第1课时 认识正比例的量【教案】第1课时 认识成正比例的量
苏教版六年级下册数学《认识成正比例的量》正比例和反比例PPT教学课件
据国家统计局统计,全 国每月消耗26亿双一次 性筷子。
活动一:
20(下)100 1000 10000 100000 100000000 18(秒) 90 900 9000 90000 90000000
90000000÷60=1500000(分) 1500000 ÷60=25000(时)
25000 ÷24≈ 1042(天)
1042÷365≈ 2.9(天)
上海明珠电视塔的 高度为468米,一亿 枚硬币叠起来的高 度会有它高吗?
有的话有几个上海 明珠电视塔的高度?
活动一:
20(枚) 100 1000 10000 100000000
35(毫米1) 75 1750 17500 175000000 175000米
上海明珠电视塔的 高度为468米,一亿 枚硬币叠起来的高 度会有它高吗?有 的话有几个上海明 珠电视塔的高度.
上表中_米__数___和_时__间___是两种相关联的量,_米___数___随着 时间 的变
化而变化的, 每小时加工米数 —定,时间和米数是 成正比例 的量。
课堂练习
2.判断下面各题中的两种量是不是成正比例关系,并说理。 (1)长方形的长一定,宽和面积。
是,宽和面积的比值一定。
(2)总不是路,程它一们定的,比已值不经一行定了,的是路和程一定和。剩下的路程。
比例关系。
(2)如果用字母x和y分别表示两种相关联的量,用k表示它
=k(一定)
们的比值,正比例关系可以表示为(
)。
课后习题
3.判断下面每题中的两个量是否成正比例,成正比例的在括号
里画“√”。
(1)每天的用煤量一定,用煤的天数和用煤的总量。 ( √)
(2)圆的直径和周长。
人教版数学六年级下册正比例教案(推荐3篇)
人教版数学六年级下册正比例教案(推荐3篇)人教版数学六年级下册正比例教案【第1篇】教学内容教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
教学目标1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
教学重点认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
教学难点理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教学准备教具:多媒体课件。
学具:作业本,数学书。
教学过程一、联系生活,复习引入(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
(2)揭示课题。
教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
二、自主探索,学习新知1.教学例1用课件在刚才准备题的表格中增加几列数据,变成表。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联教师:你们还发现哪些规律?学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
《认识成正比例的量》教学设计
《认识成正比例的量》教学设计
教学目标
(一)知识技能目标:让学生经历借助具体事例认识成正比例的量的过程,正确理解正比例的含义,学会运用正比例的含义,判断相互关联的量是否成正比例。
二)数学思考目标:让学生在对成正比例的量的过程中感受数量之间相互依存的关系,感受有效表示数量关系其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
三)情感态度目标:让学生在具体事例中不断感受数学与生活现象的密切联系,增强借助生活现象,不断探索数学规律的意识,养成积极主动参与学习活动的习惯,增强学好数学的自信心。
二、教学重点借助实际情境,认识成正比例的量,准确理解正比例的含义,并结合正比例的含义判断两种量是否成正比例。
三、教学难点让学生经历正比例意义的揭示过程,根据意义判断两种量是否成正比例关系。
四、教学过程
(一)启趣激学谈话:在以前的学习中,我们已经会用数量关系式表示两个量之间的关系,请同学们完成下面的练习。
二)合作探究。
成正比例的量教案
成正例的量【教学内容】《义务教育课程标准实验教科书·数学》六年级下册39页~40页,练习七第1、2题。
【教学目标】1.通过观察、比较、判断、归纳等方法,帮助学生理解正比例的意义。
2.培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3. 用表示变量之间的关系,初步渗透函数思想。
【教学重点】理解正比例的意义。
【教学难点】引导学生通过观察、思考发现两种相关联的量的比值一定,概括出成正比例的概念。
【教学要素】1、已有的知识与经验:比和比例的意义;已学过的等量关系式。
2、原型:水的体积是随着高度变化的实验。
3、探究的问题:水的体积与高度的变化有什么规律?如何判断两个量是成正比例的量?教学过程:一、唤起与生成1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?教师引导学生指出:(1)班级人数多了,课桌的数量也变多了;人数少了,课桌的数量也少了。
(2)上学时,走的速度快了,时间用得少了;速度慢了,时间用得多了。
(3)买苹果时,买的数量多了,需要的钱数也多了;买的数量少了,需要的钱也少了。
(4)运大米时,运的包数多了,总重量也多了;运的包数少了,总重量也少了。
(5)排队时,每行的人数少了,行数就多了;每行的人数多了,行数就少了。
2、除了这样的例子,我们还以前认识了哪些数量关系?你能说出几个等量关系吗?这些等量关系还有哪些规律?这节课我们就来研究这些规律,一起来学习:成正比例的量。
1.已知路程和时间,怎样求速度?2.已知总价和数量,怎样求单价?3.已知工作总量和工作时间,怎样求工作效率?二、探究成正比例的量1.谈话:同学们,你们喜欢做实验吗?还记得我们推导圆锥体积公式的实验吗?(发现随着水位上升,容器里的水就变多了)下面,老师还做了这样一个实验,我在6个相同的圆柱形杯子里倒入了不等量的水,记录了下面的一些数,请同学们看:水的体积与高度的统计表你能算出每组数据相应的底面积吗?汇报:每个水柱底面积的计算方法及算式。
第1课时 正比例【教案匹配版】——2025学年六年级下册数学人教版
…
一个量变大,另一个量也变大;一个量变小, 另一个量也变小;而且这两种量的比值一定。
总结归纳
成正比例的量的三要素: 第一:两种相关联的量。 第二:两个量的比值一定。
如果用字母y和x表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以用
下面的式子表示: y =k x
随堂练习
1.下表是小林家去年上半年每月用电量情况。
一辆自行车在公路上行驶,行驶的时间和路程如下表。
时间(时) 1
2
3
4
5
6…
路程(千米) 20 24 30 44 53
…
数量/m 1 2 3 4 5 6 7 8 ... 总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
时间(时) 1
2
3
4
5
6…
路程(千米) 80 160 240 320 400
(3)相应的总价和数量的比分别为:
3.5
=
7
=
10.5
=
14
17=
24.5
=
28
= … = 3.5
12 3 4 5 6 7 8
数量/m 1 2 3 4 5 6 7 8 ...
总价/元 3.5 7 10.5 14 17.5 21 24.5 28 ...
比值3.5,实际就是彩带的单价。用式子 表示它们的关系就是:
未读的页数与已读的页数是两种相关联的量, 未读的页数+已读的页数=书的总页数, 这两种量是和一定,不是比值一定,所以未读的 页数与已读的页数不成正比例关系。
课堂小结
同学们,今天的数学课 你们有哪些收获呢?
订阅的费用 =某杂志的单价(一定) 订阅的数量
成正比例的量教学设计
成正比例的量【内容】《义务教育课程标准实验教科书·数学》六年级下册39页~41页【目标】1、知识与技能目标:帮助学生理解正比例的意义。
用表示变量之间的关系,初步体会正比例图像的特点和作用,加深对正比例的认识。
2、过程与方法目标:通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。
3、情感目标:学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。
【教学】理解正比例的意义。
【教学】引导学生通过观察、思考发现两种相关联的量的比值一定,概括出成正比例的概念。
【教具准备】,学生作业纸。
直尺,铅笔。
【教学】一、观察实验,引入新课1、教学例1(1)谈话:同学们,你们喜欢做实验吗?下面请同学们观察一个有趣的实验:往杯子里倒水,仔细观察水的高度和体积有什么变化?(课件演示实验过程。
)(2)提问:看了刚才的试验,你发现了什么?二、探究成正比例的量1、观察变量,出示实验报告单:思考:(1)表中有哪两种量?(2)水的体积和高度有怎样的变化规律?汇报:水的体积增加,高度也相应增加。
水的体积减少,高度会相应降低。
2、引导研究定量(1)思考:看着表中的这两种量,你还能想到什么? (2)出示水的体积与高度的统计表。
(3)提问:同学们会计算这些水柱的底面积吗?请学生们独立计算底面积,并填在作业纸中。
高度/㎝ 2 4 6 8 10 12 体积/㎝ 50 100 150 200 250 300 高度/㎝ 2 4 6 8 10 12 体积/㎝50 100 150 200 250 300 底面积/㎝(4)汇报:每个水柱底面积的计算方法及算式。
(5)介绍:体积和高度的比值,是底面积。
在这里,底面积相同,数学上叫做“一定”。
(板书:(一定))3、认识成正比例的量(1)再次观察统计表,小组讨论:现在统计表中有哪几种量?哪种是变化的量,哪种是不变的量?体积和高度这两种变化的量具有什么特征?(2)汇报.(请多名学生反复说)(3)质疑:具有是你们说的这些特征的两种相关联的量是什么量呢?请到数学书第39页去寻找答案吧。
人教版六年级下册数学第六单元《成正比例的量》教案
人教版六年级下册数学第六单元《成正比率的量》教课设计教课内容:成正比率的量教课目的:1.使学生理解正比率的意义,会正确判断成正比率的量。
2.使学生认识表示成正比率的量的图像特点,并能依据图像解决有关简单问题。
教课要点:正比率的意义。
教课难点:正确判断两个量能否成正比率的关系。
教具准备:多媒体课件教课过程:一、揭露课题1.在现实生活中,我们经常碰到两种有关系的量的变化状况,此中一种量变化,另一种量也跟着变化,你能举出一些这样的例子吗?在教师的指导下,学生会举出一些简单的例子,如(1)班级人数多了,课桌椅的数目也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。
行数就少了。
2.这类变化的量有什么规律?存在什么关系呢?今日,我们第一来学习成正比率的量。
板书:成正比率的量二、探究新知1.教课例 1(1)出示例题情境图。
问:你看到了什么?生杯子是同样的。
杯中水的高度不一样,水的体积也不一样,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝24681012体积 / ㎝ 3 50 100 150 200 250 300底面积/㎝ 2问:你有什么发现?学生不难发现:杯子的底面积不变,是25㎝2。
板书教师:体积与高度的比值必定。
( 2)说明正比率的意义。
① 在这一基础上,教师明确说明正比率的意义。
其实 , 任何一门学科都离不开照本宣科 , 要点是记忆有技巧 , “死记”以后会“活用”。
不记着那些基础知识 , 怎么会向高层次进军 ?特别是语文学科涉猎的范围很广 , 要真实提升学生的写作水平 , 单靠剖析文章的写作技巧是远远不够的 , 一定从基础知识抓起 , 每日挤一点时间让学生“死记”名篇佳句、名言警语 , 以及丰富的词语、新奇的资料等。
《成正比例的量》教学案例
《成正比例的量》教学案例一、教学说明:这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。
这节课的教学目的是1、结合具体事例,经历认识和判断成正比例的量的过程。
2、知道正比例的意义,能判断两种量是否成正比例,能找出生活中成正比例的实例,并进行交流。
3、对现实生活中成正比例的事物有好奇心,在判断成正比例的量的过程中,能进行有条理的思考。
教学重点:判断两种相关联的量是不是成正比例。
教学难点:判断两种相关联的量是不是成正比例。
本课在于关注学生已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。
同时,充分运用导学题组的导向功能,让学生思考,让学生在寻找规律的同时感受正比例在实际生活中的存在。
二、教学设计:(一)复习准备:联系学生以前学过的数量关系引入课题,激发学生学习兴趣。
(二)导学:1、认识成正比例的量和正比例关系。
2、分组讨论:小组合作:议一议:在速度一定的情况下,路程和时间有什么关系?让学生通过观察汽车的里程表,使学生知道汽车1小时行驶多少千米,体会数学与生活的紧密联系。
4、学生汇报。
(1)一种量变化,另一种量也随着变化,并且两种量的变化相同。
(2)两个相关联的量的比值一定也就是速度一定。
让学生在分组合作学习的方式中,学生相互交流,引发思维碰撞,进而使得不同层次学生的新知得到不断更正与整合。
4、教师说明:在上面的问题中,路程和时间是两种相关联的量,路程随着时间的变化而变化,而且,路程和时间的比值一定(速度一定)我们说路程和时间这两种量成正比例。
通过分析数量关系,使学生进一步领会正比例的意义,能判断两个量是否成正比例。
5、教师质疑:根据正比例的意义想一想:上面例子中的路程和时间是不是成正比例的量?为什么?构成正比例关系的两种量必须具备哪些条件?让学生通过刚学知识进行判断,现学现用让学生以此去体现出构成正比例的必要条件。
六年级数学正比例教案
教案主题:正比例(六年级数学)教学目标:1.理解正比例的概念及性质;2.掌握通过图表、公式等方式判断两个量是否成正比;3.能够解决实际问题中的正比例关系;4.培养学生观察能力和综合运算能力。
教学重点:学生能够运用正比例相关的知识解决实际问题。
教学难点:学生能够理解正比例的概念及性质,并能够判断出两个量是否成正比。
教学准备:1.教学课件或教具(如图表、活动卡片等);2.学生练习册或习题集。
教学过程:Step 1:导入新知(10分钟)1.利用例子引导学生认识“正比例”的概念:例如,大韦恺参加长跑比赛,他的速度与时间的关系是怎样的?2.结合示意图,让学生思考两个量之间的关系,引导学生认识正比例关系,并总结出正比例的特点。
Step 2:课堂探究(25分钟)1.利用活动卡片的方式,深入探究正比例关系。
其中卡片上列出了不同的物品、数量和价格,学生需要根据卡片上的信息判断哪些是成正比的关系,并进行说明。
2.教师带领学生一起探索成正比的关系,通过图表、公式等方式来判断两个量是否成正比。
3.提供一些简单的实际问题,指导学生通过画图、列式等方式解决问题,并进行讨论,培养学生观察能力和综合运算能力。
Step 3:小组活动(15分钟)1.将学生分成小组,每个小组选择一个实际问题,并设计解决该问题的步骤。
2.学生在小组中互相讨论及互助,共同解决问题。
3.每个小组选派一名代表进行汇报,展示解决问题的方法和结果。
Step 4:巩固练习(15分钟)1.随堂练习:布置几道选择题和计算题,让学生独立完成。
2.辅导学生解答难题,提供必要的辅助材料,帮助学生解决困惑。
3.检查学生的完成情况,对错误的题目进行重点解析和讲解。
Step 5:课堂总结(5分钟)1.总结本堂课的学习内容,回顾学生对正比例的认识和应用。
2.引导学生发表自己的观点和体会,鼓励学生多积极参与讨论和交流。
教学延伸:1.学生可通过观察、测量和记录实际数据,继续探索正比例关系,以增强学生对正比例的理解和应用。
六年级下册数学教案《 4.2.正比例和反比例 第1课时 正比例 》 人教版
六年级下册数学教案《 4.2.正比例和反比例第1课时正比例》人教版一. 教材分析《4.2.正比例和反比例》是人教版六年级下册数学的教学内容。
这部分内容主要让学生理解正比例和反比例的概念,能够辨识生活中的正比例和反比例关系,并运用比例知识解决实际问题。
本节课是这一单元的第一课时,重点是让学生掌握正比例的定义和判断方法。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力。
他们在学习过程中,需要通过观察、操作、思考、交流等活动,理解正比例的概念,掌握正比例的判断方法。
同时,学生在生活中已经积累了一些关于比例的经验,为本节课的学习奠定了基础。
三. 教学目标1.让学生理解正比例的概念,能够判断两个相关联的量之间成正比例。
2.培养学生运用比例知识解决实际问题的能力。
3.激发学生的学习兴趣,培养学生的合作意识。
四. 教学重难点1.重点:掌握正比例的定义和判断方法。
2.难点:辨识生活中的正比例关系,运用比例知识解决实际问题。
五. 教学方法1.采用情境导入法,激发学生的学习兴趣。
2.运用实例分析法,让学生直观地理解正比例的概念。
3.采用合作交流法,培养学生的团队协作能力。
4.运用练习巩固法,提高学生的应用能力。
六. 教学准备1.准备相关的教学PPT或黑板。
2.准备一些生活中的实例,用于讲解正比例关系。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT或黑板展示一些生活中的图片,如行驶的汽车、升空的火箭等,引导学生观察这些图片,并提出问题:“这些图片中的物体有什么共同的特点?”让学生思考并回答,从而引出本节课的主题——正比例。
2.呈现(10分钟)讲解正比例的概念,并通过实例让学生直观地理解正比例关系。
例如,讲解速度、时间和路程之间的关系,引导学生判断它们是否成正比例。
同时,让学生举例说明生活中其他的正比例关系。
3.操练(10分钟)让学生分组讨论,每组找出生活中的一个正比例关系,并运用所学的判断方法进行验证。
《成正比例的量》教案设计
《成正比例的量》优秀教案设计第一章:教学目标1.1 知识与技能目标:让学生理解正比例的概念,能够判断两种相关联的量是否成正比例。
1.2 过程与方法目标:通过实例分析,培养学生运用正比例解决实际问题的能力。
1.3 情感态度与价值观目标:激发学生对数学的兴趣,培养学生的逻辑思维能力。
第二章:教学内容2.1 正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.2 成正比例的判断方法:判断两种相关联的量是否成正比例,就看这两种量相对应的两个数的比值是否一定,如果比值一定,就成正比例,如果比值不一定,就不成正比例。
第三章:教学重点与难点3.1 教学重点:正比例的概念,判断两种相关联的量是否成正比例的方法。
3.2 教学难点:正比例的判断方法在实际问题中的应用。
第四章:教学过程4.1 导入新课:通过生活中的实例,如身高与体重的关系,引出正比例的概念。
4.2 自主探究:让学生通过实例分析,归纳出成正比例的判断方法。
4.3 合作交流:分组讨论,让学生运用成正比例的判断方法解决实际问题。
4.4 总结提升:教师引导学生总结正比例的概念和判断方法,并进行点评。
第五章:课后作业5.1 必做题:运用成正比例的判断方法,解决课后练习题。
5.2 选做题:生活中的正比例现象,让学生举例并解释。
教学反思:本节课通过实例导入,引导学生自主探究和合作交流,让学生理解和掌握正比例的概念和判断方法。
在教学过程中,要注意关注学生的学习情况,及时进行指导和点评。
课后作业的设计,既能巩固所学知识,又能培养学生的实际应用能力。
第六章:教学评价6.1 评价目标:通过评价,检验学生对正比例概念的理解和运用能力。
6.2 评价方法:课堂提问、作业批改、实践操作、小组讨论等。
6.3 评价内容:判断正比例关系的能力、解决实际问题的能力、团队合作意识等。
成正比例的量-冀教版六年级数学下册教案
成正比例的量-冀教版六年级数学下册教案
一、教学目标
1.理解成正比例的概念;
2.能够判断给定的两个量是否成正比例关系;
3.能够应用成正比例的概念解决问题。
二、教学重难点
1.理解成正比例的概念;
2.能够判断给定的两个量是否成正比例关系。
三、教学过程
1. 导入新知识
首先,教师让学生回顾和复习上节课所学过的比例的知识,然后引入成正比例的概念。
教师可以通过举例子让学生理解成正比例的含义和特点,如:
在某家商店,苹果的价钱与数量的关系是成正比例的。
也就是说,如果买两个苹果需要花费4元,那么买四个苹果需要花费多少元呢?
2. 学生互动探究
让学生一起来解决上面的问题,让他们发现为什么苹果的价钱和数量是成正比例的。
教师可以引导学生通过列出比例表的方法来找到规律,并且让学生回答以下问题:
•如果买8个苹果需要花费多少元?
•如果要花费12元来买苹果,能买到几个苹果?
3. 归纳总结
通过以上的例子,学生已经掌握了成正比例的概念和应用方法。
接下来,教师再讲解一些判断两个量是否成正比例关系的方法。
让学生通过观察两个量之间的规律,判断它们之间是否具有成正比例的关系。
4. 练习与评价
让学生完成一些针对成正比例的练习,巩固所学内容,培养学生的自学能力和解决问题的能力。
四、教学反思
本节课主要讲了成正比例的概念和应用方法,并通过例子让学生深入理解这个概念。
在教学过程中,教师通过互动探究的方式让学生积极参与到课堂之中,培养他们的解决问题的能力。
在练习环节,教师着重培养学生的自学能力和解决问题的能力,并对他们的表现作出及时的评价和反馈。
苏教版数学六下《认识成正比例的量》教学设计
苏教版数学六下《认识成正比例的量》教学设计一. 教材分析苏教版数学六下《认识成正比例的量》是小学数学六年级下册的教学内容,这部分内容主要是让学生理解正比例的概念,学会判断两种相关联的量是否成正比例,以及如何用数学式子表示成正比例的量。
教材通过丰富的实例,让学生在实际情境中感受正比例的意义,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了比例的基本知识,对比例的概念有了初步的认识,能够理解比例的表示方法。
但学生对于正比例的判断方法以及如何在实际问题中运用正比例还有待提高。
因此,在教学过程中,教师需要结合学生的认知水平,通过实例分析,引导学生理解和掌握正比例的概念。
三. 教学目标1.让学生理解正比例的概念,掌握判断两种相关联的量是否成正比例的方法。
2.培养学生运用正比例解决实际问题的能力。
3.培养学生的数学思维能力和团队协作能力。
四. 教学重难点1.成正比例的量的判断方法。
2.如何将实际问题转化为正比例问题。
五. 教学方法1.实例分析法:通过具体的实例,让学生在实际情境中感受正比例的意义,理解正比例的判断方法。
2.小组讨论法:引导学生分组讨论,培养学生的团队协作能力和数学思维能力。
3.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。
六. 教学准备1.教学PPT:制作包含丰富实例的教学PPT,方便学生直观地理解正比例的概念。
2.学习材料:为学生准备相关的学习材料,以便学生在课堂上进行实际操作和练习。
3.教学道具:准备一些教学道具,如图片、实物等,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,如“小明骑自行车去公园,速度保持不变,路程和时间之间的关系是什么?”引导学生思考两种相关联的量之间的关系。
2.呈现(10分钟)教师通过PPT呈现更多的实例,让学生观察和分析这些实例中两种相关联的量之间的关系。
学生在观察和分析的过程中,发现成正比例的量的特点。
六年级数学《正比例》教案
六年级数学《正比例》教案•相关推荐六年级数学《正比例》教案(精选17篇)作为一位无私奉献的人民教师,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。
怎样写教案才更能起到其作用呢?以下是小编为大家收集的六年级数学《正比例》教案,希望对大家有所帮助。
六年级数学《正比例》教案篇1教学内容:六年级下册总复习83—85页《正比例、反比例》。
教学目标:(一)知识目标:(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。
(2)通过具体问题的认识进一步认识正比例、反比例的量。
(二)数学思考与解决问题通过复习与整理加深对正、反比例意义的理解。
并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。
(三)情感态度培养学生认真思考的习惯,学会区分正反比例。
教学重、难点:(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。
(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。
教法学法自主复习、小组交流、全班交流、互帮互学教学准备表格、、小黑板教学过程一、情境创设,导入复习1、判断下面每题中的两种量成什么比例关系?①速度一定,路程和时间()②路程一定,速度和时间()③单价一定,总价和数量()④全校学生做操,每行站的人数和站的行数()2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。
指名学生口答,老师板书。
二、回顾整理,构建网络(一)比的知识:1.谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)2.说一说用比的知识可以解决哪些实际问题。
让学生体会比在解决实际问题时的应用。
3.完成教科书p83“回顾与交流”的3题两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。
苏教版小学数学六年级下册第六单元 正比例和反比例教案
第六单元正比例和反比例第1课时认识成正比例的量(一)教学内容:教科书第56页的例1、第57页的“试一试”和“练一练”,完成练习十的第1~3题。
教学目标:1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重点:结合实际情境认识成正比例的量的特点,加深对成正比例的量的理解。
教学难点:能根据正比例的意义判断两种相关联的量是否成正比例。
教学资源:课件教学过程:一、谈话引入我们已经了解了一些数量之间的关系,谁来说说你知道哪些常见的数量关系?引导回顾:(1)速度时间路程(2)单价数量总价(3)工作效率工作时间工作总量引入:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的。
今天,我们就来研究和认识这种变化规律。
二、互动新授出示例1。
1.探究时间与路程两个量之间的关系。
提问:仔细观察这张表格,它为我们提供了哪些数学信息?(学生自由发言)引导:表格中的路程和时间有关系吗?说说是怎样的关系?可先让同桌相互说一说,再组织全班交流。
通过交流,使学生初步感知两种量的变化情况。
预设:(1)行驶的路程随着时间的变化面变化。
(2)行驶的时间越长,行驶路程越多;行驶的时间越短,行驶路程越少。
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。
2.分析时间与路程这两个量的比值。
提问:表格中时间越长,路程越多;时间越短,路程越少。
现在我们就来探究时间与路程之间有没有什么关系?让学生动手写出几组对应的路程和时间的比,并求出比值。
学生观察比值,发现规律,汇报小结。
引导学生回答:通过计算,我们发现这些比值都是相等的,它们表示行驶的速度。
人教版八下数学19.2.1 课时1正比例函数的概念教案+学案
人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时1正比例函数的概念教案【教学目标】知识与技能目标认识正比例函数的意义,掌握正比例函数解析式特点.过程与方法目标能利用正比例函数知识解决相关实际问题.情感、态度与价值观目标通过对实际问题的解决,亲身感受数学来源于生活,体会在学习中与同学合作交流获得成功的喜悦,增强学习的自信心.【教学重点】理解正比例函数意义及解析式特点.【教学难点】掌握正比例函数的解析式的求法.【教学过程设计】一、情境导入导入一:2011年开始运营的京沪高速铁路全长1318 km.设列车平均速度为300 km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3)京沪高铁列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km的南京南站?学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析:(1)1318÷300≈4.4(h).(2)y=300t.(3)y=300×2.5=750(km), 故列车尚未到达距始发站1100 km的南京南站.y=300t中,变量和常量分别是什么?其对应关系是函数关系吗?谁是自变量,谁是函数?自变量与常量按什么运算符号连接起来的?由此引出今天学习的课题:正比例函数.[设计意图]通过这一环节,让学生体会到正比例函数来源于生活实际,通过实例引入,激发学生学习数学的兴趣.导入二:一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到1千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?学生在练习本上独立完成,有困难的小组讨论、交流.教师总结,全班讲评.一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈202(千米).若设这只燕鸥每天飞行的路程为202千米,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为y=202x(0≤x≤127).这只燕鸥飞行1个半月的行程,大约是x=45时函数y=202x的值.即:y=202×45=9090(千米).以上我们用y=202x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=202x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?今天学习的课题:正比例函数.[设计意图]通过这一环节,使学生认识到数学总是与现实问题密不可分的,人们的需要产生数学.二、新知构建1.正比例函数概念思路一下列问题中的变量对应规律可用怎样的函数表示?(1)圆的周长l随半径r的大小变化而变化;(2)铁的密度为7.8 g/cm3,铁块的质量m(单位:g)随它的体积V(单位: cm3)的大小变化而变化;(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数 n 的变化而变化;(4)冷冻一个0 ℃物体,使它每分下降2 ℃,物体的温度T (单位: ℃)随冷冻时间t (单位:分)的变化而变化.学生先独立思考上面提出的问题,再以小组为单位进行交流.教师解析: (1)l =2πr ;(2)m = 7.8V ;(3)h =0.5 n ;(4)T =-2t.引导学生认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数.函数解析式常数 自变量 函数 (1)l =2πr2π r l (2)m =7.8V7.8 V m (3)h =0.5n0.5 n h (4)T =-2t -2 t T提问:这些函数有什么共同点?学生观察这些函数关系式,发现这些函数都是常数与自变量乘积的形式,和y =300t ,y =200x 的形式一样.教师归纳:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.[设计意图] 由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受正比例函数在实际生活中的应用.思路二前面我们学习了函数的概念,学会了用描点法来画函数的图象,观察下列函数的解析式,发现它们有什么特点?(1)y =3x ; (2)y =-6x ; (3)y =x ; (4)y =-x.师生共同分析:上述这些函数都是常数与自变量乘积的形式,我们把形如这样的函数叫做正比例函数.一般地,形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 教师强调:(1)常量:k ,变量:x ,y ,自变量取值范围:全体实数;(2)正比例函数的函数y 与自变量x 之间就是正比例关系的量.[设计意图] 通过观察所给函数的结构特点,让学生寻找这些函数具有的规律,让学生体会由特殊到一般来解决问题的方法.2.例题讲解例1 (补充)下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.① y =31x ;② y =x32;③ y =﹣x 6;④ y =2x ;⑤y =x 2+1;⑥ y =5x +2. 〔解析〕 观察所给的函数表达式,看是否满足正比例函数y =kx 的形式来求解.解:① y =31x 是正比例函数,正比例系数k =31. ④ y =2x 是正比例函数,正比例系数k =2.②,③,⑤,⑥ 都不是正比例函数.[设计意图] 通过设计一组函数,让学生利用正比例函数的定义进行判断求解,帮助学生及时复习所学的概念.例2 (补充)①若y =(k -1)x 是正比例函数,则 ;②若y =2x m 是正比例函数,则m = .③在函数y =(k -2)中,当k = 时,为正比例函数.〔解析〕 根据正比例函数定义,利用比例系数k ≠0,或者x 的指数为1列不等式或方程进行求解.①∵y =(k -1)x 是正比例函数,∴k -1≠0,∴k ≠1.②∵y =2x m 是正比例函数,∴m =1.③∵函数y =(k -2)为正比例函数,∴∴k =-2.答案:①k ≠1 ②1 ③-2[设计意图] 通过设计一组填空题,让学生根据正比例函数的比例系数和未知数的指数来列不等式或方程来求字母的取值.例3(补充)若y 与x -2成正比例关系,且x =4时,y =5.求y 关于x 的函数关系式. 〔解析〕 先根据y 与x -2成正比例关系可设y =k (x -2),再把x =4时,y =5代入求出k 的值即可.解:设y =k (x -2),则有k (4-2)=5,解得k =25. 所以y 关于x 的函数关系式为y =25x -5. [设计意图] 通过设计代数式之间成正比例关系,利用方程的思想进行求解,让学生更深刻理解正比例函数的定义.三、教学小结本节课学习了正比例函数的概念:形如y =kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数;会用正比例函数定义来判断函数是否为正比例函数;并且会用正比例函数定义来求一些字母的取值;解题时注意:判定一个函数是否为正比例函数,要化简后再判断.【板书设计】19.2 一次函数 19.2.1 正比例函数课时1正比例函数的概念1.正比例函数概念2.例题讲解例1 例2 例3【课堂检测】1.下面四个小题中两个变量成正比例的是( )A.儿童的身高和年龄B.等腰梯形的上底固定时,下底和面积C.圆柱的高和体积D.长方体的底面是边长为定值a 的正方形,它的体积和高解析:儿童的身高与年龄不成正比例关系;由等腰梯形的面积公式、圆柱的体积公式可知B,C 不正确;由题意知长方体的体积=a 2×高,且a 为定值,所以它的体积和高是成正比例的.故选D .2.若y =5x 3m -2是正比例函数,则m = .解析:根据正比例函数定义,得3m -2=1,解得m =1.故填1.3.y =(k -2)x 2+5x 是正比例函数,则k 的值为 .解析:根据正比例函数定义,得k -2=0,解得k =2.故填2.4.下列式子,哪些表示y 是x 的正比例函数?如果是,请你指出正比例系数k 的值.(1)y =-0.1x ; (2)y =53x ; (3)y =2x 2; (4)y 2=4x ;(5)y =-4x +3; (6)y =2(x -2x 2)+2x 2.解:(1) 表示y 是x 的正比例函数;正比例系数k =-0.1.(2) 表示y 是x 的正比例函数;正比例系数k =53.(3),(4),(5),(6)都不是正比例函数. 5.如果y =kx (k ≠0),当x =4时,y =2;那么x =-3时,y 的值是多少?解:∵y =kx ,当x =4时,y =2,∴4k =2,∴k =21,∴y =21x ,∴当x =-3时,y =23.【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时1正比例函数的概念学案【学习目标】1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.【学习重点】正比例函数的概念及其简单应用.【学习难点】会求正比例函数的解析式.【自主学习】一、知识链接1.若香蕉的单价为5元/千克,则其销售额m(元)与销售量n(千克)成比例,其比例系数为.2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l随半径r的变化而变化.(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T (单位:℃)随冷冻时间t (单位:min )的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量 的形式.2.自主归纳:一般地,形如 (k 是常数,k≠0)的函数,叫做正比例函数,其中k 叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2(1)3;(2)21;(3);(4);(5)π ;(6).2x y x y x y y y x y x ==+=-===2. 回答下列问题:(1)若y=(m-1)x 是正比例函数,m 取值范围是 ;(2)当n 时,y=2x n 是正比例函数; (3)当k 时,y=3x+k 是正比例函数. 四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?【典例探究】例 1 已知函数 y=(m-1)2m x 是正比例函数,求m 的值.方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.知识点2:求正比例函数的解析式例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.知识点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y (元)与行程 x (km )之间的函数关系式,并指出y 是x 的什么函数;(2)计算该汽车行驶220 km 所需油费是多少?方法总结:判断是否为正比例函数的依据是函数解析式能否化为y=kx (k 是常数,k≠0)的形式.【跟踪练习】1.(1)若y=(m-2)x |m|-1是正比例函数,则m= ;(2)若y=(m-1)x+m 2-1是正比例函数,则m= . 2.已知y 与x 成正比例,当x 等于3时,y 等于-1.则当x=6时,y 的值为____________.【学习检测】1.下列说法正确的打“√”,错误的打“✕”(1)若y =kx ,则y 是x 的正比例函数. ( )(2)若y =26x 2,则y 是x 的正比例函数. ( ) (3)若y =2(x -1)+2,则y 是x 的正比例函数. ( )(4)若y =2(x -1),则y 是x -1的正比例函数. ( )(1)✕ (2)✕ (3)√ (4)√(解析:先把所给的代数式化成最简形式,再根据正比例函数定义进行判断求解.)2.下列函数关系中,属于正比例函数关系的是( )A.圆的面积S 与它的半径rB.行驶速度不变时,行驶路程s与时间tC.正方形的面积S与边长aD.工作总量(看作“1” )一定,工作效率w与工作时间t3.下列说法正确的打“√”,错误的打“×”.(1)若y=kx,则y是x的正比例函数()(2)若y=2x2,则y是x的正比例函数()(3)若y=2(x-1)+2,则y是x的正比例函数()(4)若y=(2+k2)x,则y是x的正比例函数()4.填空(1)如果y=(k-1)x,是y关于x的正比例函数,则k满足_______.(2)如果y=kx k-1,是y关于x的正比例函数,则k=____.(3)如果y=3x+k-4,是y关于x的正比例函数,则k=_____.(4)若23=-是关于x的正比例函数,m=_____.(2)my m x-5.汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为, y是x的函数.y=40x正比例(解析:根据路程=速度×时间和正比例函数的定义进行判断.) 6.填空(1)若函数y=(a-3)x+a2-9是正比例函数,则a =;(2)若y=(k+3)是y关于x的正比例函数,则k=;(3)若y与x-2成正比例,当x=3时,y=-4.试求出y与x的函数关系式.解析:由正比例函数解析式为y=kx,根据题意列方程或不等式进行求解.解:(1)∵函数y=(a-3)x+a2-9是正比例函数,∴a=-3.(2)∵y=(k+3)x|k|-2是y关于x的正比例函数,∴k=3.(3)∵y与x-2成正比例,∴设y=k(x-2),∵当x =3时,y =-4,∴k =-4,∴y 与x 的函数关系式为y =-4x +8.7.已知函数y =2x 2a +3+a +2b 是正比例函数,则a = ,b = .﹣1 21 8.若x ,y 是变量,且函数y =(k +1)是正比例函数,则k = .1(解析:由正比例函数定义,可知故k =1.)9.若y =kx +2k -3是y 关于x 的正比例函数,则k = .(解析:由正比例函数定义可知2k -3=0,且k ≠0,故k =23.) 10.已知y-3与x 成正比例,并且x=4时,y=7,求y 与x 之间的函数关系式.11.已知y -6与x +3成正比例,且x =1时,y =26,试写出y 与x 的函数关系式. 解:∵y -6与x +3成正比例,∴设y -6=k (x +3).又∵x =1时,y =26,∴4k =20,∴k =5,∴y -6=5(x +3),∴y 与x 的函数关系式为y =5x +21.12.有一块10公顷的成熟麦田,用一台收割速度为0.5公顷每小时的小麦收割机来收割.(1)求收割的面积y (单位:公顷)与收割时间x (单位:时)之间的函数关系式;(2)求收割完这块麦田需用的时间.13.汽车由天津驶往相距120千米的北京,s (千米)表示汽车离开天津的距离,t (小时)表示汽车行驶的时间,如图所示.(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?解:(1)由图象可知:s与t成正比例,设s=kt,当t=4时,s=120.即120=k×4,∴k=30.∴s=30t.∴汽车用4小时可到达北京,速度是30千米/时.(2)当t=1时,s=30×1=30(千米).∴汽车行驶1小时,离开天津30千米.(3)当s=100时,100=30t,t=(小时).∴当汽车距北京20千米时,汽车出发了小时.。
教师教学成正比例的量详细教案
教师教学成正比例的量详细教案教师教学在很大程度上决定了学生的学习效果,有着至关重要的作用。
因此,如何提高教师的教学能力是每个教育工作者都必须面对的问题之一。
本篇文章就将提供一份关于教师教学成正比例的量详细教案,帮助各位学员更好地掌握这一教学法,从而提升自己的教学能力。
一、教学目标1.了解教师教学成正比例的量的定义。
2.掌握教师教学成正比例的量的计算方法。
3.了解如何通过教师教学成正比例的量提高自己的教学效果。
二、教学内容及方法1.教师教学成正比例的量的定义教师教学成正比例的量,指的是教师的教学能力和学生的学习效果成正比例关系,也就是说,教师越能够有效地传授知识和技能,学生的学习效果就越好。
2.教师教学成正比例的量的计算方法(1) 教师教学成正比例的量 = 教师的教学能力 / 学生的学习效果(2) 计算教师的教学能力:教师的教学能力 = 教师的教育背景 + 教学经验 + 教学技巧 + 个人素质等因素。
(3) 计算学生的学习效果:学生的学习效果 = 学生的知识水平 + 学生的学习能力 + 学生的兴趣 + 学生的心理素质等因素。
3.如何通过教师教学成正比例的量提高自己的教学效果。
(1) 教育背景:要提高自己的教学能力,首先必须具备良好的教育背景。
不同的学历和专业背景会给教师带来不同的教学经验和知识储备。
(2) 教学经验:教师的教学经验是影响教学成效的关键因素之一。
在实践中,不断地积累和总结经验,不断地尝试和探索新的教学模式,都可以提升教师的教学能力。
(3) 教学技巧:教学技巧是教师提高教学效果的重要保证。
教师应该注重学生的情感体验,关注学生的心理状态,对学生的学习行为做出适当的引导和调整,从而提高学生的学习效果。
(4) 个人素质:教师的个人素质也是影响教学效果的重要因素之一。
教师应该具备良好的沟通交流能力,善于处理人际关系,富有人格魅力,这些都可以让学生更愿意接受教师的指导和教育。
三、教学过程设计1.引入(1) 引入概念:教师教学成正比例的量是什么?(2) 引入目的:以此来激发学生的学习兴趣和学习动力,让学生明确今天的学习内容和主要目标。
(精品)人教版六年级数学下册教案--26、成正比例的量
1、P41做一做
2、P43~44练习七第1~5题
教学反思:
根据计算你发现了什么?
相对应的两个数的比的比值一样或固定不变在数学上叫做一定
用式子表示他们的关系是:路程/时间=速度(一定)(板书)
(2)教师小结:
同学们通过填表交流知道时间和路程是.两种相关联的量路程随着时间的变化而变化.时间扩大路程随着扩大;时间缩小路程也随着缩小;即:路程/时间=速度(一定)
2、教学例2:
4、看书P40例2
(1)题中有几种量?哪两种量是相关联的量?
(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?
(3)它们的数量关系式是什么?
(4)从图中你发现了什么?
(5)不计算
二、根据图像判断
如果杯中水的高度是7厘米
那么水的体积是多少?225立方厘米的水有多高?
三、课堂小结:
什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?
编写时间执行时间总序第26个教案
课题
成正比例的量
共1课时
第1课时
课型
新授
教
学
目
标
1、使学生理解正比例的意义能根据正比例的意义判断是不是成正比例
2、培养学生概括能力和分析判断能力
3、培养学生用发展变化的观点来分析问题的能力
教
学
重
点
成正比例的量的特征及பைடு நூலகம்判断方法
教学过程
二次备课
一、学习新知
1、教学例1:
(1)花布的米数和总价表
数量 1 2 3 4 5 6 7 ......
总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ......
《正比例》优秀教学设计(精选8篇)
《正比例》优秀教学设计《正比例》优秀教学设计(精选8篇)作为一名教学工作者,时常需要准备好教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的《正比例》优秀教学设计,仅供参考,希望能够帮助到大家。
《正比例》优秀教学设计篇1【教学目标】1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
【教学重难点】重点:成正比例的量的特征及其断方法。
难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。
【教学过程】一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。
哪种袜子更便宜?学生独立完成后师提问:你们是怎样比较的?生:我先求出每种袜子的单价,再进行比较。
师:你是根据哪个数量关系式进行计算的?生:因为总价=单价×数量,所以单价=总价÷数量。
师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。
(板书:正比例)二、引导探索,学习新知1、教学例1,学习正比例的意义。
(1)结合情境图,观察表中的数据,认识两种相关联的量。
师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。
全班交流。
(2)认识相关联的量。
明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。
2、计算表中的数据,理解正比例的意义。
(1)计算相应的总价与数量的比值,看看有什么规律。
学生计算后汇报,每一组数据的比值一定。
(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。
(4)明确成正比例的量及正比例关系的意义。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识正比例
课型
新授
课时
主备人
责任人
审核人
学习
目标
1.结合具体实例,经历认识成正比例的量的过程。
2.知道正比例的意义,能判断两种量是否成正比例关系,能找出生活中成正比例的实例,并进行交流。
3.对显示生活中成正比例关系的事物有好奇心,在判断成正比例量的过程中,能进行有条理的思考。
学习
重点
结合具体实例,经历认识成正比例的量的过程。
3.写出一个关于路程、时间和速度的关系式。谁来说说是什么?
4.这个关系式中,什么量是变化的,什么量是不变的?
5.谁来说说在速度一定的情况下,路程和时间有什么关系?
1.提出“写出相对应的路程和时间的比,并求出比值”的要求,师生共同完成。2.观察写出的比和求出的比值,交流发现了什么?教师说明:90既是比值,又是速度,然后得出比值都是90的结果。3.在教师的启发下,由学生归纳出路程、时间和速度的关系式:路程/时间=速度(一定)4.提出“议一议”的问题,鼓励学生用自己的语言说明。结合行程问题,教师参照教材上的表述介绍路程和时间这两种量成正比例。
自主
检测
1.判断下面各题中的两个量是否成正比例,并说明理由。
(1)一袋面粉的质量一定,面粉的总质量和袋数。
(2)一个人的身高和年龄。
(3)小麦每公顷的产量一定,小麦的公顷数和总产量。
(4)平行四边形的高一定,它的面积和底。
(5)书的总页数一定,已经看的页数和未看的页数。
2. 正方形的周长和边长成正比例吗?面积和边长呢?为什么?
给学生充分发现的机会。变换方式理解正比例的定义,有利于应用知识解决问题。
巩固
拓展
1.让学生看试一试中的题,先自己判断并和同学交流。
2.让学生读练一练表的数据,说一说知道了什么,然后讨论第(1)个问题。
全班交流,重点指导学生用正比例的定义进行判断。第(3)题只是要学生说出“每月支出的钱数越多(少),剩下的钱数就越少(多),所以不成正比例”或说出“每月支出的钱数和剩下的钱数不是相除的关系”即可。
学习
难点
知道正比例的意义,能判断两种量是否成正比例关系
学习
准备
多媒体课件
学
习
过
程
自 主 实 践
学习要点与学法指导
课前
三分钟
前置小研究
课本第18页例1的两个里程表。
1.从这两个里程表中,你了解到什么?
2.算一算,这辆汽车1小时跑了多少千米?
3.你能将表格空白部分填写出来吗?
4.观察表格中的数据,你发现了什么?
口述教材内容,既激发学习兴趣,更有利于学生理解问题,解决问题师生共同完成,生成课程资源,把更多的时间用于新知的学习。在已有经验和知识的背景下,初步感受时间和路程的关系。
小组 交流
时间(时)
2
3
4
5
6
路程
(千米)
180
270
360
小组探究:
1.写出相对应的路程和时间的比,并求出比值。
2.观察写出的比和比值,你发现了什么?
班级
展示
2.自动笔的单价为1.6元,请完成下表。
数量(支)
2
3
4
5
6
7
8
总价(元)
3.2
4.8
6.4
1.买一支自动笔1.6元,请同学们算一算买2支、3支、5支、6支、7支、8支各花多少钱?
2.观察表中数据,你发现了什么规律?3.
写出一个式子表示总价、数量和单价之间的关系吗?试一试!
3.买自动笔的总价和买自动笔的数量这两种量成正比例吗?为什么?
3.找一找生活中成正比例的例子,并与同伴交流。
板书设计认识正比例
两种相关联的的量,比值一定
4.分析一下上面的两个例子和数量关系式,你们发现它们有什么共同点?
5.谁来说一说判断两个量是不是成正比例关系需要具备哪几个条件?
在学生自主计算和观察的基础上,自主总结关系式,获得积极的学习经验判断是否成正比例的过程,既是对已有知识的进一步深化,又为认识正比例关系提供经验。分析归纳课例的共同点,是由个别到一般的概况过程。