几何体的结构特征

合集下载

基本几何体的结构特征

基本几何体的结构特征

练习 1. 观察下面的几何体,哪些是棱柱?



讲授新课
1. 棱台与圆台的结构特征:
讲授新课
1. 棱台与圆台的结构特征: ①讨论:用一个平行于底面的平面去截 柱体和锥体,所得几何体有何特征?
讲授新课
1. 棱台与圆台的结构特征: ①讨论:用一个平行于底面的平面去截 柱体和锥体,所得几何体有何特征? ②定义:
②定义:由柱、锥、台、球等简单几何 体组合而成的几何体叫简单组 合体.
③简单几何体的构成有两种形式: 由简单几何体拼接而成的; 简单几何体截去或挖去一部分而成的.
练习 1. 圆锥底面半径为1cm,高为2 cm, 其中有一个内接正方体,求这个内接 正方体的棱长.
2.教材P.7练习第2题第(2)问.
棱 柱
棱 锥
讨论:棱柱、棱锥分别具有一些什么几何 性质?有什么共同的性质?
两底面是对应边平行的全等多边形;

侧面、对角面都是平行四边形; 侧棱平行且相等;
柱 平行于底面的截面是与底面全等的
多边形.
棱 锥
讨论:棱柱、棱锥分别具有一些什么几何 性质?有什么共同的性质?
两底面是对应边平行的全等多边形;
7. 正四棱锥的底面积为4 3 cm2,侧面等 腰三角形面积为6cm2,求正四棱锥侧棱.
课堂小结
1. 几何图形; 2. 相关概念; 3. 相关性质; 4. 生活实例.
感谢您的关注
练习 3. 已知长方体的长、宽、高之比为4:3:12, 对角线长为26cm,则长、宽、高分别为 多少?
5. 棱台的cm 2 上、下底面积分别是25和81,高 cm 2
为4,求截得这棱台的原棱锥的高.
6. 若棱长均相等的三棱锥叫正四面体, 求棱长为a的正四面体的高.

简单几何体的结构特征、直观图和三视图

简单几何体的结构特征、直观图和三视图

栏目 导引
直观图是在平行投影下画出的空间图形
栏目 导引
第七章
立体几何
课前热身
1. (教材习题改编)如图所示, 4个三视图和4个 实物图配对正确的是( )
栏目 导引
第七章
立体几何
A. (1)c, (2)d, (3)b, (4)a B. B. (1)d, (2)c, (3)b, (4)a C. (1)c, (2)d, (3)a, (4)b D. (1)d, (2)c, (3)a, (4)b
不是棱锥. C不正确. 棱台是用一个平行于底面的平面去截棱锥而得到, 其 各侧棱的延长线必交于一点, 故D是正确的.
栏目 导引
第七章
立体几何
考点2
简单几何体的三视图
画出如图所示物体的三视图.
栏目 导引
第七章
立体几何
【解】
(1)画主视图. 按主视图的投影方向,
从前往后看, 物体上的平面①实形可见, 主视
1 的线段, 长度为原来的 . 2
栏目 导引
第七章
立体几何
3. 三视图
长对正 (1)三视图的特点: 主、俯视图___________;
高平齐 主、左视图__________; 俯、左视图 宽相等 ___________, 前、后对应. (2)若相邻两物体的表面相交, 表面的交线是它 分界线 们的___________, 在三视图中, 分界线和可见 实 轮廓线都用_______线画出.
它们分别对应x′轴和y′轴, 两轴交于点O′, 使
∠x′O′y′=45°, 它们确定的平面表示 水平平面 ________________.
栏目 导引
第七章
立体几何
(2)已知图形中平行于x轴或y轴的线段, 在直观 平行 图中分别画成_______于x′轴和y′轴的线段 x (3)已知图形中平行于_______轴的线段, 在直 y 观图中保持原长度不变; 平行于________轴

7.1立体几何的结构特征及三视图直观图

7.1立体几何的结构特征及三视图直观图

(对应学生用书 P128)
几种常见的多面体的结构特征 (1)直棱柱:侧棱垂直于底面的棱柱.特别地,当底面是正 多边形时,叫正棱柱(如正三棱柱, 正四棱柱).
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
(2)正棱锥:底面是正多边形,且顶点在底面的射影是底面 中心的棱锥.
课前自主回顾
【解析】 若为D选项,则主视图为: D选项.
【答案】 D
,故不可能是
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
(1)空间几何体的三视图是该几何体在三个两两垂直的平面 上的正投影,并不是从三个方向看到的该几何体的侧面表示的 图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线 和棱用实线表示,挡住的线要画成虚线.
高考总复习 · 课标版 · 数学(文)
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
课前自主回顾
课堂互动探究
课时作业
高考总复习 · 课标版 · 数学(文)
对应学生用书 P127)
1.空间几何体的结构特征
(1)棱柱的侧棱都 平行且相等 ,上下底面是 全等 的多边形. 多 (2)棱锥的底面是任意多边形,侧面是有一个 公共点 面 的三角形. 体 (3)棱台可由 平行于棱锥底面 的平面截棱锥得 到,其上下底面是 相似 多边形.
高考总复习 · 课标版 · 数学(文)
【思路启迪】 利用有关几何体的概念判断所给命题的真 假.
【解析】 命题①符合平行六面体的定义,故命题①是正 确的.底面是矩形的平行六面体的侧棱可能与底面不垂直,故 命题②是错误的.因为直四棱柱的底面不一定是平行四边形, 故命题③是错误的.命题④由棱台的定义知是正确的.

空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结在我们的日常生活中,各种各样的物体形状各异,而在数学的世界里,我们把这些物体抽象成空间几何体来进行研究。

接下来,让我们一起深入探讨空间几何体的结构特征,并通过一些例题来加深理解。

一、空间几何体的分类空间几何体主要分为多面体和旋转体两大类。

多面体是由若干个平面多边形围成的几何体。

常见的多面体有棱柱、棱锥、棱台等。

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

旋转体是由一个平面图形绕着一条直线旋转所形成的几何体。

常见的旋转体有圆柱、圆锥、圆台、球等。

圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

球:以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。

二、空间几何体的结构特征1、棱柱的结构特征侧棱都平行且相等。

两个底面与平行于底面的截面是全等的多边形。

2、棱锥的结构特征侧面都是三角形。

只有一个顶点。

3、棱台的结构特征上下底面是相似多边形。

各侧棱延长后交于一点。

4、圆柱的结构特征母线平行且相等,都垂直于底面。

两个底面是全等的圆。

5、圆锥的结构特征母线交于顶点。

轴截面是等腰三角形。

6、圆台的结构特征母线延长后交于一点。

上下底面是两个半径不同的圆。

7、球的结构特征球面上任意一点到球心的距离都相等。

三、例题解析例 1:判断下列几何体是否为棱柱。

(1)一个长方体;(2)一个有两个面互相平行,其余各面都是平行四边形的几何体。

解:(1)长方体符合棱柱的定义,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以是棱柱。

(2)不一定是棱柱。

空间几何体的结构特征及三视图和直观图

空间几何体的结构特征及三视图和直观图

空间几何体的结构特征及三视图和直观图考纲要求1.了解和正方体、球有关的简单组合体的结构特征,理解柱、锥、台、球的结构特征.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图或直观图,了解空间图形的不同表示形式.4.能识别三视图所表示的空间几何体;理解三视图和直观图的联系,并能进行转化.考情分析1.三视图是新增加的内容,是高考的热点和重点,几乎年年考.2.柱、锥、台、球及简单组合体的结构特征及性质是本节内容的重点,也是难点.3.以选择、填空题的形式考查,有时也会在解答题中出现.教学过程基础梳理空间几何体的直观图常用画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为,z′轴与x′轴和y′轴所在平面.(2)原图形中平行于坐标轴的线段,直观图中仍分别.平行于x轴和z轴的线段在直观图中保持原长度,平行于y轴的线段长度在直观图中.五、三视图几何体的三视图括、、,分别是从几何体的、、观察几何体画出的轮廓线.双基自测1.(教材习题改编)无论怎么放置,其三视图完全相同的几何体是() A.正方体B.长方体C.圆锥D.球2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆;④椭圆.其中正确的是()A.①②B.②③C.③④D.①④3.若一个底面是正三角形的直三棱柱的正视图如图所示,则其侧面积等于()A. 3 B.2C.2 3 D.64.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.5.(2011·山东高考改编)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱其正视图、俯视图如图;②存在四棱柱,其正视图、俯视图如图;③存在圆柱,其正视图、俯视图如图.其中真命题的序号是________.1.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.2.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.典例分析考点一、空间几何体的结构特征[例1](2011·广东高考)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20B.15C.12 D.10[巧练模拟]——————(课堂突破保分题,分分必保!)1.(2012·南昌模拟)如图:在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形BFGH的面积不改变;③棱A1D1始终与水面EFGH平行;④当E∈AA1时,AE+BF是定值.其中正确说法是()A.①②③B.①③C.①②③④D.①③④2.(2012·温州五校第二次联考)下图是一个正方体的展开图,将其折叠起来,变成正方体后的图形可能是()[冲关锦囊]几种常见的多面体的结构特征(1)直棱柱:侧棱垂直于底面的棱柱.特别地,当底面是正多边形时,叫正棱柱(如正三棱柱,正四棱柱).(2)正棱锥:底面是正多边形,且顶点在底面的射影是底面中心的棱锥.特别地,各条棱均相等的正三棱锥又叫正四面体.考点二、几何体的三视图[例2] (2011·新课标全国卷)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )[巧练模拟]———————(课堂突破保分题,分分必保!) 3.(2012·西安模拟)如图,某几何体的正视图与侧视图都是边长为1 的正方形,且体积为12,则该几何体的俯视图可以是 ( )[冲关锦囊]三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.[注意] 画三视图时,要注意虚、实线的区别.考点三、空间几何体的直观图例3.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ). A.34a 2 B.38a 2 C.68a 2 D.616a 2 解析 如图①②所示的实际图形和直观图.由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′, 则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.答案 D直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积是其直观图面积的22倍,这是一个较常用的重要结论.[巧练模拟]———————(课堂突破保分题,分分必保!)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( ). A .正方形 B .矩形C .菱形D .一般的平行四边形一、选择题1.(2012·惠州模拟)下列四个几何体中,几何体只有正视图和侧视图相同的是( )A .①②B .①③C .①④D .②④2.(2011·浙江高考)若某几何体的三视图如图所示,则这个几何体的直观图可以是()3.给出下列命题:①如果一个几何体的三视图是完全相同的,则这个几何体是正方体;②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③如果一个几何体的三视图都是矩形,则这个几何体是长方体;④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台,其中正确命题的个数是()A.0 B.1C.2 D.34.如图△A′B′C′是△ABC的直观图,那么△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形5.如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是()解析:三棱锥的正视图应为高为4,底面边长为3的直角三角形.答案:B二、填空题6.(2012·长沙模拟)用单位正方体块搭一个几何体,使它的正视图和俯视图如图所示,则它的体积的最大值为________,最小值为________.解析:由俯视图及正视图可得,如图所示,由图示可得体积的最大值为14,体积的最小值为9.答案:1497.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱;④一个棱锥可以有两条侧棱和底面垂直;⑤一个棱锥可以有两个侧面和底面垂直;⑥所有侧面都是正方形的四棱柱一定是正方体.其中正确命题的序号是________.解析:①正确,正四面体是每个面都是等边三角形的四面体,如正方形ABCD-A1B1C1D1中的四面体A-CB1D1;②错误,如图所示,底面△ABC为等边三角形,可令AB=VB=VC=BC=AC,则△VBC为等边三角形,△VAB和△VCA均为等腰三角形,但不能判定其为正三棱锥;③错误,必须是相邻的两个侧面;④错误,如果有两条侧棱和底面垂直,则它们平行,不可能;⑤正确,当两个侧面的公共边垂直于底面时成立;⑥错误,当底面是菱形时,此说法不成立,所以应填①⑤.答案:①⑤。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边
长一半,构成四个直角三角形;如上图: SOB, SOH, SBH, OBH 为直角三角形
3.3 侧面展开图:正 n 棱锥的侧面展开图是有 n 个全等的等腰三角形组成的;
3.4
面积、体积公式:S
正棱锥侧=
1 2
ch
,S
正棱锥全=
推论 2:两条相交直线确定一个平面. 图形语言:
推论 3:两条平行直线确定一个平面. 图形语言:
用途:用于确定平面;
公理 3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线两个
平面的交线.
用途:常用于证明线在面内,证明点在线上.
图形语言:
符号语言:
形语言,文字语言,符号语言的转化:
2.3 侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形.
A
O
B
2.4 面积、体积公式:
C'

轴截面
C
侧面
底面
S = 圆柱侧 2 rh ;S = 圆柱全 2 rh 2 r2 ,V 圆柱=S 底 h= r2h 其中 r 为底面半径,h 为圆柱高
3.棱锥
3.1 棱锥——有一个面是多边形,其余各 面是有一个公共顶点的三角形,由这些
母线 l

h
侧面
轴截面
A
r O
B 底面
S
我们把截面与底面之间的部分称为棱台.
5.2 正棱台的性质: ①各侧棱相等,各侧面都是全等的等腰梯形; ②正棱台的两个底面以及平行于底面的截面是 正多边形; ③ 如右图:四边形 O`MNO,O`B`BO 都是直角梯 形

几何体的结构特征

几何体的结构特征

几何体的结构特征几何体是具有三维形状的物体,其结构特征包括形状、边、顶点、面以及其他属性。

在几何体的研究中,我们常常关注其形状和各种特征之间的关系,以及如何描述和分类不同的几何体。

首先,几何体的形状是指其外部的轮廓或者内部的结构。

常见的几何体形状包括球体、立方体、圆柱体、圆锥体和棱柱体等。

其次,几何体的边是指连接两个顶点的线段,用来衡量几何体的长度。

例如,在立方体中,每个面上有四个边。

几何体的顶点是指几何体边的交点,也可理解为几何体的角。

例如,在正五边形棱柱体中,每个面上有一个顶点。

几何体的面是指平面区域,由一系列线段连接而成。

几何体的面是三维空间中的二维对象,它们可以是平坦的,也可以是弯曲的。

在立方体中,有六个面。

除了上述基本特征外,几何体还具有其他一些属性。

其中之一是体积,即几何体所占据的空间大小。

体积可以通过测量几何体的长度、宽度和高度来计算。

例如,球体的体积可以通过计算其半径来获得。

另一个属性是表面积,即几何体外部表面的总面积。

表面积可以通过测量几何体的各个面的面积并求和来计算。

例如,立方体的表面积可以通过计算每个面的面积并求和而得到。

几何体还具有性质,例如平行关系、垂直关系和对称性。

平行关系表明两条线或两个面在空间中始终平行。

垂直关系表示两条线或两个面在空间中始终垂直相交。

对称性是指几何体的一部分或整个几何体在一些轴或平面上对称。

此外,几何体还可以通过旋转、平移和缩放来改变其位置和大小。

旋转是指以一个中心为基准,沿着一个轴旋转几何体。

平移是指将几何体沿着平行于一些轴的方向移动。

缩放是指改变几何体的大小,使其更大或更小。

总体而言,几何体的结构特征包括形状、边、顶点、面以及其他属性。

这些特征能够帮助我们描述和分类不同的几何体,并研究它们之间的关系和性质。

空间几何体的结构特征(浦仕国)

空间几何体的结构特征(浦仕国)

旋转体
由一个平面图形围绕其一 边或一点旋转而成,如圆 柱、圆锥、球等。
组合体
由两个或多个几何体组合 而成的立体图形,如金字 塔、连体双球等。
2023
PART 02
空间几何体的结构特征概 述
REPORTING
结构特征的定义
结构特征是指空间几何体的形状、 大小、位置和方向等属性,是描 述几何体外观和内部结构的特征。
PART 03
空间几何体的基本结构特 征
REPORTING
点、线、面的关系
点是几何体的基本元素,通过点可以 确定位置和方向。
面是由无数条线组成,表示二维平面 和形状。
线是由无数个点组成,表示方向和连 续性。
点、线、面之间的关系是几何体构成 的基础,它们之间的位置和数量关系 决定了几何体的形状和性质。
随着数学和其他学科的发展,空间几何体的结构特征将得到更深入的研究和应 用,这将有助于解决一些重要的数学和物理问题。
2023
THANKS
感谢观看
https://
REPORTING
REPORTING
空间几何体结构特征的未来发展
1 2 3
深入研究空间几何体的内在结构
随着数学和物理学的发展,未来将进一步揭示空 间几何体的内在结构,包括它们的对称性、维度 和拓扑性质。
探索更高维度的空间几何体
随着高维几何学的发展,未来将探索更高维度的 空间几何体,这将有助于理解宇宙的更高维度和 解决一些物理问题。
发现和应用新的几何结构
随着数学和其他学科的发展,未来将发现和应用 新的几何结构,这些结构可能会在解决实际问题 中发挥重要作用。
对空间几何体结构特征的总结与展望
空间几何体结构特征的总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.1 棱柱、棱锥、棱台的结构特征一、核心知识点探究1:多面体的相关概念由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD;相邻两个面的公共边叫多面体的棱,如棱AB;棱与棱的公共点叫示:探究2:旋转体的相关概念由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫体:探究3:棱柱的结构特征1.概念:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高)关键点:侧棱平行且相等注意点:有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱。

2.分类:新知4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直).拓展:正棱柱与直棱柱常见四棱柱的关系3.表示:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱ABCD—A B C D''''.例 1.关于棱柱,下列说法正确的是( D )A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行探究4:棱锥的结构特征1.概念:有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;关键点:侧棱交于一点2.分类:棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等。

3.表示:棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥S ABCDE -.拓展:1.正棱锥2. 四面体、正四面体与正三棱锥探究5:棱台的结构特征1.概念:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.关键特征:各侧棱延长后交于一点,也是判断棱台的方法2.分类:类似于棱锥.3.表示:棱台可以用上、下底面的字母表示拓展:正多面体二、典型题型三、 当堂检测(时量:5分钟 满分:10分) 1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成( ).A .棱锥B .棱柱C .平面D .长方体 2.棱台不具有的性质是( ). A.两底面相似 B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点 3.已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则( ). A.E F D C B A ⊆⊆⊆⊆⊆ B.E D F B C A ⊆⊆⊆⊆⊆ C.E F D B A C ⊆⊆⊆⊆⊆ D.它们之间不都存在包含关系4.长方体三条棱长分别是AA '=1AB =2,4AD =,则从A 点出发,沿长方体的表面到C ′的最短矩离是_____________.5. 若棱台的上、下底面积分别是25和81,高为4,则截得这棱台的原棱锥的高为___________. 四、课后作业1. 已知正三棱锥S-ABC 的高SO =h ,斜高(侧面三角形的高)SM =n ,求经过SO 的中点且平行于底面的截面△A 1B 1C 1的面积.2. 在边长a 为正方形ABCD 中,E 、F 分别为AB 、BC 的中点,现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .问折起后的图形是个什么几何体?它每个面的面积是多少?§1.1.2 圆柱、圆锥、圆台、球及简单组合体的结构特征1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 能概述圆柱、圆锥、圆台台体、球的结构特征;4. 能描述一些简单组合体的结构.一、课前准备(预习教材P 5~ P 7,找出疑惑之处) 复习:①______________________________叫多面体,___________________________________________________叫旋转体.②棱柱的几何性质:_______是对应边平行的全等多边形,侧面都是________,侧棱____且____,平行于底面的截面是与_____全等的多边形;棱锥的几何性质:侧面都是______,平行于底面的截面与底面_____,其相似比等于____________.引入:上节我们讨论了多面体的结构特征,今天我们来探究旋转体的结构特征.二、新课导学※ 探索新知探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder ),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体. 探究2:圆锥的结构特征 问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征 问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.※典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________.※动手试试练.如图,长方体被截去一部分,其中EH‖A D'',剩下的几何体是什么?截去的几何体是什么?三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. Rt ABC∆三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为(). A.B.4. 已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5. 圆锥母线长为R,侧面展开图圆心角的,则高等于__________.1.如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将它绕轴旋转0180后形成一个组合体,下面说法不正确的是___________A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2. 用一个平面截半径为25cm的球,截面面,则球心到截面的距离为多积是249cm少?。

相关文档
最新文档