二轮复习:数学笔记-排列组合专题
高中数学排列组合知识总结

高中数学排列组合知识总结排列组合问题的解题策略排列组合综合问题的一般解题规律:1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定:“分类”表现为其中任何一类均可独立完成所给的事件,所以分类计数原理强调完成一件事情的几类办法互不干扰,相互独立,不论哪类办法都能将事情单独完成;而“分步”必须把各步骤均完成才能完成所给事件,所以分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别在于是否与顺序有关。
3)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,掌握分类和分步的基本技能,达到分类标准明确,分步层次清楚,不重不漏。
总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。
下面介绍几种常用的解题方法和策略。
一、特殊元素——优先考虑法。
对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
例1、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有(B )。
A. 24个 B.30个 C.40个 D.60个例2. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.(72种)二.正难则反——总体排除法。
对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法.例3、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有( )种.故选C.A.140种 B.80种 C.70种 D.35种例4.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有 35-3=32个.三.相邻问题——用捆绑法。
高中数学排列与组合部分知识点总结

高中数学排列与组合部分知识点总结第一篇:高中数学排列与组合部分知识点总结高中数学排列与组合部分知识点总结排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)!Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n-1 ③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。
高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。
本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。
基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。
排列强调元素的顺序,而组合则不考虑元素的顺序。
排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。
2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。
如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。
这里就有A_{5}^{2}种不同的排列方式。
组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。
2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。
计算方法为C_{5}^{2}。
解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。
如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。
2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。
3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。
在解题时,要结合实际情况,灵活运用所学知识。
练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。
在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。
新高考数学复习考点知识讲解2---排列与组合

【自主解答】(1)法一: = = = .
法二: = = = = .
(2)∵A -A = -
= ·
= ·
=m·
=mA ,
∴A -A =mA .
给出下列四个关系式:
① ② ③ ④
其中正确的个数为()
故从8个顶点中任取三个均可构成一个三角形共有 个三角形,
从中任选两个,共有 种情况,
因为平行六面体有六个面,六个对角面,
从8个顶点中4点共面共有12种情况,
每个面的四个顶点共确定6个不同的三角形,
故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种,
故选:B.
8、5个男同学和4个女同学站成一排
(2)由题意作树形图,如图.
故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个
题型二排列公式计算
例2 (1)计算: ;(2)证明:A -A =mA .
(1)4个女同学必须站在一起,有多少种不同的排法?
(2)任何两个女同学彼此不相邻,有多少种不同的排法?
(3)其中甲、乙两同学之间必须有3人,有多少种不同的排法?
(4)男生和女生相间排列方法有多少种?
【答案】(1) ;(2) ;(3) ;(4) .
【分析】
(1)捆绑法求解即可;
(2)插空法求解即可;
(3)特殊位置法求解即可;
,D正确.
故选:BCD.
数学笔记-排列组合

排排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。
一.直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二.间接法当直2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个)三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五.阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
高中数学知识点总结 第十章排列组合和二项式定理

高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
高二排列组合知识点总结

高二排列组合知识点总结排列组合是高中数学中的重要内容,涉及到许多基本概念和重要定理。
本文将对高二阶段学习的排列组合知识点进行总结,以帮助学生复习和加深对该知识领域的理解。
一、排列与组合的基本概念1. 排列:从给定的元素集合中,选取若干个元素按照一定的顺序排列组成不同的序列。
2. 组合:从给定的元素集合中,选取若干个元素组成一个集合,不考虑元素的排列顺序。
3. 排列数:表示从n个不同元素中,按一定顺序选取k个元素进行排列的方法数,用符号A(n,k)表示,计算公式为A(n,k) =n!/(n-k)!。
4. 组合数:表示从n个不同元素中,选取k个元素组成一个集合的方法数,用符号C(n,k)表示,计算公式为C(n,k) = n!/[(n-k)!k!]。
二、排列与组合的性质与应用1. 乘法原理:若某事件发生的方式有m种,每种方式发生的次数有n1、n2、...、nm次,则该事件发生的总次数为n1 * n2 * ... * nm。
2. 加法原理:若某件事情的发生可以分成两个互斥事件A和B,则事件A发生的次数与事件B发生的次数之和等于该事情发生的总次数。
3. 逆排列:将n个元素的排列倒序排列,得到的新排列称为逆排列,用符号A(n)*表示。
4. 重复排列:当选取元素中存在相同元素时,不同元素之间的排列方式是不同的,需要考虑重复排列的问题。
5. 标志多项式:指数为n的标志多项式的系数表示从n个元素中选取k个元素排列的方法数,用符号P(n,k)表示。
三、排列组合的常见问题类型1. 从给定元素中选取特定元素进行排列与组合的问题。
例:从10个人中选取3个人进行排队的方式有多少种?解:根据排列数的计算公式,A(10,3) = 10!/(10-3)! = 10*9*8 = 720种方式。
2. 简化条件下的排列与组合问题。
例:3个不同的小球放入2个不同的盒子,每个盒子至少放1个小球,共有多少种放法?解:根据组合数的计算公式,C(3,1) = 3!/(3-1)!1! = 3种方式。
高中数学组合数学与排列数学知识点总结

高中数学组合数学与排列数学知识点总结组合数学和排列数学都是高中数学中的重要内容,它们不仅在学科内部有深入的应用,还在许多实际问题中发挥着重要的作用。
本文将对高中数学中的组合数学与排列数学知识点进行总结和归纳。
一、组合数学知识点总结1.1 定义及性质组合数学是研究离散结构的一门学科,其中组合数是其中的一个重要概念。
组合数表示从n个不同元素中选取r个元素的所有可能情况的个数,记作C(n,r)或者(nCr)。
组合数有以下性质:- C(n,0) = 1,表示从n个元素中选取0个元素,只有一种情况,即空集。
- C(n,n) = 1,表示从n个元素中选取n个元素,只有一种情况,即全集。
- C(n,r) = C(n,n-r),表示从n个元素中选取r个元素与选取剩下的n-r个元素是等价的。
1.2 组合的计算方法计算组合数可以使用以下方法:- 递推公式:C(n,r) = C(n-1,r-1) + C(n-1,r),即组合数等于上一层的左上方和正上方的组合数之和。
- 公式法:C(n,r) = n! / [(n-r)! * r!],即组合数等于n的阶乘除以剩下的n-r个元素的阶乘和r个元素的阶乘的乘积。
1.3 组合数的应用组合数在实际问题中的应用非常广泛,以下是一些常见的应用场景:- 概率计算:组合数可以用于计算事件发生的概率。
- 集合的子集计数:组合数可以计算集合的子集个数。
- 礼物分配问题:组合数可以用于计算礼物分配的方式。
- 编码组合问题:组合数可以用于计算编码方式的组合数。
二、排列数学知识点总结2.1 定义及性质排列数学是研究有序排列的一门学科,其中排列数是其中的一个重要概念。
排列数表示从n个不同元素中选取r个元素按照一定的顺序排列的所有可能情况的个数,记作P(n,r)。
排列数有以下性质:- P(n,1) = n,表示从n个元素中选取1个元素进行排列,排列结果个数等于元素个数。
- P(n,n) = n!,表示从n个元素中选取n个元素进行排列,排列结果个数等于n的阶乘。
高二排列组合基本知识点

高二排列组合基本知识点在高中数学中,排列组合是一个重要的知识点,它是数学中的一种计数方法。
在解决真实生活问题或者数学题目时,我们经常会遇到需要使用排列组合知识点的情况。
下面,我们将详细介绍高二阶段学习的排列组合的基本知识点。
一、排列的基本概念排列是从给定的元素中取出若干个,按一定顺序排列成一列的方式。
在排列过程中,每个元素只能使用一次。
我们用P表示排列的个数,P后面的数字表示从中选取元素的个数。
1. 从n个不同元素中取出m个元素进行排列,形成的排列数用P(n, m)表示。
其中n和m均为非负整数,且m必须小于等于n。
排列数的计算公式为:P(n, m) = n! / (n - m)!2. 当m = n 时,即从n个不同元素中取出所有元素进行排列,此时的排列数用P(n)表示,即全排列。
全排列的计算公式为:P(n) = n!二、组合的基本概念组合是从给定的元素中取出若干个,不考虑顺序地合成一组的方式。
在组合过程中,每个元素只能使用一次。
我们用C表示组合的个数,C后面的数字表示从中选取元素的个数。
1. 从n个不同元素中取出m个元素进行组合,形成的组合数用C(n, m)表示。
组合数的计算公式为:C(n, m) = n! / (m! * (n - m)!)2. 当m = n 时,即从n个不同元素中取出所有元素进行组合,此时的组合数用C(n)表示,即全组合。
全组合的计算公式为:C(n) = C(n, 1) + C(n, 2) + ... + C(n, n-1) + C(n, n)三、排列组合的应用排列组合在实际生活和数学问题中的应用非常广泛。
下面以几个典型的应用例子来说明:1. 生日问题假设有n个人,问至少有两人生日相同的概率是多少?这个问题可以通过排列组合的方式求解。
我们首先求出总的可能性,即将n个人的生日安排在365天中的任意一天,所以总的可能性为365^n。
然后,我们计算没有两人生日相同的情况数。
假设第一个人的生日可以任意选择,那么第二个人的生日不能与第一个人同一天,所以有365-1=364种选择,同理可推第三个人有365-2=363种选择,以此类推,得到没有两人生日相同的情况总数为365*364*363*...*(365-n+1)。
高中数学排列组合笔记梳理

高中数学排列组合笔记梳理
最近两年排列组合和概率统计的内容在高考中愈发重要,所以打算先更新这一部分的笔记
一、排列数和组合数
这是解决排列组合问题的基础,除了知道定义外,还需要了解它们的性质以及一些使用方法。
排列组合数的一些性质在二项式定理的相关题目中经常会用到,所以理科的同学也要多留意一下(接下来的一两期会更新二项式相关内容)
二、排列组合问题的常见题型
1.捆绑法和插空法
一种“先解决整体再解决局部”的办法,用到乘法规则,是排列组合的经典题型之一。
2.隔板法
在名额分配、不定方程正整数解等题型中都会用到,关键要学会从问题中抽出隔板模型。
3.使用集合元素个数公式来帮助求解
这类题目也可以用分类法求解,不过画图会让问题更直观,不容易缺失情况
4.圆排列问题
只需要一个小小的策略就可以转化成直线排列啦
5.几何相关的排列组合问题
主要考察正方体、四面体等立体图形的相关性质,只要见过这类题型,了解套路,就不怕没有思路。
高二数学知识点详解:排列组合公式

高二数学知识点详解:排列组合公式这篇高二数学知识点详解:排列组合公式是特地为大家整理的,希望对大家有所帮助!排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m-07-0813:30公式P是指排列,从N个元素取R个进行排列。
排列组合学习笔记

排列组合学习笔记
排列组合学习笔记
⼀.定义
P (m ,n )表⽰在n 个数中选取m 个数,所有排列的总数。
例如我找n 个⼈来,任意选m 个⼈来排队,总共有多少种不同的排法。
PS :P (m ,n )=A (m ,n )
C (m ,n )表⽰在n 个数中选出m 个数,总共有多少种组合⽅式。
⼆.计算公式
P (m ,n )=n (n −1)(n −2)...(n −m +1) 这个没有什么好讲的了,⽤乘法原理就可以了C (m ,n )=P (m ,n )P (m ,m )=n !
(n −m )!m ! 这个解释起来也很简单,我们先算出P (m ,n ) ,下⼀步要去重,我们k 个数有P (k ,k )个排列,但是在组合中,我们只算⼀次,所以我们要除以⼀个P (k ,k ),这样就得出来了它的计算公式。
三.组合公式的变式
C (m ,n )=C (n −m ,n ) (1)
这个公式还算好理解,想象⼀下,我们有n 个同学,我们要选出m 个同学打扫卫⽣。
换⼀种思路来说就是让(n −m )个同学不⽤打扫卫⽣,⽤数学公式来表达就是公式(1)了。
剩下的有点难,到时候再说吧。
四.没了!
Processing math: 100%。
《排列组合》知识点总结+典型例题+练习(含答案)

排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
数学高三复习知识点组合与排列

数学高三复习知识点组合与排列数学高三复习知识点:组合与排列在数学中,组合与排列是两个重要的概念,也是数学高三复习的重点知识点之一。
组合与排列在概率统计、离散数学等领域都具有广泛的应用。
本文将介绍组合与排列的基本概念及其相关性质,帮助高三学生复习和理解这一知识点。
一、排列的概念和性质排列是指从一组元素中按一定顺序取出若干个元素的方式。
设有n个元素,从中选取m个进行排列,则记为P(n,m)。
排列的计算公式为:P(n,m) = n!/(n-m)!其中,n!表示n的阶乘,表示从1乘到n的乘积。
排列的性质有以下几点:1. 排列的个数是固定的,对于不同的n和m,排列的个数是不同的。
2. 当m=n时,全排列的个数为n!。
3. 当m>n时,排列的个数为0。
4. 当m<n时,排列的个数为负数,表示无意义。
排列涉及的经典问题有:从n个元素中选出m个元素进行排列,问有多少种不重复的排列方式;从n个元素中选出m个元素进行排列,再将这m个元素进行重排列,问有多少种不同的结果等。
二、组合的概念和性质组合是指从一组元素中选取若干个元素的方式,不考虑元素的顺序。
设有n个元素,从中选取m个进行组合,则记为C(n,m)。
组合的计算公式为:C(n,m) = n!/((n-m)!m!)组合的性质有以下几点:1. 组合的个数是固定的,对于不同的n和m,组合的个数是不同的。
2. 当m=0或m=n时,组合数为1。
3. 当m>n时,组合数为0。
4. 当m<n时,组合数为正整数。
组合涉及的经典问题有:从n个元素中选出m个元素进行组合,问有多少种不重复的组合方式;从n个元素中选出m个元素进行组合,再将这m个元素进行重排列,问有多少种不同的结果等。
三、排列与组合的联系与应用排列与组合有很多联系与应用,在实际问题中经常出现。
以下是一些常见的联系与应用:1. 从n个元素中选取m个元素进行排列,等价于从n个元素中选取m个元素进行组合,再将这m个元素进行排列。
高中数学排列组合知识点总结

高中数学排列组合知识点总结排列组合是高中数学中的一个重要概念,涉及到数学中的选择、排列和组合等问题。
在解决实际问题中,排列组合常常能够提供有效的理论框架和计算方法。
本文将对高中数学中的排列组合知识点进行总结,帮助读者更好地理解和应用这一内容。
一、基本概念在开始讨论排列组合知识点之前,先来明确一些基本概念。
1.排列(Permutation)指的是从给定的一组元素中选出若干个元素按照一定的顺序进行排列。
2.组合(Combination)指的是从给定的一组元素中选出若干个元素进行组合,不考虑其顺序。
二、排列计算1.排列定义:从n个不同元素中取出m(m≤n)个元素进行排列,称为从n个不同元素中取出m个元素的排列。
记作A(n,m)或P(n,m)。
2.排列计算公式:A(n,m) = n! / (n-m)!其中,n!表示n的阶乘,表示从1到n的所有正整数相乘。
三、组合计算1.组合定义:从n个不同元素中取出m(m≤n)个元素进行组合,称为从n个不同元素中取出m个元素的组合。
记作C(n,m)。
2.组合计算公式:C(n,m) = n! / (m! * (n-m)!)四、问题求解1.排列问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定排列的范围和规模;c.根据排列计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。
2.组合问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定组合的范围和规模;c.根据组合计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。
五、常见问题类型1.选择问题:从给定的选项中选择若干个进行排列或组合。
2.分组问题:将一组元素进行分组排列或组合。
3.座位问题:将若干个人或物品按不同的排列规则安排座位。
4.商业问题:涉及到商品的排列和组合。
5.应用问题:将排列组合运用到实际生活和科学研究中。
六、应用示例1.案例一:某队伍有7名运动员,其中需要选出3名队员参加比赛,有多少种不同的选择方式?解答:根据组合计算公式C(7,3),可以得到答案为35种。
高中数学知识点总结及公式大全排列组合与二项式定理

高中数学知识点总结及公式大全排列组合与二项式定理高中数学知识点总结及公式大全:排列组合与二项式定理一. 排列组合排列组合是高中数学中重要的知识点之一,用于解决计数问题。
排列组合分为排列和组合两种情况。
1. 排列排列是指从一组对象中按照一定的顺序选择若干个对象进行排列。
高中数学中常用的排列公式为:An= n!/(n-r)!,其中n表示总数,r表示选取的个数。
排列的特点是考虑顺序,即不同的顺序被视为不同的排列。
2. 组合组合是指从一组对象中选择若干个对象进行组合,不考虑顺序。
高中数学中常用的组合公式为:Cn= n!/[(n-r)!*r!],其中n表示总数,r表示选取的个数。
组合的特点是不考虑顺序,即不同的顺序被视为相同的组合。
二. 二项式定理二项式定理是高中数学中的重要定理之一,用于展开一个任意次数的二项式表达式。
二项式定理的公式为:(a+b)^n = Cn0 * a^n * b^0 + Cn1 * a^(n-1) * b^1 + Cn2 * a^(n-2) * b^2 + ... + Cnr * a^(n-r) * b^r + ... + Cnn * a^0 * b^n 其中Cnr代表组合数,表示从n中选取r个的组合数。
三. 相关数学公式除了排列组合和二项式定理,高中数学还有许多重要的公式需要掌握。
1. 三角函数相关公式:- 三角恒等式:sin^2x + cos^2x = 1;tanx = sinx/cosx- 三角和差公式:sin(x ± y) = sinx*cosy ± cosx*siny;cos(x ± y) = cosx*cosy - sinx*siny- 三角倍角公式:sin2x = 2sinxcosx;cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x2. 数列与数列求和公式:- 等差数列通项公式:an = a1 + (n-1)d;等差数列前n项和公式:Sn = n/2(a1 + an) = n/2(2a1 + (n-1)d)- 等比数列通项公式:an = a1 * r^(n-1);等比数列前n项和公式:Sn = (a1(1-r^n))/(1-r)3. 平面几何相关公式:- 点到直线的距离公式:d = | Ax0 + By0 + C | / √(A^2 + B^2)- 两点间距离公式:d = √[(x2 - x1)^2 + (y2 - y1)^2]- 矩形面积公式:S = a * b- 三角形面积公式:S = 1/2 * a * b * sinγ以上只是数学知识点的一部分,针对不同的题目和问题,可能还需要运用其他公式和方法进行解题。
高中数学排列组合知识点

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳嘿!今天咱们来好好聊聊排列组合这个让人又爱又恨的知识点呀!首先呢,咱们得搞清楚啥是排列,啥是组合。
哎呀呀,简单来说,排列就是从一堆东西里选出来,然后再排个顺序;组合呢,只要选出来就行,不管顺序啦!一、排列的知识点1. 排列的定义:从n 个不同元素中取出m(m≤n)个元素的排列数,记为A(n,m) 。
哇,这个公式可重要啦,A(n,m) = n! / (n - m)! ,记住没?2. 排列数的计算:咱们来算个例子,比如说从5 个不同的元素里选3 个进行排列,那就是A(5,3) = 5! / (5 - 3)! = 60 呀!二、组合的知识点1. 组合的定义:从n 个不同元素中取出m(m≤n)个元素的组合数,记为C(n,m) 。
公式是C(n,m) = n! / [m!(n - m)!] 。
2. 组合数的计算:就像从6 个不同元素里选4 个的组合数,C(6,4) = 6! / [4!(6 - 4)!] = 15 呢!三、常见的排列组合题型1. 排队问题:比如说,几个人排队,有多少种排法?这就得考虑有没有特殊位置或者特殊的人啦!2. 分组问题:把一些东西分成不同的组,要注意平均分和不平均分的情况哟!3. 分配问题:把人或者物品分配到不同的地方,这里面可藏着不少小陷阱呢!四、解题技巧1. 优先考虑特殊元素或特殊位置:哎呀呀,这可是解题的关键呀!2. 捆绑法:有些元素必须在一起,那就把它们捆起来当成一个整体来处理。
3. 插空法:有些元素不能相邻,那就先排好其他的,再把不能相邻的插进去。
总之呢,排列组合虽然有点复杂,但是只要咱们掌握了这些知识点和题型,多做几道题练习练习,就一定能搞定它!哇,加油呀!。
高二数学排列组合知识点汇总

高二数学排列组合知识点汇总排列组合是组合学最基本的概念,是高二数学课程中的一部分内容。
下面是店铺给大家带来的高二数学排列组合知识点汇总,希望对你有帮助。
排列组合定义公式P是指排列,从N个元素取R个进行排列(即排序)。
(P是旧用法,现在教材上多用A,Arrangement)公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
排列组合基本原理(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.排列组合公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).排列组合例题分析例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 排列排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。
一.直接法1、特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =2402.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二. 间接法当2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个)三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种(3324A C )某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)隔板法 名额分配或相同物品的分配问题,适宜采隔板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块隔板,一种插法对应一种名额的分配方式,故有711C 种练习1.(a+b+c+d)15有多少项?当项中只有一个字母时,有14C 种(即a.b.c.d 而指数只有15故01414C C ⋅)。
当项中有2个字母时,有24C 而指数和为15,即将15分配给2个字母时,如何分,隔板法一分为2,114C 即24C 114C当项中有3个字母时34C 指数15分给3个字母分三组即可21434C C- 2 -3,52,4当项中4个字母都在时31444CC⋅四者都相加即可.练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?(216 C)练习3.不定方程X1+X2+X3+…+X50=100中不同的正整数解有(4999 C)平均分堆问题①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分例6 : 6本不同的书平均分成三堆,有多少种不同的方法?分析:分出三堆书(a1,a2),(a3,a4),(a5,a6)由顺序不同可以有33A=6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有33222426ACCC=15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法?2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。
合并单元格解决染色问题例7 (全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。
分析:颜色相同的区域可能是2、3、4、5.下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素①③⑤的全排列数A44(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得A44种着色法.(ⅲ)当2、4与3、5 分别同色时,将2、4;3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有AC3334⋅种方法.由加法原理知:不同着色方法共有2ACA333444+=48+24=72(种)练习1(天津卷(文))将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种(以数字作答)(42)2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).(120)图3 图43.如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种(84)图5 图62,4546132EDCBA43215.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420) 四.递推法例八 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?分析:设上n 级楼梯的走法为a n 种,易知a 1=1,a 2=2,当n ≥2时,上n 级楼梯的走法可分两类:第一类:是最后一步跨一级,有a n-1种走法,第二类是最后一步跨两级,有a n-2种走法,由加法原理知:a n =a n-1+a n-2,据此,a 3=a 1+a 2=3,a 4=a 3+a 2=5,a 5=a 4+a 3=8,a 6=13,a 7=21,a 8=34,a 9=55,a 10=89.故走上10级楼梯共有89种不同的方法。
九.几何问题1.四面体的一个顶点为A,从其它顶点与各棱中点取3个点,使它们和点A 在同一平面上,不同的取法有 种(335C +3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面?(310C -436C +4-334C +3-6C 34+6+2×6=29)(2)以这10个点为顶点,共能确定多少格凸棱锥? 三棱锥 C 104-4C 64-6C 44-3C 44=141 四棱锥 6×4×4=96 3×6=18 共有114 十.先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有( ) A.1260种B.2025种C.2520种D.5054种分析:先从10人中选出2人 十一.用转化法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种. 解 把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25A =20种例11、6个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法. 解 把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.59C =126种例12 从1,2,3,…1000个自然数中任取10个不连续的自然数,有多少种不同的去法.解 把问题转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。
10991C 例13 某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.解 无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.37C =35(种)例14 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.解 根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.612C =924(种).例15 求(a+b+c )10的展开式的项数.解 展开式的项为a αb βc γ,且α+β+γ=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.212C =66(种)例16 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?解 设亚洲队队员为a 1,a 2,…,a 5,欧洲队队员为b 1,b 2,…,b 5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后是胜队中未被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为510C =252(种) 十二.转化命题法例17 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少个?分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有415C =1365(个)十三.概率法例18 一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为21,故本例所求的排法种数就是所有排法的21,即21A 66=360种 十四.除序法 例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个?(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个?解(1)3377A A (2)443377A A A十五.错位排列例20 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有 种(9)公式 1)))(1(21--+-=n n n a a n a n=4时a 4=3(a 3+a 2)=9种 即三个人有两种错排,两个人有一种错排.2)n a =n!(1-!11+!21-!31+…+()n 1-!1n法二:树形图练习1、 有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)练习2、编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球要求小球与盒子的编号都不同,这种排列称为错位排列特别当n=2,3,4,5时的错位数各为1,2,9,442个、3个、4个元素的错位排列容易计算关于5个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题:①5个元素的全排列为:55120A =;②剔除恰好有5对球盒同号1种、恰好有3对球盒同号(2个错位的)351C ⨯ 种、恰好有2对球盒同号(3个错位的)252C ⨯ 种、恰好有1对球盒同号(4个错位的)159C ⨯ 种∴ 120-1-351C ⨯-252C ⨯-159C ⨯=44用此法可以逐步计算:6个、7个、8个、……元素的错位排列问题。