心脏生理学

合集下载

临床心脏病学解剖和生理学

临床心脏病学解剖和生理学

心肌细胞自身调节:通过心肌细胞内的离子通道和受体调节心脏功能
03
04
心脏电生理:通过心脏电活动调节心脏功能
心脏的适应性和储备功能
适应性:心脏能够根据身体需求调整其泵血功能,如运动时增加泵血量,休息时减少泵血量。
储备功能:心脏在面临压力或疾病时,能够通过增加泵血量、提高心率等方式,维持正常的血液循环。
心绞痛的症状和体征
冷汗:冷汗、面色苍白、四肢冰冷等
恶心、呕吐:恶心、呕吐、腹泻等消化道症状
头晕:头晕、眩晕、晕厥等
呼吸困难:呼吸急促,呼吸困难,甚至窒息感
心力衰竭的症状和体征
呼吸困难:呼吸急促、呼吸困难、呼吸急促
水肿:下肢水肿、腹水、胸腔积液
心悸:心跳加快、心悸、心慌
疲劳:疲劳、乏力、头晕
咳嗽:咳嗽、咳痰、咯血
心脏康复和预防
心脏康复:通过运动、饮食、心理等方法,帮助心脏病患者恢复健康
预防措施:保持健康的生活方式,如合理饮食、适量运动、戒烟限酒等
定期体检:定期进行心脏检查,及时发现并治疗心脏病
药物治疗:根据病情,使用药物控制血压、血脂、血糖等指标,预防心脏病的发生和发展
心理调适:保持良好的心理状态,避免过度紧张和焦虑,有助于预防心脏病的发生和发展。
心脏的血液供应:冠状动脉提供血液,保证心脏正常工作
心脏的神经支配:交感神经和副交感神经共同调节心脏功能
心脏的神经支配:交感神经兴奋时,心率加快,血压升高
心脏的神经支配:副交感神经兴奋时,心率减慢,血压降低
心脏生理
PART 02
心电生理
心电图的原理和意义
心电图的分类和特点
心电图的解读和诊断
心电图的临床应用和注意事项
心脏病的鉴别诊断

心脏生理(生理学课件)

心脏生理(生理学课件)
2K+
inside
Ca2+
3Na+
电位稳定于静息电位水平。细胞排出Ca2+ 和Na+,摄入K+,恢复细胞内外离子正常浓 度梯度。
Na+-K+泵:排出3Na+,摄入2K+ Ca2+-Na+交换体:3Na+入胞,1 Ca2+出 Ca2+泵:泵出少量Ca2+
其它心肌细胞的动作电位
窦房结P细胞的跨膜电位
窦房结P细胞的跨膜电位
形成机制
慢Ca2+通道开放,Ca2+缓慢内流形成机制 K+通道开放, K+缓慢外流
对膜电位影 响相互抵消
心室肌细胞跨膜电位
3期(快速复极末期)
特点:占时100-150mS,膜电位由0mv迅速复极到-90mv。
形成机制 Ca2+内流停止,K+外流加快。
outside
3Na+
心室肌细胞跨膜电位
4期(静息期)
心肌细胞的跨膜电位
静息电位(RP)
约为–90mV。
离子基础:同神经和骨骼肌相似。IK1
(内向整流钾通道)开放,K+外流形成 的接近K+的平衡电位。
动作电位
心肌细胞的跨膜电位
心室肌细胞动作电位的幅度、波 形、持续时间与神经、骨骼肌明 显不同。将其分为5个时期。
心室肌细胞跨膜电位
心室肌细胞动作电位的时相、形态特点及离子基础
复极完胸毕锁,乳静头息电肌位恢复
离子基础 Na+快速内流
K+外流
Ca2+缓慢内流和K+外流
主要呼气肌
K+ 大量外流

脉管系统—心脏生理(人体解剖生理学)

脉管系统—心脏生理(人体解剖生理学)

激活 (开)
Na+通道是否处备用状态,是该心肌 细胞当时是否具有兴奋性的前提。
备用 (关)
失活
正常静息电位水平又是决定Na+通道能
(关) 否处于或复活到备用状态的关键.
三、兴奋性
(二)心肌兴奋性的周期性变化
心肌细胞每次兴奋,其膜通道存在备用状态、激活、失活和复活过程; 其兴奋性也随之发生相应的周期性改变。
2.邻近部位膜的兴奋性 邻近部位细胞膜的兴奋性高→膜去极化达阈电位的时间短→传导速度快
3.心肌细胞的直径 兴奋的传导速度与心肌细胞的直径成正比关系。
三、兴奋性
(一)决定和影响心肌兴奋性的因素
1.静息电位与阈电位之间的差值 差值增大→兴奋性降低。
2.Na+通道的形状
心肌细胞兴奋的产生是以Na+通道能够被激活作为前提。Na+通道可表现 为激活、失活和备用三种功能状态。
对新刺激的反应能力 任何强大刺激无反应
兴奋性 下降到零
强大刺激产生局部反应 极度降低
阈上刺激产生常
阈下刺激产生去极化速度 和幅度稍小的动作电位
高于正常
三、兴奋性
(三)心肌兴奋时兴奋性的周期性变化的特点和意义
1.特点:有效不应期特别长,相当于整个收缩期和舒张早期。
有效不应期
绝对不应期 局部反应期
相对不应期
超常期
三、兴奋性
(二)心肌兴奋性的周期性变化
兴奋性变化分期
有效 不应 期
绝对不应期 局部反应期
相对不应期
超常期
对应的位置
0期~3期膜电位 - 55mv 3期膜电位 -55mv ~ -60mv
3期膜电位 -60mv~ -80mv
3期膜电位 -80mv ~ -90mv

生理学课件之心脏

生理学课件之心脏


搏出功
心室功能曲线(ventricular function curve) 收缩能力
对照
收缩能力
12 ~ 15 mmHg 最适前负荷
5 10 15 20 25 30
左心房平均压 (mmHg)
(前负荷和初长度对心脏泵血功能的影响)
① 正常左室充盈压:5 ~ 6 mmHg — 正常心室是在功能曲线
左右两侧心房或两侧心室几乎同步活动 全心舒张期:心房和心室都处于舒张期
心率 心动周期
收缩期和舒张期均 (舒
张期缩短的比例大) 心肌休息时间相对缩短
例:冠心病:心率 心肌易缺血
(二)心脏的泵血过程
1. 心室收缩期 (systole)
① 等 容 收 缩 期 (period of isovolumic contraction)
二、心脏泵血功能的评价
(一)心脏的输出量
1. 每搏输出量和射血分数
一次心跳一侧心室射出的血液量,称每博输出量(搏出 量)stroke volume。正常值:70 (60 ~ 80) ml。是衡量 心脏泵血功能的基本指标。
搏出量占心室舒张末期容积的百分比,称射血分数 ejection fraction。正常值:55% ~ 65%。能更准确地反 映心脏的泵血功能。
在整体情况下(长时): 动脉压持续高
心肌长期收缩加强
例:高血压性心脏病
心肌肥厚(病理性)
泵血功能减退
(三) 心肌收缩能力对搏出量的影响——等长自身调节
心肌收缩能力(myocardial contractility): 心肌不依赖于负荷而改变其力学活动(包括收
缩活动的强度和速度)的一种内在特性。 在某些因素作用下,心肌内在收缩能力(与前、

血液循环—心脏生理(生理学课件)

血液循环—心脏生理(生理学课件)

心室舒张 充盈
等容舒张期:心室开始舒张 → 室内压↓ (约0.08s) →室内压<动脉压→动脉瓣关闭
室内压>房内压→房室瓣仍关闭
心室射血期:心室肌继续舒张 →室内压↓↓ →室内压<房内压
(约0.42s ) →房室瓣开放 →血液自心房充盈入心室
第一节 心脏生理
1. 心脏泵血过程
心脏泵血过程示意图
第一节 心脏生理
1
心脏生理
2
血管生理
3
心血管活动的调节
第一节 心脏生理
1. 心脏泵血过程
心脏泵 血过程
心室收缩 射血
等容收缩期:心室开始收缩 → 室内压↑ (约0.05s) →室内压>房内压→房室瓣关闭
室内压<动脉压→动脉瓣仍关闭
心室射血期:心室肌继续收缩 →室内压↑↑ →室内压>动脉压
(约0.25s ) →动脉瓣开放 →心室射血入动脉
动脉瓣关闭 房室瓣关闭
房室瓣关闭 动脉瓣开放
动脉瓣关闭 房室瓣关闭
动脉瓣关闭 房室瓣开放
停滞于心室 心室→动脉 停滞于心房 心房→心室
不变 缩小 不变 增大

心动周期各期中心腔压力对比、瓣膜与血流变化规律
分期
时间 室内压变化与各部压力对比 瓣膜开闭
血流方向 心室容积
心室 收缩期
等容 收缩期
射血期
0.05S 0.25S
心室 舒张期
等容 舒张期
充盈期
0.08S 0.42S
房内压<室内压↑<动脉压 房内压<室内压↑↑>动脉压 房内压<室内压↓<动脉压 房内压>室内压↓↓<动脉压

心脏电生理学

心脏电生理学
干细胞来源的心肌细胞的电生理特性,为心脏疾病的细胞治疗提供依据。
心电信号的个性化治疗研究
总结词
个性化治疗是根据患者的个体差异制定治疗 方案的方法,通过心电信号的个性化治疗研 究,有望实现心脏疾病的精准治疗。
详细描述
心电信号是心脏功能的重要指标,通过心电 信号的个性化治疗研究,可以了解不同个体 心电信号的特点和差异。这将有助于根据患 者的具体情况制定个性化的治疗方案,提高 治疗效果。此外,心电信号的个性化治疗研 究还有助于发现新的治疗靶点和药物作用机
心电信号的干细胞治疗研究
总结词
干细胞治疗是一种新兴的治疗方法,通过心电信号的干细胞治疗研究,有望为心脏疾病 的治疗提供新的途径。
详细描述
干细胞治疗具有自我更新和多向分化的潜力,可以用于修复和再生受损的心肌组织。通 过心电信号的干细胞治疗研究,科学家们可以了解干细胞对心脏电生理特性的影响,优 化干细胞治疗的方案,提高治疗效果。此外,心电信号的干细胞治疗研究还有助于探索
窦性心动过缓
窦房结发放冲动的频率异常减慢,导 致心跳过慢。
房性心律失常
01
02
03
房性早搏
心房肌细胞提前发放冲动 ,引起心跳提前。
心房扑动
心房肌细胞发放冲动的频 率异常增加,导致心跳过 快。
心房颤动
心房肌细胞发放冲动的频 率异常减慢或紊乱,导致 心跳不规律。
室性心律失常
室性早搏
心室肌细胞提前发放冲动 ,引起心跳提前。
远程诊断能够提高医疗服务的效率和质量,降低医疗成本,缓解医疗资源紧张的问题。
05
心脏电生理疾病的治 疗
药物治疗
抗心律失常药物
用于治疗心律失常,如房颤、室 性早搏等,通过抑制心肌细胞的

研究心脏生理学与心脏病理

研究心脏生理学与心脏病理
研究心脏生理学与心脏病理
汇报人:XX 2024-02-05
目录
• 心脏生理学基础 • 心脏病理学概述 • 心脏常见疾病及其病理机制 • 心脏生理与病理的相互关系 • 心脏疾病的诊断与治疗 • 心脏生理学与心脏病理的研究前景
01 心脏生理学基础
心脏的解剖结构
01
02
03
心脏的位置和形态
心脏位于胸腔中部,稍偏 左下方,呈倒置的圆锥形 。
遗传因素与环境因素
遗传因素与环境因素共同作用于心脏生理与病理 过程,影响心脏疾病的发生和发展。
05 心脏疾病的诊断与治疗
心脏疾病的诊断方法
临床症状与体征分析
根据患者的症状、病史和体格检查,初步判 断心脏疾病类型。
影像学检查
如超声心动图、心脏核磁共振等,观察心脏 结构、功能及血流情况。
心电图检查
记录心脏电活动,分析心律失常、心肌缺血 等异常表现。
心肌纤维化与硬化使心脏顺应性降低,影响心脏舒张功能,加重心脏 负荷。
心脏生理与病理的相互作用机制
神经调节失衡
心脏受自主神经调节,病理状态下神经调节失衡 可加重心脏疾病。
炎症反应与氧化应激
心脏病理过程中炎症反应与氧化应激相互作用, 加重心肌损伤和心脏功能障碍。
ABCD
内分泌激素影响
内分泌激素如儿茶酚胺、肾素-血管紧张素等参 与心脏生理与病理过程,影响心脏功能。
心脏再生医学和心脏移植等新技术 的发展,将为心脏疾病的治疗带来 更多的选择和可能性,有望为心脏 疾病患者带来更好的治疗效果和生 活质量。
THANKS FOR WATCHING
感谢您的观看
心脏瓣膜功能异常
瓣膜狭窄或关闭不全可影响心脏血流动力学,导致心脏负荷增加, 进而引发心脏疾病。

生理学心脏生理

生理学心脏生理

生理学心脏生理
生理学心脏生理是指探讨心脏的结构、功能和调节机制的学科。

心脏是一个中空的肌肉器官,主要功能是将血液泵送到身体各个部位,以供氧气和营养物质的运输和代谢。

心脏的结构包括心房、心室、心瓣和心包等部分,而心脏的功能则由心肌细胞的收缩和放松来完成。

心脏收缩的过程受到神经、荷尔蒙和离子浓度等多种因素的调节,其中最重要的是自主神经系统的影响。

心脏生理的研究除了对心脏本身的了解外,还有助于理解心血管疾病的发生和治疗。

- 1 -。

《心脏电生理学基础》课件

《心脏电生理学基础》课件

未来研究方向与展望
未来心脏电生理学的研究将更加注重基础与临床的结合,推动科研成果的转化和应 用。
随着人工智能和大数据技术的发展,心脏电生理学将借助这些技术手段对海量数据 进行处理和分析,以揭示心脏疾病的发病规律和预测模型。
未来心脏电生理学的研究将更加关注心脏疾病的预防和早期干预,通过改善生活方 式和药物治疗等手段降低心脏疾病的发生率和死亡率。
心脏电生理学面临的挑战
01
心脏电生理学的实验研究需要 高度专业化的技术和设备,实 验成本较高,限制了研究的广 泛开展。
02
目前对心脏电生理活动的理解 仍不够深入,对一些复杂的心 律失常机制仍不清楚,需要进 一步探索。
03
心脏电生理学的研究需要跨学 科的合作,如何有效整合不同 学科的资源和技术是面临的挑 战之一。
代谢功能
心脏通过分泌心房钠尿肽等激素,参与水盐代谢 和血压调节。
心脏的电生理特性
01
02
03
心电的产生
心肌细胞膜电位变化产生 心电,心电通过心脏组织 和导电溶液传导。
心电的传导路径
心电从窦房结传至心房, 再传至心室,最后传至身 体各部位。
心电的生理意义
心电的生理意义在于驱动 心脏肌肉收缩,维持血液 循环。
指导治疗
根据电生理检查结果,医 生可以制定个性化的治疗 方案,如药物治疗、射频 消融或起搏器植入等。
心脏起搏器植入术
治疗心动过缓
对于严重心动过缓的患者,植入心脏 起搏器可以改善心脏的泵血功能,提 高生活质量。
预防猝死
改善症状
植入心脏起搏器后,患者的心悸、乏 力、头晕等症状可以得到明显改善。
对于有猝死风险的患者,植入心脏起 搏器可以预防恶性心律失常的发生。

心脏电生理学

心脏电生理学

心脏电生理学一、前言心脏电生理学是研究心脏电活动的学科,它包括了心脏的电生理特性、心律失常的机制、心脏起搏系统以及电生理药物等方面。

本文将从心脏电活动的基础知识、心律失常的分类和机制、起搏系统以及治疗方面进行详细介绍。

二、心脏电活动的基础知识1. 心肌细胞的类型心肌细胞分为工作性细胞和特殊性细胞两种。

工作性细胞主要负责产生收缩力,而特殊性细胞则主要负责传导冲动。

2. 心肌细胞动作电位心肌细胞在兴奋时会发生动作电位,它可以分为5个阶段:静息状态(0期)、快速上升期(1期)、平台期(2期)、快速下降期(3期)和恢复期(4期)。

3. 心肌细胞离子通道在不同阶段,离子通道对于离子的进出起到了至关重要的作用。

其中钠通道和钙通道主要参与快速上升期和平台期,而钾通道则主要参与快速下降期和恢复期。

三、心律失常的分类和机制1. 心律失常的分类心律失常可以分为房性、室性和房室交界性三种类型。

其中,房性和室性是最常见的两种类型。

2. 心律失常的机制不同类型的心律失常机制也不同。

例如,房性心律失常多数是由于窦房结自主节律受到干扰而引起的;而室性心律失常则多数是由于心肌细胞异常兴奋或传导障碍而引起的。

四、起搏系统1. 起搏系统的组成起搏系统包括窦房结、房室结、束支及其分支以及工作性细胞等。

2. 起搏系统的功能起搏系统主要负责产生冲动并传导冲动,使心脏在一定节奏下收缩。

3. 起搏系统的异常当起搏系统出现异常时,就会导致心脏节律紊乱。

例如窦房结功能不良时会出现窦房传导阻滞;而束支传导障碍则会导致室性心律失常。

五、心脏电生理药物1. 心脏电生理药物的分类心脏电生理药物可以分为抗心律失常药、β受体阻滞剂、钙通道阻滞剂和钾通道阻滞剂等。

2. 心脏电生理药物的作用机制不同类型的心脏电生理药物作用机制也不同。

例如,抗心律失常药主要是通过影响离子通道来抑制异常兴奋;而β受体阻滞剂则是通过减慢窦房结节律来治疗房性心律失常。

六、结语本文简单介绍了心脏电生理学的基础知识、心律失常的分类和机制、起搏系统以及治疗方面。

(生理学PPT)心脏的电生理学及生理特性

(生理学PPT)心脏的电生理学及生理特性
条件:①膜两侧存在浓度差: [K+]i > [K+]o=35∶1 [Na+]i< [Na+]o=1∶14.5
②膜通透性具选择性:K+
b.钠背景电流
2.心室肌细胞的动作电位
窦房结细胞
心室肌细胞

12
0
3
4
1.心室肌细胞AP
0期:
刺激 ↓
去极化 ↓
阈电位 ↓
激活快Na+通道 ↓
Na+再生式内流 ↓
Na+平衡电位 (0期)
(去极化0+复极化1、2、3+恢复4期) 0期
不被河豚毒(TTX)阻断
1期:快速复极初期
快Na+通道失活 +
激活Ito通道
↓ K+一过性外流
↓ 快速复极化
(1期)
Ito通道的特点:
1期
按任意键显示动画2
1.电压K门+ 控通道: 膜电位到-40mv时被激活 2.可N被a+ 四乙基铵和4-氨基吡啶等阻断





产生AP 绝对不应期 局部反应期 相对不应期 超常期




兴奋性正常 兴奋性无
兴奋性低 兴奋性高
LRP ARP
心室肌兴奋性的周期性变化
周期变化 对应位置 机制
新AP产生能力
有效不应期 去极化→复极化-60mV43;通道处于
-55mV 完全失活状态
局部反应期: ↓
代偿间歇compensatory pause:一次期前收缩 之后所出现的一段较长的舒张期称为代偿性间歇。
(1)不发生完全强直收缩
主要特点是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心脏的生理学
西安交大第一附属医院付和睦
自动节律性
窦房结为起搏点,迷走神经控制 房室结、普肯野氏纤维为潜在起搏 点。
正常心率60—80次/分
心脏传导性
特点为由起搏点开始逐步沿着各 级传导系统扩展到整个心脏。
房室延搁:心室的活动稍迟于心 房,便于心室灌注。
心室肌协调性和速度快,利于射血。
心脏兴奋性
1. 心肌兴奋绝对不应期较骨骼肌 长(0.2-0.3s)
2. 期前收缩与代偿间歇
心脏收缩性
1.心肌收缩的“全或无”现象,协调 一致
2.室颤(收缩不同步)
心动周期
收缩和舒张 心率:大于100次/分为心动过速,低于 60次/分为心动过缓。 生理变异很大,随年龄、性别、情绪、 体位、活动度、体能等多种因素影快速和缓慢
射血期 舒张期:等容期、快速和缓慢
充盈期
心动周期
心音 第一心音:收缩音 第二心音:舒张音
心输出量及影响因素
1.每搏输出量和输出量/分 2.心指数:安静状态下单位体表面 积的心输出量(L/min·m2) 3.心率及心肌收缩力影响心输出量
血管
动静脉和毛细血管
儿童特点
1.心率快、心率不齐、心脏杂音、舒张压低、 收缩力弱、收缩压低 2.心输出量低
谢谢!
动脉血压
1.血压(动脉收缩压和舒张压)形成 2.血压形成影响因素:心输出量、外周 阻力、大动脉弹性 3.测量血压 4.脉搏
静脉血压
中心静脉压
心血管神经、反射、体液调节
1.中枢神经:主要为脑干 心交感神经:交感神经缩血管纤 维,兴奋 心迷走神经:抑制 2.动脉压力和化学感受器: 3.肾上腺素和去甲肾上腺素
相关文档
最新文档