂的函 数,如幂函数、三角函数等。在等价无穷小 替换法中,常用的等价无穷小量包括x→0时,
函数极限的唯一性是函数极限的一个重要性质,它表明在某一点附近,函数的 极限值是唯一的。这个性质在研究函数的连续性和可导性等方面有着重要的应 用。
函数极限的局部有界性
总结词
函数极限的局部有界性是指,如果函数$f(x)$在点$x_0$处有极限,那么在点$x_0$的某个邻域内,函 数$f(x)$是有界的。
详细描述
函数极限的保号性是函数极限的一个重要性质,它表明在函数极限存在的区域内,函数 的符号与极限值的符号保持一致。这个性质在研究函数的单调性和不等式证明等方面有
着重要的应用。
03 函数极限的计算方法
直接代入法
总结词
直接代入法适用于求函数在某点的极限 值,当函数在该点的值已知时,可以直 接代入计算。
VS
详细描述
直接代入法是最基本的求函数极限的方法 。当函数在某点的值已知时,我们可以直 接将该点的值代入函数表达式中,得到该 点的极限值。这种方法适用于一些简单的 函数,如常数函数、一次函数等。
抓大头法
总结词
抓大头法适用于求函数在某点的极限值,当 函数在该点的值未知,但存在一个较大的项 或几个项的组合可以确定函数的极限值时。
详细描述
函数极限的局部有界性是函数极限的一个重要性质,它表明在函数极限存在的区域内,函数值是有界 的。这个性质在研究函数的单调性和收敛性等方面有着重要的应用。
函数极限的保号性
总结词
函数极限的保号性是指,如果函数$f(x)$在点$x_0$处的极限值大于0,那么在点$x_0$ 的某个邻域内,函数$f(x)$的值也大于0;如果极限值小于0,那么函数值也小于0。
详细描述
等价无穷小替换法是一种通过将函数中的某 些项替换为等价的无穷小量来估算函数的极 限值的方法。这种方法适用于一些复杂的函 数,如幂函数、三角函数等。在等价无穷小 替换法中,常用的等价无穷小量包括x→0时,
函数的极限(左右极限)ppt课件
记作: lim f (x) a x
◆定义(2):
一般地,当自变量x取负值并且绝对值无限增大时, 函数f(x)的值无限趋近于一个常数a,就说当x趋 向于负无穷大时,函数f(x)的极限是a,
记作: lim f (x) a
x
3
◆定义(3)
如果 lim f (x) a且 lim f (x) a
限是4.记作:limx 2 4 x 2 强调:x→2,包括分别从左、右两侧趋近于2.
即: “x→2”是指以任何方式无限趋近于2,(分别从
左、右两侧或左、右两侧交替地无限趋近于2).7
2. 考察函数 y x 2 1 (x≠1),当x无限趋近于1(但 x 1
不等于1)时,函数的变化趋势
(1)图象 y=x+1 (x∈R,x≠1)
y 4 1.75 0.39 0.04 0.004 0.0004 0.00004 ……
x
2.5 2.1 2.01 2.001 2.0001 2.00001 ……
y=x2 6.25 4.41 4.04 4.004 4.0004 4.00004 ……
y 4 2.25 0.41 0.04 0.004 0.0004 0.00004 ……
函数在一点处的极限与左、右极限的定义 10
函数在一点处的极限与左、右极限
1.当自变量x无限趋近于常数x0(但x不等于x0)时,如
果函数f(x)无限趋近于一个常数a,就说当x趋近于x0时,
函 数 f(x) 的 极 限 是 a , 记 作 f(x)→a。
lim f( x) a 或 当 x→x0 时
x x 0
(2)lim f(x) 是x从x0的两侧无限趋近于x0,是双侧极限,
xx0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 解不等式
③取 ,
C x x0 ,
则当 0 x
得
x
x0
C
,
x0 时,总有
f
x
A
,
即
C
lim f (x) A
xx0
16
例3 证明:当 x0 0 时,lim xx0
x
x0 .
证: 对于 0, 由于
x x0
x x0 x x0
1 x0 x x0
要使
x
x0 , 只要
f x A C ,
x
(其中C为常数)
② 解不等式 C , 得 x C ,
x
③取M C , 则当 x M 时,总有 f x A , 即
lim f (x) A
x
19
例5 讨论函数
x,
f
(
x)
0,
x 0, x 0,
sin
1 x
x 0.
y
当x 0 时,函数 f ( x)的极限的情况。 1
x
x
x
1
0, 要使 2 x 1 2 ,
x
x
O
x
只要 x 2 即可,
取X
2
,
则当 x
X , 恒有
2 x x
1
.
lim 2 x 1.
x x
直线y 1是y 2 x 的图形的水平渐近线. x
18
注:用定义证明函数极限 lim f (x) A 的步骤 x
① 0, 由不等式 f x A , 经一系列地放大可得:
n
a
n存在。
反之,若
lim
n
a
n
lim n
f (n)不存在, lim x
f ( x) 一定不存在。
(2)无论是数列极限还是函数极限,若存在,必唯一。
(3)收敛数列的有界性是整体概念,即若
lim
n
a
n
存在,则对
n N , M , 使得 an M;
而对于函数
lim
x x0
f x 存在,则只能推得函数在
x
10
水平渐近线: 若 lim f x c,则直线y c是y f x 的图形 x x x
的水平渐近线。
y
y
1
y ex
y thx
O
O
x
-1
x
x ,y 0.
x ,y 1; x ,y 1.
y 0是y e x的水平渐近线。 y 1是y thx的水平渐近线。
11
5.当x 时, f x A与两个单边极限的关系:
x 0的某个
邻域有界,即
0
U x0
,
,
及M
,
使
得
对
于x
0
U
x
0
,
, 有
f
x
M.
13
二、例题
例1
用定义证明
lim
x3
x2
2x
9
3
3.
证 因为f x在x 3处无定义对极限并无影响,
当x
3时,2xx2
9
3
3
x3 3 2
1 2
x3
0,要使
x2
2x
9
3
3
1 2
x3
只要 x 3 2即可, 取 2,
x
2 x
2
x
22
23
函数极限的ε-δ定义: 设f x在点x0的某一去心邻域有定义,
பைடு நூலகம்
如果 0,存在 0,当0 x x0 时,恒有 f x A
成立,则称当x x0时f x有极限A,记作:
lim
x x0
f x
A或f x
Ax
x0 .
注1: f x在x0处有无定义对f x当x x0时,有否极限无关。 注2: 是任意无限小的正数,因此 f x A 才能 表明 f x无限接近于Ax x0 .
第四节 函数的极限
函数的极限
函数极限的唯一性 函数极限的局部有界性 函数极限的局部保号性(定理1、定理2) 函数极限与数列极限的关系
1
一、基本理论 (1)x 2时, f ( x) 1 1 ;(2)x 时, f ( x) 0
x2
在自变量的某个变化过程中,若对应的函数值无限接近于
某个确定的常数, 那么,这个确定的常数就叫做这一变化过
注3: 正数与x无关,仅依赖于,但不是唯一的,
比小的任何正数都可以。
3
几何解释: lim f x A x x0
y
A
A
。
A
O
x0 x0 x0
x
0, 0,当x x0 , x0 时,使得 f x A ,即
A f x A
此式表明 f(x)在
0
U
x
0
,
内既有上界,
又有下界,即:
2
定理1’:如果 lim xx0
f x
A,而且A
0,则存在点x
的某一
0
去心邻域U x0 , ,当x U x0 , 时,就有
f x A
2
定理2:
如
果
在x
的
0
某
一
去
心
邻
域
内f
x
0或f
x
0, 并 且
lim f x A,则 :
x x0
A 0或A 0.
证 设f x 0,用反证法. 设A 0, 由定理1
x
9
lim f x A的几何意义:
x
A
A
y A
X O
X
x
单边极限的定义:
f x A当x 的定义:
0,X 0,当x X ,恒有 f x A 成立,则
lim f x A或f x Ax .
x
f x A当x 的定义:
0,X 0,当x X ,恒有 f x A 成立,则
lim f x A或f x Ax .
极限. ----描述性定义。
f x A, 用 f x A 0来刻划.
x 用 x X X 0来刻划.
函数极限ε—X定义: 设f x当x大于某一个正数时有定义.
0,总存在X 0, 使得当x X时,恒有
f x A
则常数A就叫做函数f x当x 时的极限,记作:
lim f x A或f x A当x .
定理: lim f x A lim f x lim f x A
x
x
x
证 (必要性) lim f ( x) A, 则 x
0,总存在X 0,使得当x X时, 恒有f x A
①当 x X , f x A , 即 lim f x A
x
②当 x X , f x A , 即 lim f x A
存在点x0的某一去心邻域,在该邻域内f x 0,
这与f x 0的假设矛盾. 故A 0.
问题:比较定理1、2,注意“>”和“≥”,为什么?
6
3. 左、右极限,函数极限存在的充分必要条件 左、右极限:
x x0意味着点x从x0的左右两侧都无限趋近于x0 .
如果只考虑点x从x0的左侧无限趋近于x0 ,记作x x0 0.
x lim
x lim 1 1
x x x00
x00
x00
f 0 0 lim x lim x 1
x x00
x x 0 0
f 0 0 f 0 0.
根据定理3知:lim x 不存在.
x0 x
例7 证明 lim x sin x不存在。 (记录)
证
设
x
f ( x) x sin x,
x
(充分性) lim f ( x) lim f ( x) A, 则
x
x
0, X1 0,当x X1 , 恒有 f x A 成立,
对于上面的,X 2 0,当x X 2 , 恒有 f x A 成立,
取X max{X1 , X 2 }, 则只要 x X ,恒有 f x A
lim f ( x) A
x
12
6. 数列极限与函数极限之间的关系
(1) 数列是以正整数集为定义域的函数,即 an f (n)
因此数列的极限
lim
n
a
n
lim n
f (n)可以看成是函数
f ( x)当
自变量取正整数n,并趋于正无穷大时的极限。
若
lim
x
f ( x)存在,必有
lim
n
f
(n)
lim
即
0.001,
min
2,
18
0.001, 18
取 0.00006, 则当0 x 1 0.00006, 有
x 4 1 4 0.001 x 1
注:用定义证明函数极限 lim f (x) A的步骤 xx0
① 0, 由不等式 f x A , 经一系列地放大可得:
f x A C x x0 , (其中C为常数)
n
x x1 x 1
② 振荡,如: lim sin x, lim sin 1
x
x1 x 1
③左、右极限不相等, 单侧极限不相等,如:
x
x
lim 1, lim 1.
x x 0 0
x x00
x
所以,lim 不存在。
x x 0
lim arctan x , lim arctan x . 所以,lim arctan x不存在。
程中函数的极限。
函数极限的描述性定义。
函数的自变量的变化过程可分为两种情况:
(1)自变量 x无限接近有限值 x0 , 表示为 x x0 ;
(2)自变量 x 的绝对值 x 无限增大, 表示为 x .