高考物理二轮复习:带电粒子在有界磁场中运动的临界问题

合集下载

(完整版)带电粒子在有界磁场中运动的临界问题

(完整版)带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有自身的一些特点。

一、解题方法解决磁场的问题关键是三找,即“找圆心”、“找半径”、“找时间”,在临界问题中又需要遵循思路:画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图T动态分析T找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了——这一般都不难。

)二、常见题型(B为磁场的磁感应强度,V。

为粒子进入磁场的初速度)分述如下:第一类问题:例1如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率V。

垂直匀强磁场射入,入射方向与CD边界夹角为9。

已知电子的质量为m电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v o至少多大?分析:如图2,通过作图可以看到:随着V。

的增大,圆半径增大,临界状态就是圆与边界EF 相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点0正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m电量为e、速度为v o=BeL/ m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP,打在O点左侧最远距离OO ___ 。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m带电荷量为一q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

带电粒子在有界磁场中的临界,极值,多解问题

带电粒子在有界磁场中的临界,极值,多解问题

带电粒子在匀强磁场中的运动---临界问题、极值问题与多解问题一、带电粒子在有界磁场中运动的临界和极值问题带电粒子在有界磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速率v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长;(3)当速率v变化时,圆心角大的,运动时间越长。

【例1】如图所示真空中狭长区域的匀强磁场的磁感应强度为B,方向垂直纸面向里,宽度为d,速度为v的电子从边界CD外侧垂直射入磁场,入射方向与CD间夹角为θ.电子质量为m、电量为q.为使电子从磁场的另一侧边界EF射出,则电子的速度v应为多大?二、带电粒子在有界磁场中运动的多解问题1. 带电粒子电性不确定形成多解.受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度下,正负粒子在磁场中的运动轨迹不同,形成多解.2. 磁场方向不确定形成多解.3. 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧形的,它可能穿过去,也可能转过180°从磁场的入射边界边反向飞出,于是形成多解.4. 运动的重复性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有重复性,形成多解.【例2】 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。

带电粒子在有界磁场中运动的临界问题极值问题和多解问题

带电粒子在有界磁场中运动的临界问题极值问题和多解问题
③设轨道与 cd 相切的粒子,其轨道半径为 R1,由几 何关系可得
R1sin30°+2l =R1
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
由几何关系知
OA= AS2-OS2 AS=2r′ OS=r′ OC=r′ 解得 OA= 3L,OC=L 故被电子打中的区域长度为
AC=OA+OC=(1+ 3)L.
【答案】
BeL (1) 2m
(2)(1+ 3)L
题后反思 (1)审题应首先抓住“速率相等”⇒即轨迹圆半径相 等,其次“各个方向发射”⇒轨迹不同.然后作出一系 列轨迹圆. (2)注意粒子在磁场中总沿顺时针方向做圆周运动, 所以粒子打在左边和右边最远点的情形不同.
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
例 1 如图所示,S 为一个电子源,它可以在纸面内 360°范围内发射速率相同的质量为 m、电量为 e 的电子, MN 是一块足够大的挡板,与 S 的距离 OS=L,挡板在 靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强 度为 B,问:

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

解决带电粒子在有界磁场中运动的临界问题的两种方法此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ① 轨迹圆的缩放:当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.(多选)如图1所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点。

一个带正电的粒子仅在磁场力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场。

带电粒子在有界磁场中运动的临界极值问题和多解问题

带电粒子在有界磁场中运动的临界极值问题和多解问题

第八章 第4节
高考调研
高三物理(新课标版)
受洛伦兹力作用的带电粒子,可能带正电,也可能 带负电,在相同的初速度的条件下,正、负粒子在磁场 中运动的轨迹不同,形成多解.
如图所示,带电粒子以速率 v 垂直进入匀强磁场, 如果带正电,其轨迹为 a;如果带负电,其轨迹为 b.
第八章 第4节
高考调研
高三物理(新课标版)
第八章 第4节
高考调研
高三物理(新课标版)
(1)轨迹圆的缩放:当粒子的入射方向不变而速度大 小可变时,粒子做圆周运动的轨迹圆心一定在入射点所 受洛伦兹力所表示的射线上,但位置(半径 R)不确定,用 圆规作出一系列大小不同的轨迹圆,从圆的动态变化中 即可发现“临界点”.
(2)轨迹圆的旋转:当粒子的入射速度大小确定而方 向不确定时,所有不同方向入射的粒子的轨迹圆是一样 大的,只是位置绕入射点发生了旋转,从定圆的动态旋 转(作图)中,也容易发现“临界点”.
(1)若使电子源发射的电子能到达挡板,则发射 速度最小为多大?
(2)如果电子源S发射电子的速度为第(1)问中的2 倍,则挡扳上被电子击中的区域范围有多大?
第八章 第4节
高考调研
高三物理(新课标版)
【解析】 (1)电子射出方向不同,其在匀强磁场中 的轨迹不同,每个电子的圆轨道的圆心都位于以射出点 S 为圆心、半径 r=mBev的圆弧上,如图所示.欲使电子有 可能击中挡板,电子的轨道半径至少为L2,如图所示.
第八章 第4节
高考调研
高三物理(新课标版)
4.运动的重复性形成多解:带电粒子在部分是电场、 部分是磁场空间运动时,往往运动具有⑦__周_期__性___,因 而形成多解.
第八章 第4节
高考调研

带电粒子在有界磁场中的运动的临界问题PPT课件

带电粒子在有界磁场中的运动的临界问题PPT课件
qB
决定,和磁感应强度B 决定。
角速度: ω qB m
频率: f 1 qB
T 2 m
5 动能: Ek

1 mv 2 2
(qBR)2 2m 2019/12/14
解题的基本过程与方法
1 找圆心:

已知任意两点速度方向:作垂线
可找到两条半径,其交点是圆心。
v
已知一点速度方向和另外一点的
面内,与x轴正向的夹角为θ 。若粒子射出磁场
的位置与O点的距离为L,求该粒子的比荷q/m。
y
p
o
θ
x
v
1
6
2019/12/14
入射速度与边界夹角=
出射速度与边界夹角
y
R sin L
4
v pθ
o
θ
q 2v sin
m
LB x
θθ
f洛
v
1
7
2019/12/14
带电粒子在圆形磁场中的运动
2.解题的基本步骤为:找圆心——画轨迹——定半径
3.注意圆周运动中的对称性:
(1) 粒子进入单边磁场时,入射速度与边界夹角等于出射 速度与边界的夹角,并且两个速度移到共点时,具有轴 对称性。
(2) 在圆形磁场区域内,沿径向射入的粒子,必沿径向射 出. 4、解题经验:运动轨迹的半径R往往跟线速度V联系在一起, 进而跟磁感应强度B 、质荷比q/ml有关。运动轨迹对应的圆心
例、一正离子,电量为q ,质量为m, 垂直射入磁感应强度为B、宽度为d
的匀强磁场中,穿出磁场时速度方向 与其原来入射方向的夹角是30°,
d
v v30°
(1)离子的运动半径是多少?
θ

带电粒子在有界磁场中运动(超经典)..#(优选.)

带电粒子在有界磁场中运动(超经典)..#(优选.)

带电粒子在有界磁场中运动的临界问题“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。

带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。

一、解题方法画图→动态分析→找临界轨迹。

(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。

)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。

一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。

已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。

第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。

【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。

P为屏上的一小孔,PC与MN垂直。

一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。

2015高考物理二轮复习:带电粒子在有界磁场中运动的临界问题

2015高考物理二轮复习:带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。

在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(25C ),并可归并为6大类型。

所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一..定顺序...尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。

【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A .使粒子的速度v <BqL 4mB .使粒子的速度v >5BqL4mC .使粒子的速度v >BqL mD .使粒子的速度BqL 4m <v <5BqL4m【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。

轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

【解答】 AB粒子擦着板从右边穿出时,圆心在O 点,有 r 12=L 2+(r 1-L2)2 ,得 r 1=5L 4由 r 1=mv 1Bq ,得 v 1=5BqL 4m ,所以v >5BqL4m时粒子能从右边穿出.类型已知参量类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦入射方向、出射方向类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向图乙图甲 ①②入射点入射方向 入射速度大出射点出射方向 ①② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着上板从左边穿出时,圆心在O ′点,有 r 2=L4由 r 2=mv 2Bq ,得 v 2=BqL 4m ,所以v <BqL4m时粒子能从左边穿出.【易错提醒】容易漏选A ,错在没有将r 先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。

带电粒子在边界磁场中运动的问题

带电粒子在边界磁场中运动的问题

带电粒子在有界磁场中运动的临界极值问题和多解问题、复合场问题一、带电粒子在有界磁场中运动的临界极值问题★★★规律方法1.解决此类问题关键是找准临界点,审题应抓住题目中的“恰好”“最大”“最高”“至少”等词语作为突破口,挖掘隐含条件,分析可能的情况,如有必要则画出几个不同半径相应的轨迹图,从而分析出临界条件.寻找临界点的两种有效方法:(1)轨迹圆的缩放:当粒子的入射方向不变而速度大小可变时,粒子做圆周运动的轨迹圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹圆,从圆的动态变化中即可发现“临界点”.(2)轨迹圆的旋转:当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.2.要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观.★★★规律总结1.解决此类问题的关键是:找准临界点.2.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角大的,运动时间越长.(一).带电粒子在平行直线边界磁场中的运动例题:如图所示,S为一个电子源,它可以在纸面内360°范围内发射速率相同的质量为m、电量为e的电子,MN是一块足够大的挡板,与S的距离OS=L,挡板在靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强度为B,问:(1)若使电子源发射的电子能到达挡板,则发射速度最小为多大?(2)如果电子源S发射电子的速度为第(1)问中的2倍,则挡扳上被电子击中的区域范围有多大?(二).带电粒子在矩形边界磁场中的运动①速度较小时粒子作半圆运动后从原边界飞出;①速度较小时粒子做部分圆周运动后从原边界飞出;②速度在某一范围内时从侧面边界飞出;②速度在某一范围内从上侧面边界飞;③速度较大时粒子作部分圆周运动从对面边界飞出。

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题

超全带电粒子在有界磁场中运动的临界问题极值问题和多解问题
③设轨道与 cd 相切的粒子,其轨道半径为 R1,由几 何关系可得
R1sin30°+2l =R1
第21页,共45页。
解得 R1=l,由公式 qvB=mv2/R,得该轨道上粒子 速度为 v01=qmBl.
④对于从 ab 射出的、速度最小的粒子,其轨道应与 ab 相切,设切点为 N,圆心为 O2,半径为 R2,则 R2+ R2cos60°=12l,解得 R2=13l,由 qvB=mv2/R 可得 v02=q3Bml.
第23页,共45页。
从 ad 边上射出,转过的角度均为53π,这些粒子在磁场中 运动的时间最长,tmax=53πqmB .
【答案】
(1)q3Bml<v0<qmBl
5πm (2)3qB
第24页,共45页。
二、带电粒子在磁场中做匀速圆周运动的多解问题 规律方法 1.带电粒子电性不确定形成多解
第25页,共45页。
超全带电粒子在有界磁场中运动 的临界问题极值问题和多解问题
第1页,共45页。
一、带电粒子在有界磁场中运动的临界极值问题 1.刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界①__相__切____. 2.当速度 v 一定时,弧长(或弦长)越长,圆周角越大, 则带电粒子在有界磁场中运动的时间②___越__长___.
第22页,共45页。
(1)综合③④结论知,所有从 ab 上射出的粒子的入射 速度 v0 的范围应为q3Bml<v0<qmBl.
(2)带电粒子在磁场中运动的时间 t=ωθ =vθ=qθBRR= Rm
θqmB,由此可知,t 取决于粒子在磁场中转过的角度,从上 面的分析可以推知,当粒子轨道半径 R≤R2 时,粒子均
则粒子再经过半圆 Cn+1 就能够经过原点,式中 n= 1,2,3……为回旋次数.

带电粒子在有界磁场中运动 的临界问题解析

带电粒子在有界磁场中运动 的临界问题解析

带电粒子在有界磁场中运动的临界问题解析“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动” 则是此考点中的一个难点.其难点在于带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,然后应用数学工具和相应物理规律分析解决问题.下面举例谈谈带电粒子在不同形状有界磁场中运动的一些临界问题.一、 带电粒子在“圆形磁场区域”中的运动例1、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.解:由qvB =Rv m 2可求R =0.2m由圆心角=偏向角,当粒子从O 点射出后穿过磁场路径最大时,对应圆心角最大。

由几何关系圆心角为60º 故最大偏角为60 º二、带电粒子在“长方形磁场区域”中的运动例2、如图2,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.解:两种情形1.当粒子以较小速度射入从磁场左边界射出,对应最大速度为v 1,半径为r 1图2⨯⨯⨯⨯⨯⨯⨯⨯→∙d LvmqBdv dr r v m B qv 4 4111211===可求2.以较大速度射入从磁场右边界射出对应最小速度v 2,半径r 2mdL d qB v L dr r r mv B qv 4)4()2( 222222222222+=+-==可求三、带电粒子在“三角形磁场区域”中的运动例3、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,(边界无磁场)有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图3所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件.解:若粒子恰好与AC 相切.轨道半径为r 1,速度为v 1mqBa v mqBam qBa v a r r a r v r BC mqBa v a r r mv B qv a r r 3)336(3 330cos ])32([)336()336( 330cos 22222211121111<<-===-+-=-===+故可求速度为相切半径为若粒子恰好与可求图3DB四、带电粒子在“宽度一定的无限长磁场区域”中的运动例4、如图4所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=, A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系.解:①粒子运动的最大半径处至点右侧从板范围为打在范围点至距板上范围为打在m m Q B m d P P A mqB mv r mm 222210110)32(100.12102----⨯⨯-⨯=⨯==6108sin sin 2⨯====mqBdv qBmv r dr θθ则②五、带电粒子在“单边磁场区域”中的运动例5、如图5所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解:y 轴范围mqBmvr rr 1.03==-至从练习1.在半径为R 的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B 。

高考物理复习 (超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

高考物理复习 (超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

第八章 第4节
高考调研
高三物理(新课标版)
一、带电粒子在有界磁场中运动的临界极值问题 规律方法 1.解决此类问题关键是找准临界点,审题应抓住题 目中的“恰好”“最大”“最高”“至少”等词语作为 突破口,挖掘隐含条件,分析可能的情况,如有必要则 画出几个不同半径相应的轨迹图,从而分析出临界条 件.寻找临界点的两种有效方法:
第八章 第4节
高考调研
高三物理(新课标版)
3.临界状态不唯一形成多解 带电粒子在洛伦兹力作用下飞越有界磁场时,由于 粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可 能转过 180°从入射界面这边反向飞出,如图所示,于是 形成了多解.
第八章 第4节
高考调研
高三物理(新课标版)
4.运动的往复性形成多解 (1)带电粒子在部分是电场、部分是磁场的空间运动 时,运动往往具有往复性,从而形成多解.如图所示.
第八章 第4节
高考调研
高三物理(新课标版)
(2)带电粒子在磁场中运动时,由于磁场方向突然反 向等,使得运动具有往复性而形成多解.
第八章 第4节
高考调研
高三物理(新课标版)
例 2 如图所示,在 x<0 与 x>0 的区域中,存在磁感 应强度大小分别为 B1 与 B2 的匀强磁场,磁场方向均垂直 于纸面向里,且 B1>B2.一个带负电荷的粒子从坐标原点 O 以速度 v 沿 x 轴负方向射出,要使该粒子经过一段时间 后又经过 O 点,B1 与 B2 的比值应满足什么条件?
可能
第八章 第4节
高考调研
高三物理(新课标版)
3.临界状态⑥_不__同_____形成多解:带电粒子在洛伦 兹力作用下飞越有界磁场时,由于粒子运动速度不同, 因此,它可能穿过去了,可能转过 180°从入射界面这边 反向飞出,如图所示,于是形成多解.

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

(超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

(1)若要粒子从ab边上射出,则 入射速度v0的范围是多少?
(2)粒子在磁场中运动的最长
时间为多少?
第19页,共42页。
第八章 第4节
高考调研
高三物理(新课标版)
【解析】 ①带电粒子在 O 点所受洛伦兹力方向垂 直于 v0,即图中 OO1 方向,所有粒子的轨道圆心均应在 直线 OO1 上.
第20页,共42页。
借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分
析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,
常用结论如下:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边
界相切.
(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在
有界磁场中运动的时间越长.
第八章 第4节
高考调研
高三物理(新课标版)
例 2 如图所示,在 x<0 与 x>0 的区域中,存在磁感 应强度大小分别为 B1 与 B2 的匀强磁场,磁场方向均垂直 于纸面向里,且 B1>B2.一个带负电荷的粒子从坐标原点 O 以速度 v 沿 x 轴负方向射出,要使该粒子经过一段时间 后又经过 O 点,B1 与 B2 的比值应满足什么条件?
第18页,共42页。
第八章 第4节
高考调研
高三物理(新课标版)
跟踪训练 1 如图所示,一足够长的矩形区域 abcd 内有磁感应强度为 B,方向垂直纸面向里的匀强磁场,现 从 ad 边的中点 O 处,以垂直磁场且跟 ad 边成 30°角的速 度方向射入一带电粒子.已知粒子质量为 m,带电荷量 为 q,ad 边长为 l,不计粒子重力.求:
第22页,共42页。
第八章 第4节
高考调研
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在有界磁场中运动的临界问题的解题技巧所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。

类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。

【例1】如图所示,长为L的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L,板不带电.现有质量为m、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是A.使粒子的速度v <\f(Bq L,4m) ﻩ B.使粒子的速度v >错误! C.使粒子的速度v >错误!ﻩ ﻩD.使粒子的速度错误!<v <错误!【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。

轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。

【解答】 AB类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙图甲①②入射点 入射方向入射速度大出射点出射方向 ① ② ③ ④ ⑧ ⑨ ⑤⑥⑦⑩粒子擦着板从右边穿出时,圆心在O点,有 r 12=L 2+(r 1-错误!)2 , 得 r1=错误!由 r1=mv 1Bq,得 v 1=\f(5BqL,4m ) ,所以v >错误!时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O′点,有 r 2=错误!由 r 2=错误! ,得 v 2=错误! ,所以v<错误!时粒子能从左边穿出.【易错提醒】容易漏选A ,错在没有将r 先取较小值再连续增大,从而未分析出粒子还可以从磁场左边界穿出的情况。

【练习1】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y 轴,交点O 为原点,如图所示。

在y >0,0<x<a 的区域有垂直于纸面向里的匀强磁场,在y >0,x >a 的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B 。

在O 点处有一小孔,一束质量为m、带电量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。

入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x <a 的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T 为该粒子在磁感应强度为B 的匀强磁场中作圆周运动的周期。

试求两个荧光屏上亮线的范围(不计重力的影响)。

【分析】粒子在0<x <a 的区域中的运动属于初速度方向已知、大小不确定的情况,在垂直初速度的直线(即y 轴)上取不同点为圆心,半径由小取到大,作出一系列圆(如图甲),其中轨迹圆①与直线x =a 相切,为能打到y 轴上的粒子中轨道半径最大的;若粒子轨道半径大于轨迹圆①,粒子将进入x >a 的区域,由对称性可知,粒子在x>a 的区域内的轨迹圆圆心均在在x =2a 直线上,在x =2a 直线上取不同点为圆心,半径由小取到大,可作出一系列圆(如图乙),其中轨迹圆①'为半径最小的情况,轨迹圆②为题目所要求的速度最大的粒子的轨迹。

【答案】竖直屏上发亮的范围从0到2a ,水平屏上发亮的范围从2a到2323x a a =+ 【解答】 粒子在磁感应强度为B的匀强磁场中运动半径为:mvr qB=① 速度小的粒子将在x <a 的区域走完半圆,射到竖直屏上。

半圆的直径在y 轴上,半径的范围从0到a ,屏上发亮的范围从0到2a 。

轨道半径大于a 的粒子开始进入右侧磁场,考虑r=a 的极限情况,这种粒子在右侧的圆轨迹与x 轴在D 点相切(虚线),O D=2a ,这是水平屏上发亮范围的左边界。

速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C 和'C ,C 在y轴上,有对称性可知'C 在x =2a 直线上。

设t 1为粒子在0<x <a的区域中运动的时间,t 2为在x >a 的区域中运动的时间,由题意可知② ①'①图乙 图甲 a 2a 2a a x1225t t =,12712T t t +=由此解得:16T t = ② 1512T t = ③ 由②③式和对称性可得 60OCM ∠= '60MC N ∠= ⑤5'36015012MC P ∠=⨯= ⑥ 所以'1506090NC P ∠=︒-︒=︒ ⑦ 即弧长NP 为1/4圆周。

因此,圆心'C 在x 轴上。

设速度为最大值粒子的轨道半径为R ,有直角'COC 可得2sin602R a ︒= 233R a = ⑧由图可知OP =2a +R ,因此水平荧光屏发亮范围的右边界的坐标 2323x a a =+ ⑨【易错提醒】本题容易把握不住隐含条件——所有在x >a的区域内的轨迹圆圆心均在在x=2a 直线上,从而造成在x >a 的区域内的作图困难;另一方面,在x >a 的区域内作轨迹圆时,半径未从轨迹圆①半径开始取值,致使轨迹圆①'未作出,从而将水平荧光屏发亮范围的左边界坐标确定为x =a 。

类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定 这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为 圆心,以mvr qB=为半径的圆。

【例2】如图所示,在0≤x≤a 、0≤y≤2a范围内有垂直手xy 平面向外的匀强磁场,磁感应强度大小为B 。

坐标原点O 处有一个粒子源,在某时刻发射大量质量为m、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在x Oy 平面内,与y 轴正方向的夹角分布在0~090范围内。

己知粒子在磁场中做圆周运动的半径介于a /2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小;(2)速度方向与y 轴正方向夹角的正弦。

【分析】本题给定的情形是粒子轨道半径r大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O ,入射点O 到任一圆心的距离均为r ,故所有轨迹圆的圆心均在一个“圆心圆”——以入射点O为圆心、r 为半径的圆周上(如图甲)。

考虑到粒子是向右偏转,我们从最左边的轨迹圆画起——取“圆心圆”上不同点为圆心、r为半径作出一系列圆,如图乙所示;其中,轨迹①对应弦长大于轨迹②对应弦长——半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长——故轨迹①对应圆心角为90°。

【答案】66(2)(2)22aqB R a v m α=-=-6-6,,sin =10图乙图甲 ① ②【解答】设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力得:2v qvB m R =,ﻩ解得:mvR qB=当a/2<R <a时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,t =T /4时,∠OC A=π/2设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得:sin sin cos 2aR R R a R ααα=-=-,,且 22sin cos 1αα+=解得:(2(2)22aqB R a v m α=-=-,,sin =10【易错提醒】由于作图不仔细而把握不住“轨迹①角都较小时(均小于180°),弦长越长,对应粒子在磁场中运动时间最长。

这类题作图要讲一个小技巧——按粒子偏转方向移动圆心作图。

【分析】以L 为半径、O 点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的轨迹开图甲 图乙始画起(轨迹①),在“圆心圆”取不同点为圆心、以L 为半径作出一系列圆(如图乙);其中轨迹①与轨迹④对称,在磁场中运动时间相同;轨迹②并不经过c点,轨迹②对应弦长短于轨迹③对应弦长——即沿轨迹③运动的粒子最后离开磁场。

【答案】06Bt m q π=,5/6 ,0)45arcsin 12(t t π=【解答】(1)初速度沿Od 方向发射的粒子在磁场中运动的轨迹如图,其园心为n,由几何关系有:6Onp π∠=, 120Tt =粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得R T m Bqv 2)2(π=,TRv π2=得ﻩﻩ6Bt m q π=(2)依题意,同一时刻仍在磁场中的粒子到O 点距离相等。

在t0时刻仍在磁场中的粒子应位于以O为园心,O p为半径的弧pw 上。

由图知 56pOw π∠=ﻩﻩ 此时刻仍在磁场中的粒子数与总粒子数之比为5/6(3)在磁场中运动时间最长的粒子的轨迹应该与磁场边界b 点相交,设此粒子运动轨迹对应的圆心角为θ,则ﻩﻩ452sin=θ在磁场中运动的最长时间 045arcsin 122t T t ππθ== 所以从粒子发射到全部离开所用时间为 0)45arcsin 12(t t π=。

【易错提醒】本题因作图不认真易错误地认为轨迹②经过c 点,认为轨迹②对应弦长等于轨迹③对应弦长,于是将轨迹②对应粒子作为在磁场中运动时间最长的粒子进行计算;虽然计算出来结果正确,但依据错误。

类型三:已知入射点和出射点,但未知初速度大小(即未知半径大小)和方向这类问题的特点是:所有轨迹圆圆心均在入射点和出射点连线的中垂线上。

【例3】如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于xO y平面向外,大小为B,沿x 轴放置一个垂直于xOy 平面的较大的荧光屏,P 点位于荧光屏上,在y 轴上的A 点放置一放射源,可以不断地沿平面内的不同方向以大小不等的速度放射出质量为m、电荷量+q 的同种粒子,这些粒子打到荧光屏上能在屏上形成一条亮线,P 点处在亮线上,已知OA =OP=l ,求:(1)若能打到P 点,则粒子速度的最小值为多少?(2)若能打到P 点,则粒子在磁场中运动的最长时间为多少?【分析】粒子既经过A 点又经过P 点,因此AP连线为粒子轨迹圆的一条弦,圆心必在该弦的中垂线OM 上(如图甲)。

相关文档
最新文档