假设检验

合集下载

假设检验一般概念

假设检验一般概念

x 400 k 时接受原假设H0;
(1)
x 400 k 时拒绝原假设H0接受备择假设H1
(2)
进一步,由于当H0为真时,有
u x400 ~N(0,1) 25/ n
1 |u|要构x造一40个0具有明确k分布的统计量,可将(1)、(2)式转化为
25/ n 25/ n
2 |u|时接x受原40假0设H0 k
2. 拒绝域与接受域 称是检验水平或显著性水平,它是我们
制定检验标准的重要依据。常数u/2把标准正态分布密度曲线下
的区域分成了两大部分,其中一部分
(x1,x2, ,xn)uu/2
称为H0的拒绝域或否定域, 当样本点落入拒绝域时,我们便拒 绝原假设H0(同前述(6)式),另一部分
(x1,x2, ,xn)uu/2
(1)根据问题的要求提出假设,写明原假设H0和备择假设H1的
具体内容。
(2)根据H0的内容,建立(或选取)检验统计量并确定其分布。 (3)对给定(或选定)的显著性水平 ,由统计量的分布查表 或计算确定出临界值,进而得到H0的拒绝域和接受域。
(4)由样本观察值计算出统计量的值。
(5)做出推断:当统计量的值满足“接受H0的条件”时就接受 H0,否则就拒绝H0接受H1 。
u
2
时接受原假设H0 (5)
时拒绝原假设H0,接受备择假设 H1 (6)
分析(5)、(6)两式,可以这 样认为:
拒绝H0,是因为以H0成立 为出发点进行推理时,得到 了不合情理的结论,使小概 率事件在一次试验中发生了。
接受H0,是因为以H0成立 为出发点进行推理时,未发 现异常。
这就是带有概率特征的反证 法,认为小概率事件在一次 试验中不可能发生。
H0:X服从泊松分布;H1:X不服从泊松分布.

常用的假设检验方法

常用的假设检验方法

常用的假设检验方法
常用的假设检验方法包括:1. 单样本t检验:用于比较一个样本的均值是否与已知的总体均值有显著差异。

2. 双样本t检验:用于比较两个独立样本的均值是否有显著差异。

3. 配对样本t检验:用于比较两个相关样本的均值是否有显著差异。

4. 卡方检验:用于比较观察频数与期望频数之间的差异,适用于分类数据。

5. 方差分析(ANOVA):用于比较多个样本的均值是否有显著差异。

6. Wilcoxon符号秩检验:用于比较两个相关样本的中位数是否有显著差异。

7. Mann-Whitney U检验:用于比较两个独立样本的中位数是否有显著差异。

8. Kruskal-Wallis H检验:用于比较多个独立样本的中位数是否有显著差异。

9. McNemar检验:用于比较两个相关样本的比例是否有显著差异,适用于二项分布数据。

10. Fisher精确检验:用于比较两个独立样本的比例是否有显著差异,适用于二项分布数据。

以上是常用的假设检验方法,根据不同的情况和数据类型选择不同的方法进行统计分析。

假设检验

假设检验

22

u值(取正)、 值与统计结论 值 取正)、P值与统计结论 )、
u值 值 <1.96 <1.645 ≥1.96 ≥1.645 ≥2.58 ≥2.33 P值 值 >0.05 ≤0.05 ≤0.01 统计结论 不拒绝H0,差别无统计学 不拒绝 , 意义 拒绝H0,接受 , 拒绝 ,接受H1,差别有 统计学意义 拒绝H0,接受H1,差别有 拒绝 ,接受 , 高度) (高度)统计学意义
5
x = 74.2, µ0 = 72
本例: 的可能原因有二: 本例:造成 X − µ ≠ 0 的可能原因有二:
① 抽样误差造成的; 抽样误差造成的; ② 本质差异造成的
如何做出判断, 如何做出判断 , 统计上是通过假设检验来 回答这个问题 假设检验的目的— 假设检验的目的 判断差别是由哪种原因造成
9
假设H0成立的条件下, 假设H 成立的条件下, 出现| |≥k或 应为小概率事件, 出现| x -μ0|≥k或t≥tα,v 应为小概率事件, )≤α(0.05), ),若计算出的 即P(t≥tα,v)≤α(0.05),若计算出的 它发生的概率P (0.05) t≥tα,v,它发生的概率P应≤α(0.05),根 据小概率原理, 据小概率原理,小概率事件在一次试验中不 易发生。 易发生。但实际上不易发生的事件已经发生 故认为是假设错了,即认为H 了,故认为是假设错了,即认为H0的假设不成 拒绝H 立,拒绝H0 总结: p≤α,拒绝 拒绝H 总结:t≥tα,v,,p≤α,拒绝H0
x − µ0 k k P {x − µ 0 ≥ k } ≤ α → P ≥ ≤ α → P t ≥ ≤ α成立 s s s n n n
假设α=0.05,
k 应有 P t ≥ (为临界值 tα ,v ) ≤ 0.05 成立 s n

假设检验的基本概念

假设检验的基本概念

—— 小概率事件
,+∞) 显著性水平不超过α
故取拒绝域 ( μ 0 + zα
σ
n
注 3º
关于零假设与备择假设的选取
H0与H1地位应平等,但在控制犯第一类错误 的概率 α 的原则下,使得采取拒绝H0 的决 策变得较慎重,即H0 得到特别的保护.
因而,通常把有把握的、有经验的结论作为 原假设,或者尽可能使后果严重的错误成为 第一类错误.
3、根据样本值计算,并作出相应的判断.
⎛ 66.82 − 69 ⎞ ⎛ 69.18 − 69 ⎞ = Φ⎜ ⎟ − Φ⎜ ⎟ 0.6 ⎠ ⎝ ⎝ 0.6 ⎠ = Φ (0.3) − Φ (−3.63) = 0.6179 − 0.0002 = 0.6177
取伪的概率较大.
0.12 0.1 0.08 0.06
α/2
0.04 0.02 60 62.5 65 67.5 70 72.5 75
若不采用假设检验, 按理也不能够出厂. 上述出厂检验问题的数学模型 对总体
X ~ f (x; p) = px (1− p)1−x x = 0,1 提出假设
H 0 : p ≤ 0.04; H1 : p > 0.04
( ∑ xi = 3 or 1 )
i =1 12
要求利用样本观察值 ( x1 , x2 , , x12 ) 对提供的信息作出接受 H (不准出厂) 的判断.
n ) , E( X ) = μ
⎞ ⎛ X −μ ⎟ ⎜ P⎜ > zα ⎟ = α ⎟ ⎜ σ ⎟ ⎜ ⎠ ⎝ n
X ~ N (μ ,
σ2
若原假设正确, 则
但现不知 μ的真值,只知 μ ≤ μ0 = 68
⎞ ⎞ ⎛ X −μ ⎛ X −μ 0 ⎟ ⎟ ⎜ ⎜ ⎜ > zα ⎟ > zα ⎟ ⊂ ⎜ ⎟ ⎟ ⎜ σ ⎜ σ ⎟ ⎟ ⎜ ⎜ n n ⎠ ⎠ ⎝ ⎝ ⎞ ⎛ X −μ 0 ⎟ ⎜ P⎜ > zα ⎟ ≤ α ⎟ ⎜ σ ⎟ ⎜ n ⎠ ⎝

假设检验的基本概念2

假设检验的基本概念2
联络。参数区间估计能够转化为假设检验, 假设检验也能够转化为参数区间估计。 假设检验能够看作区间估计中置信区 间旳另一种体现方式:即能够用区间估计 旳技术来处理假设检验问题。
二、假设检验旳基本原理
在大量观察中频频出现旳事件具有较大旳概率, 出现次数较小旳事件,具有小旳概率。
在日常生活中,人们习惯于把概率很小旳事件, 看成在一次观察中是不可能出现旳事件,这个原理 称作小概率原理。
举例说,我们几乎每天从电视、报纸、甚至街头 广告牌上都能看到交通事故旳统计,但人们绝不所 以而放弃交通工具旳使用 ,可见,在日常生活中, 人们是在不自觉利用小概率原理。
统计假设检验旳基本原理是小概率原理。
小概率原理能够归纳为两个方面:
能够以为小概率事件在一次观察中是不 可能出现旳。
假如在一次观察中出现了小概率事件, 那么,合理旳想法是否定原有事件具有小 概率旳说法(或称假设)。
即直接检验H0,间接检验H1。
•小概率 原理:
假如对总体旳某种假设是真实旳,那么不利于 或不能支持这一假设旳事件A(小概率事件)在 一次试验中几乎不可能发生旳;要是在一次试 验中A居然发生了,就有理由怀疑该假设旳真实 性,拒绝这一假设。
总体
抽样
(某种假设)
检验
(接受)
小概率事件 未发生
样本 (观察成果)
(拒绝) 小概率事件 发生
三、假设检验旳基本形式
虚无假设HO如前面所举女青年初婚年龄=20。原假设
在不会研被究假否中设定是,稳一不定般然、涉也受就到及失保两去护其旳部研,分究但意另:义一虚。方当面无经也假过并抽不设样表H调达O查永和,远研 究当假实际设数H据1。否定了原有假设H0时,就产生了需要接受其逻辑
拟定α,就拟定了 临界点c。拟定了 临界点c,就拟定 了否定域旳大小。

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

常见假设检验公式概览

常见假设检验公式概览

常见假设检验公式概览假设检验是统计学中一种重要的推断方法,用于判断总体参数的真实情况。

在假设检验中,我们通常会提出一个原假设和一个备择假设,并通过采样数据来判断是否拒绝原假设。

在实际应用中,常见的假设检验方法有如下几种。

1. 单样本均值检验单样本均值检验用于判断一个样本的平均值是否等于一个已知的常数。

其中,我们常用的假设检验公式为:t = (x - μ) / (s / √n)其中,t表示t值,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。

通过比较t值与临界值,我们可以判断是否拒绝原假设。

2. 双独立样本均值检验双独立样本均值检验用于比较两个独立样本的平均值是否相等。

常用的假设检验公式如下:t = (x1 - x2) / √(s1²/n1 + s2²/n2)其中,t表示t值,x1和x2分别为两个样本的均值,s1和s2为两个样本的标准差,n1和n2为两个样本的容量。

通过比较t值和临界值,可以判断是否拒绝原假设。

3. 配对样本均值检验配对样本均值检验用于比较同一组样本的两个相关变量的平均值是否相等。

常用的假设检验公式如下:t = (x d - μd) / (sd / √n)其中,t表示t值,x d为配对差值的均值,μd为总体差值的均值,sd为配对差值的标准差,n为配对样本容量。

通过比较t值和临界值,可以得出是否拒绝原假设。

4. 单样本比例检验单样本比例检验用于判断一个样本比例是否等于一个已知的比例。

常用的假设检验公式如下:z = (p - π) / √(π(1-π)/n)其中,z表示z值,p为样本比例,π为总体比例,n为样本容量。

通过比较z值和临界值,可以判断是否拒绝原假设。

5. 独立样本比例检验独立样本比例检验用于比较两个独立样本的比例是否相等。

常用的假设检验公式如下:z = (p1 - p2) / √(p(1-p)(1/n1 + 1/n2))其中,z表示z值,p1和p2分别为两个样本的比例,n1和n2分别为两个样本的容量。

假设检验

假设检验

假设检验原理
显著性水平
假设检验中犯第Ι类错误的概率被称为显著性水平 (Level of significance),记为α ,著名英国统计学家 Ronald Fisher在他的研究中把小概率的标准定为 0.05,这也是个通用的原则。 实际情况 H0为真 正确决策 第Ι 类错误α H0为假 第Π 类错误β 正确决策
单样本Z检验
Minitab 输出
length 的概率图
正态
99
分析结果
用正态性检验来检验一组样本数据是否来自服从正 态分布的总体: 如果数据来自正态分布的总体,数据点应该紧 密紧靠在拟合线上。 如果数据不是来自正态分布的总体,数据就是 远离拟合线。
Anderson-darling正态性检验也是假设检验的一种 • H0:数据来源于正态分布的总体 • H1:数据不是来源于正态分布的总体 正态性检验的 P=0.88,大于显著性水平α=0.05,所 以没有足够的证据拒绝原假设H0 ,即认为样本数据 来自正态分布的总体。
查看概率
Minitab 输出
分布图
正态, 均值=0, 标准差=1 0.4
分析结果
从图形可以看出,在标准正态分布的双侧检验下, α =0.05所对应的分位数为+/-1.96. 按此方法,可以计算T分布、weibull分布等分布下的 概率、概率密度和分位数。
0.3
密度
0.2
0.1
0.025 0.0 -1.96 0 X 1.96
单样本Z检验
增加图形输出,在Minitab中操作:
1、Ctrl + E 或者 点击 2、完成下图对话框,点击 图形
选中 数据箱线图,两次点击确定
单样本Z检验
Minitab 输出

什么是假设检验?

什么是假设检验?

减少主观臆断
假设检验基于客观数据和事实, 而非主观臆断,从而能够减少决 策过程中的主观性和不确定性。
提高决策科学性
假设检验能够提供一种相对可靠 的决策依据,提高决策的科学性 和准确性。
假设检验的未来发展
不断扩展应用领域
方法的改进和完善
随着科学技术的发展,假设检验的应 用领域将会越来越广泛,如人工智能 、生物技术、医学、社会科学等领域 。
随着数据的复杂性和规模的增加,假 设检验的方法也需要不断改进和完善 ,以适应不同场景和需求。
提高可解释性和透明 度
为了更好地理解和解释假设检验的结 果,需要提高其可解释性和透明度, 以便更多的人能够理解和应用。
正确理解和运用假设检验
01
理解基本概念
正确理解和运用假设检验需要深入理解其基本概念和方法,包括如何
社会学研究
社会调查
利用假设检验对社会现象进行调查研究,以揭示社会现象之间的内在联系和 规律。
行为研究
通过假设检验探讨人类行为和社会影响之间的相互作用,为政策制定和社会 干预提供依据。
06
结论
假设检验的意义
科学探究的基础
假设检验是科学探究中最为核心 的方法之一,它能够通过严谨的 逻辑和数学推理来验证或否定一 个特定的假设。
假设检验是统计分析的一部分,它是 一种方法论,用于根据样本数据推断 总体参数。
统计分析包括多种方法和技术,如描 述性统计、推断性统计和回归分析等 ,它们都是为了帮助我们更好地理解 和解释数据。
在进行假设检验时,需要使用统计分 析方法来对数据进行处理和分析,从 而得出结论。
02
假设检验的基本原理
假设的设定与分类
病因研究
通过对暴露因素与疾病之间关系的假设检验,探讨病因和预防策 略的有效性。

第八章 假设检验

第八章 假设检验
或 n 若所得的置信区间不包含u0,则拒绝H0, 否则不能拒绝。
x z2

x z2 /
s n


上例,我们用求置信区间的方法,来判断 原假设是否合理。 大样本下满足中心极限定理,样本均值的 抽样分布服从正态分布,从而有置信区间:
x z2 s 24 =986 1.96 n 40
假设检验的步骤

1.确定原假设和备选假设 2.选择检验统计量 3.指定检验的显著性水平 4.建立拒绝原假设的规则 5.收集样本数据,计算检验统计量的值 6.将检验统计量的值域拒绝规则的临界值比较, 以决定是否拒绝原假设。或者,由检验统计量 的值计算p值,利用p值确定是否拒绝原假设。
x 2.92 3 z 2.67 / n 0.18 / 6

x z ~ N (0,1) / n


根据显著性水平α=0.01,对应的拒绝域面积为 0.01,临界值为-2.33 Z<-2.33,所以拒绝H0,即可认为没听咖啡的容量 不足3磅。 统计证据支持对HILLTOP咖啡重量不足采取投诉措 施。

(978.56,993.44)该区间不包含u0=1000, 因此我们拒绝原假设H0.检验表明,该包 装机未能正常工作。
总体均值的检验:小样本情形


小样本下,已知总体为正态分布,我们考 虑以下两种情况: 1.总体方差已知 2.总体方差未知 在总体方差已知的情况下,即使样本容量 较小,但样本平均数的抽样分布总是以平 均值 为均值,以 x 为标准差的正态分 布。因此其检验过程和检验统计量同大样 本情形。
拒绝域为α/2 拒绝域为α/2
z / 2
拒绝域
0
z / 2

假设检验

假设检验
X是的无偏估计量,
U | X 0 | ~ N (0,1)
/ n
3° 在假设 H0成立的条件下,由样本判断 y 小概率事件是否发生。 y pU ( x )

P{| U | u / 2 }
2

2
当 0很小时 ,
uα / 2
O uα / 2
x
{| U | u / 2 }是个小概率事件 (如上图) .
第一节
假设检验的 基本概念
一、假设检验的基本原理 二、假设检验的基本概念 三、两类错误

四、假设检验的一般步骤
停 下
实验设计 数理统计 统计推断
参数估计 假设检验 (回归分析)
统计推断: 研究如何加工、处理数据,从而 对所考察对象的性质做出尽可能精确和可靠的 推断.
很难发生. 但“很难发生”不等于“不发生”, 因而 假设检验所作出的结论有可能是错误的. 这种错误 有两类: (1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称为第Ⅰ类错误, 又叫弃真 错误, 这类错误是“以真为假”. 犯第Ⅰ类错误的概 率就是显著性水平 .
= P { 拒绝原假设H0 | H0为真 }
H0称为原假设或零假设, H1称为备择假设.
4. 拒绝域与临界点样本值x=(x1, x2, · · · , xn)所组成的集合. W1 = { x x 且使H0不成立}
W1 W1 : 拒绝原假设H0的检验统计量的取值范围.
W1 x x , U U
根据小概率原理, 如果H 0为真,则 | x 0 | 不应太大,则由一次试验得到
满足不等式
| u |
| x 0 |
/ n

假设检验举例通俗

假设检验举例通俗

假设检验举例通俗以假设检验举例通俗为题,列举一下如下:1. 假设检验是统计学中一种重要的推断方法,用于判断某个假设是否具有统计显著性。

例如,我们可以通过假设检验来判断一种新药物对于治疗某种疾病是否有效。

我们先提出一个原假设,即新药物对于治疗该疾病没有效果,然后进行一系列实验,收集数据并进行统计分析,最后得出结论,判断该药物是否具有统计显著性。

2. 假设检验也可以用于判断两组数据之间是否存在显著差异。

例如,我们可以通过假设检验来判断男性和女性在某个指标上是否存在差异。

我们先提出一个原假设,即男性和女性在该指标上没有差异,然后收集两组数据进行统计分析,最后得出结论,判断两组数据是否具有统计显著性差异。

3. 假设检验还可以用于判断某个事件是否具有统计显著性。

例如,我们可以通过假设检验来判断某个广告对于销售额的提升是否具有统计显著性。

我们先提出一个原假设,即该广告对于销售额没有影响,然后进行实验,收集数据并进行统计分析,最后得出结论,判断该广告是否具有统计显著性影响。

4. 假设检验还可以用于判断某个样本是否符合某个分布。

例如,我们可以通过假设检验来判断某个样本是否符合正态分布。

我们先提出一个原假设,即该样本符合正态分布,然后进行统计分析,最后得出结论,判断该样本是否具有统计显著性符合正态分布。

5. 假设检验还可以用于判断某个变量之间是否存在相关性。

例如,我们可以通过假设检验来判断收入水平和教育水平之间是否存在相关性。

我们先提出一个原假设,即收入水平和教育水平之间没有相关性,然后进行统计分析,最后得出结论,判断两个变量是否具有统计显著性相关性。

6. 假设检验还可以用于判断某个样本是否具有统计显著性特征。

例如,我们可以通过假设检验来判断某个样本的均值是否具有统计显著性差异。

我们先提出一个原假设,即该样本的均值没有差异,然后进行统计分析,最后得出结论,判断该样本的均值是否具有统计显著性差异。

7. 假设检验还可以用于判断某个事件的发生概率是否符合某个理论值。

假设检验

假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。

具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。

常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。

中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

[1]2、基本思想假设检验的基本思想是小概率反证法思想。

小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。

[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。

设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。

使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。

如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。

如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。

对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。

假设检验

假设检验

产品检验: ■全数检验 ■抽样检验
能最真实、完整的反映所有产品的特性结果 GB/T2828.1-2003 存在抽样误差
总体与样本
判断
总体
随机抽取
样本
测量
数据
根据样本的信息推断总体
2. 假设检验的基本原理:小概率反证法 小概率原理:指小概率事件(通常概率 α≤0.05称为“小概率事件)在一次试 验中基本不会发生,反证法思想是先提 出某项假设(H0 ),用统计方法确定假 设的可能性(即检验假设是否正确): 可能性小,即假设不成立,应拒绝原假 设;如果可能性大,则接受假设,则假 设成立。
⑹根据显著性水平α 及统计量、样本自由 度查概率分布表。获取在此显著性水平α 下的置信区间,即临界值。 双侧检验:根据α/2或(1-α/2)确定临界值 单侧检验:根据α或(1 -α) 确定临界值
⑺做出判断:将计算出的统计量与查表得 出的临界值进行比较,作出拒绝或接受H0 的判断。
五、应用实例
1.单个正态总体的均值检验——t 检验
s12 0.0955 F 2 3.66 s2 0.0261 计算统计量:
n1=8,则样本的自由度 1 n1 1 7 n2=9,则样本的自由度 2 n2 1 8 α =0.05,查F检验临界值(F2)表,P(F >F2)= α 得到:F0.05(7、8)= 3.50 F在拒绝域内 结论:原假设H0不成立,即甲机床的精度比乙机床低。
因此,可用计算确定均值µ及1—α 置信区间的 方法来检验上述假设是否成立。 如果计算出来的置信区间包括µ 0 ,则接受H0 ; 如果计算出来的置信区间不包括µ 0 ,则拒绝H0
三、假设检验类型
• 参数假设:总体分布类型已知,对未知参数 的统计假设。检验参数假设问题称为参数假 设检验。当总体分布类型为正态分布时,则 为正态总体参数检验。 • 非参数假设:总体分布类型不明确,对参数 的各种统计假设。检验非参数假设问题称为 非参数假设检验,也称分布检验。参数假设 检验和非正态总体参数检验都比较复杂,在 QC小组活动中很少应用。

假设检验的八种情况的公式

假设检验的八种情况的公式

假设检验的八种情况的公式假设检验是统计学中常用的一种方法,用于判断样本数据与总体参数的关系是否具有显著性差异。

在进行假设检验时,我们需要根据实际问题和已知条件确定相应的假设检验公式。

以下是八种常见的假设检验情况及相应的公式。

1.单样本均值检验:在这种情况下,研究者想要判断一个样本的均值是否与一个已知的总体均值有显著性差异。

假设检验的公式为:其中,x̄为样本均值,μ为总体均值,s为样本标准差,n为样本容量,t为t分布的临界值。

2.双样本均值检验(方差已知):在这种情况下,研究者想要判断两个样本的均值是否有显著性差异,且已知两个样本的方差相等。

假设检验的公式为:其中,x̄1和x̄2分别为样本1和样本2的均值,μ1和μ2分别为总体1和总体2的均值,s为样本标准差,n1和n2分别为样本1和样本2的容量,z为标准正态分布的临界值。

3.双样本均值检验(方差未知):在这种情况下,研究者想要判断两个样本的均值是否有显著性差异,且两个样本的方差未知且不相等。

假设检验的公式为:其中,x̄1和x̄2分别为样本1和样本2的均值,μ1和μ2分别为总体1和总体2的均值,s1和s2分别为样本1和样本2的标准差,n1和n2分别为样本1和样本2的容量,t为t分布的临界值。

4.单样本比例检验:在这种情况下,研究者想要判断一个样本的比例是否与一个已知的总体比例有显著性差异。

假设检验的公式为:其中,p̄为样本比例,p为总体比例,n为样本容量,z为标准正态分布的临界值。

5.双样本比例检验:在这种情况下,研究者想要判断两个样本的比例是否有显著性差异。

假设检验的公式为:其中,p̄1和p̄2分别为样本1和样本2的比例,p1和p2分别为总体1和总体2的比例,n1和n2分别为样本1和样本2的容量,z为标准正态分布的临界值。

6.简单线性回归检验:在这种情况下,研究者想要判断自变量与因变量之间的线性关系是否显著。

假设检验的公式为:其中,β1为回归系数,se(β1)为标准误差,t为t分布的临界值。

假设检验

假设检验
备择假设H1: ≠3190(克)
例2:某种零件的尺寸,要求其平均长度为4厘米,大于或小于4 厘米均属于不合格。该企业生产的零件平均长度是4厘米吗?

提出原假设 H0: = 4厘米
提出备择假设 H1: 4厘米
单边检验
例1:某灯泡制造商声称,该企业所生产的灯泡的平均使用 寿命在1000小时以上。该批产品的平均使用寿命超过1000小 时吗?

x 0 t ~ t (n 1) s n
正态总体、方差未知、小样本情况下,样本统计量的抽样分布
t
正态 分布
X S n
~ t (n 1)
正态分布 t (df = 13) t (df = 5)
t 分布
Z
X
t 分布与正态分布的比较
不同自由度的t分布
t
总体均值的检验—— t 检验(双边)


提出原假设H0: 1000 选择备择假设 H1: < 1000
例2:学生中通宵上网的人数超过25%吗?

提出原假设H0: 25%

选择备择假设 H1: 25%
例3:消费者协会接到消费者投诉,指控某品牌纸包装饮料 容量不足,有欺骗消费者之嫌。消费者协会从市场上随机抽 取50盒该品牌纸包装饮品,包装上标明的容量为250毫升, 但测试发现平均含量为248毫升,小于250毫升。这是生产中 正常的波动,还是厂商的有意行为?消费者协会能否根据该 样本数据,判定饮料厂商欺骗了消费者呢?
2 2
Z 1.96
2
决策准则
当 Z Z ,即Z Z 或Z Z 时 拒绝H 0
2 2 2
当 Z Z ,即 Z Z Z 时 接受H 0

什么是假设检验

什么是假设检验

什么是假设检验
假设检验(hypothesis testing)是指从对总体参数所做的一个假设开始,然后搜集样本数据,计算出样本统计量,进而运用这些数据测定假设的总体参数在多大程度上是可靠的,并做出承认还是拒绝该假设的判断。

如果进行假设检验时总体的分布形式已知,需要对总体的未知参数进行假设检验,称其为参数假设检验;若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称之为非参数假设检验。

此外,根据研究者感兴趣的备择假设的内容不同,假设检验还可分为单侧检验(单尾检验)和双侧检验(双尾检验),而单侧检验又分为左侧检验和右侧检验。

假设检验的基本思想是反证法思想和小概率事件原理。

反证法的思想是首先提出假设(由于未经检验是否成立,所以称为零假设、原假设或无效假设),然后用适当的统计方法确定假设成立的可能性大小,如果可能性小,则认为假设不成立,拒绝它;如果可能性大,还不能认为它不成立。

小概率事件原理,是指小概率事件在一次随机试验中几乎不可能发生,小概率事件发生的概率一般称之为“显著性水平”或“检验水平”,用表示,而概率小于多少算小概率是相对的,在进行统计分析时要事先规定,通常取=0.01、0.05、0.10等。

假设检验

假设检验

四 假设检验一 基本内容1.假设检验对总体分布或分布中的某些参数作出假设,然后利用样本的观测值所提供的信息,检验这种假设是否成立,这一统计推断过程,称为假设检验。

(1) 待检验假设或零假设记为0H ,正在被检验的与0H 相对立的假设1H 称为备选假设或对立假设。

(2) 假设检验的依据——小概率原理:小概率事件在一次试验中实际上不会发生。

(3) 假设检验的思路是概率性质的反证法。

即首先假设成立,然后根据一次抽样所得的样本值得信息,若导致小概率事件发生,则拒绝原假设,否则接受原假设。

(4) 假设检验可能犯的两类错误:① 第一类错误(弃真错误):即假设0H 为真而被拒绝,记为α,即00{|}P H H α=拒绝为真。

② 第二类错误(存伪错误):假设0H 不真而被接受,记为β,即00{|}P H H β=接受不真。

③ 当样本容量n 一定时,,αβ不可能同时减少,在实际工作中总是控制α适当的小。

2.假设检验的程序对任何实际问题进行假设检验,其程序一般为五步,即: ⑴ 根据题意提出零假设0H (或相应备选假设1H )。

⑵构造样本统计量并确定其分布;⑶给定显著性水平α,查表确定临界值,从而得出接受域和拒绝域; ⑷由样本观测值计算出统计量的值;⑸作出判断:若统计量的值落入拒绝域则拒绝0H ,若统计量的值落入接受域则接受0H 。

3.假设检验的主要方法Z 检验法、t 检验法、2λ检验法、F 检验法。

4.关于一个正态总体的假设检验⑴2200(,),H X N μδδμμ 已知,检验假设:=Z 检验法:①001000H H μμμμμμμμ≠><:= (:或或)②统计量0(0,1)()Z N H -=成立时。

③给出1122{}P Z ZZαααα--<=,,查正表定④ 由样本值12n x x x (,,,) 计算Z 的值 ⑤ 判断:若1122Z ZZαα--∈∞∈∞0(-,-)或Z (-,+),则拒绝H(这是对双侧检验提出的Z 检验法步骤,若是单侧可仿比) (2)2200(,),H X N μδδμμ 未知,检验假设:=t 检验法:①001000H H μμμμμμμμ≠><:= (:或或)②0(1)()t t n H -=- 成立时。

假设检验

假设检验

H 0 : X = X 0; H1 : X ≠ X
0
或 H 0 : P = P0 ; H 1 : P ≠ P0
2.单侧检验:如果不仅仅检验样本平均数( 2.单侧检验:如果不仅仅检验样本平均数(或成 单侧检验 和总体平均数(或成数)有没有显著的差异, 数)和总体平均数(或成数)有没有显著的差异, 而且追究是否发生预先指定方向的差异( 而且追究是否发生预先指定方向的差异(正差 异或负差异),则原假设取不等式形式, ),则原假设取不等式形式 异或负差异),则原假设取不等式形式,如:
其次,确定显著性水平。 其次,确定显著性水平。 我们所以拒绝原假设, 我们所以拒绝原假设,并不是因为它存在逻辑的 绝对矛盾,或实际上不可能存在这种假设, 绝对矛盾,或实际上不可能存在这种假设,而仅 仅因为它存在的可能性很小。 仅因为它存在的可能性很小。根据小概率事件原 理,概率很小的事件在一次试验中几乎是不会发 生的。 生的。如果根据原假设的条件正确计算出某一结 果发生的概率很小, 果发生的概率很小,理应在一次试验中不至于发 然而在一次试验中事实上又发生了, 生,然而在一次试验中事实上又发生了,则我们 认为原假设不正确,而拒绝接受。 认为原假设不正确,而拒绝接受。 进行假设检验时应该事先规定一个小概率的标 作为判断的界限, 准,作为判断的界限,这个小概率标准称为显 著性水平。 著性水平。
(一)设立假设 首先提出原假设,记为H 首先提出原假设,记为H0,原假设总是假定 总体没有显著性差异, 总体没有显著性差异,所有差异都是由随机 原因引起的。所以这种假设又称无效假设。 原因引起的。所以这种假设又称无效假设。 其次提出备择假设,记为H 其次提出备择假设,记为H1,如果原假设被 拒绝等于接受了备择假设, 拒绝等于接受了备择假设,所以备择假设也 就是原假设的对立事件。 就是原假设的对立事件。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称:数理统计实践项目名称:参数假设检验姓名:龚成班级:科121学号:121617指导教师:徐红敏数理系信息与计算科学专业北京石油化工学院数理系参数假设检验-实验报告假设检验1、 实验目的与要求1.1实验目的(1)掌握Matlab 中有关假设检验的操作命令;(2)掌握利用Matlab 软件对单个正态总体均值,方差置信区间的假设检验(3)掌握利用Matlab 软件对两个正态总体均值差,方差比置信区间的假设检验1.2实验要求通过实验加深对假设检验的基本概念的和基本思想的理解,提升对matlab 软件的熟练度和对常用程序的使用。

2、 相关背景知识介绍假设检验指的是在用数理统计方法检验产品的时候,先作出假设,在根据抽样的结果在一定可靠程度对原假设做出判断的一种方法。

在总体的分布函数未知或者只知形式不知参数的情况下,为了推出总体的的未知特征,提出的关于总体的假设,而对于这个假设的结果我们是否接受的决断过程,就叫做假设检验。

一般地,我们会给出2个相互对立的假设01H H ,,然后通过具体的问题获取的信息选择一个合适的检测量,在按照假设决定该检测量的拒绝区域,如果该检测量落在拒绝区域里面,则选择拒绝0H 选择1H ,如果该检测量落在拒绝区域外面,则选择0H 拒绝1H 。

然而由于作出决策的样本不能完全代表总体,如果小概率事件发生或者样本混入了错误值或者由于其他原因导致样本失真,当实际上0H 为真时仍然有可能作出拒绝0H 的决策或实际上0H 为假时仍然有可能作出接受0H 的决策(除非样本就等于总体,否则无法消除这个可能),犯这种错误的概率记为00000H 0P H H P H P H μμ∈(当为真,拒绝)或(拒绝)或(拒绝)。

在大多数情况下,我们无法排除这类错误(P 0P 1≈ ,0),但是可以通过增加样本容量使之接近总体让错误被“稀释”。

一般地我们为了减少0H 为真时作出拒绝0H 的决策的概率,我们因此我们给出一个较小的数1αα (0)使得犯次错误的概率不超过α,即00P{H H α≤当为真,拒绝}, 这种只对0H 为真时仍然有可能作出拒绝0H 的决策的概率加以控制,对0H 为假时仍然有可能作出接受0H 的决策的概率无视的检验方式,叫做显著性检验。

一般地,在进行假设时需要遵循2个原则,1是保护性原则,即原假设不能条件过于苛刻,即无法被轻易否定(比如你出门时下了大雨,假设你身上有水,而不是假设身上一点水没有)2是轻微后果原则,则原假设一般都是比较符合常理和道德的(比如你去菜场买了一只鸡,假设这鸡是健康无害的,而不是假设这鸡得了鸡瘟或者中毒了,显然如果是后者,往往已经引起了剧烈的后果),但如果是一些无关紧要的问题,可以随意更改原假设和备假设,比如你身高1米6,出门遇到11个人,里面可能比你高的人多,也可能比你低的人多,两者都可以作为原假设,对事件没有影响。

参数假设检验与区间估计两者解决问题的统计思想是一样的, 都是基于样本信息推断总体参数的性质,并且在统计推断中构造的统计量是相同的。

在对参数θ作单侧区间估计和单边检验时, 由于所使用的分布的分位点完全由置信度和显著性水平 确定,所以参数估计的置信区间与参数假设检验的接受域完全对等, 因此, 可以通过置信区间求得相应的接受域, 也可以由接受域得到相应的置信区间, 此时两种统计推断方法是对同一个问题的两种不同表示方式。

参数的假设检验与区间估计之间有联系也有区别。

参数假设检验与区间估计由相同的统计量出发构造的事件不同。

参数区间估计是构造大概率事件 (概率为1- α ) , 而假设检验是构造小概率事件 (概率为α ) 。

两者的要求不同。

参数估计要求以一定的置信度给出参数所在的范围,而假设检验则要在一定的显著性水平下对未知参数的假设作出拒绝或不能拒绝的判断。

两者最优性的标准不同。

最优的区间估计一般是指在给定置信度下长度最短的区间。

而对于双边假设检验问题,一般是在给定显著性水平后用犯第二类错误的概率最小为衡量标准定义最优双边检验。

3、实验内容3.1实验方案设计与选择3.1.1单个正态总体均值的假设检验(2σ已知)对某地区一年级进行基础课教学成绩测评,现随机抽取10名学生成绩,已算得平均成绩6.81=x 分,标准差4.14=S ,设测验成绩X 服从正态分布。

试问:可否认为该地区一年级大学生该课成绩的平均分数为80分?(检验水平)05.0=α在MA TLAB 中输入如下:x=81.6 %输入样本均值m=10 %输入样本容量sigma=14.4 %输入方差alpha=0.05 %输入阿尔法值tail=0 %设定一个任意值h = ztest (x, m, sigma) %使用test 函数h = ztest (x, m, sigma, alpha) %使用test 函数输出数据h = 0h =0接受原假设该地区一年级大学生该课成绩的平均分数为80分。

3.1.2单个正态总体均值的假设检验(2σ未知)某种元件的寿命X 服从正态分布2N μσ(,),2μσ,未知,测的16件元件寿命如下159,280,101,212,224,379,179,264,222,362,168,250,149,260,485,170是否有理由认为元件平均寿命大于225?在MA TLAB 中输入如下:x=[159 280 101 212 224 379 179 264 222 362 168 250 149 260 485170]; %输入x[h,p,muci,stats]=ttest(x,225,0.05) %使用test 函数输出数据h = 0p =0.2570muci =188.8927 294.1073stats = tstat: 0.6685df: 15sd: 98.7259接受原假设,该元件平均寿命不大于225。

或者如下x=[159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170]%输入x[h,p,muci,stats]=ttest(x,225,0.05) %使用test函数输出数据h =0p =0.5140muci =188.8927 294.1073stats = tstat: 0.6685df: 15sd: 98.7259接受原假设,该元件平均寿命大于225。

即接不接受假设都可以。

进行检验3.1.3单个正态总体的2根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”X服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下(单位:kg²cm-2):32.56 29.66 31.64 30.00 31.87 31.03 检验这批砖的平均抗断强度为32.50kg²cm-2 是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?在MA TLAB中输入如下:x=[0.10 0.09 -0.12 0.18 -0.18 0.11 0.12 0.13 0.11]%输入x[muhat,sigmahat,muci,sigmaci]=normfit(x,0.1) %使用normfit函数输出数据x =0.1000 0.0900 -0.1200 0.1800 -0.1800 0.1100 0.1200 0.1300 0.1100 muhat = 31.1267sigmahat =1.1225muci =30.2032 32.0501sigmaci =0.7544 0.3452再次输入[h,p,muci,zval]=ztest(x,32.5,1,0.05) %使用test函数输出数据h =1p = 0muci =-0.5933 0.7133zval =-97.3200拒绝原假设,这批砖的平均抗断强度为32.50kg²cm-2成立3.1.4两个正态总体均值差的假设检验从人群中任选8名成年男子和7名成年女子做膝关节反射强度试验,测得反射强度分别为(单位:弧度):男子:31 19 22 26 36 30 33 29女子:30 14 19 29 31 26 19假定男子的膝关节反射强度P和女子膝关节反射强度R都服从正态分布,且方差相同,试问可否认为男子较女子膝关节反射强度多4弧度(α=0.05)在MATLAB中输入如下:x=[31 19 22 26 36 30 33 29 ]; %输入xy=[30 14 19 29 31 26 19]; %输入yalpha=0.05; %输入阿尔法值x=x-4 %让男人平均值减4tail=0; %原假设男子比女子反射强度多4vartype='equal'; %输入相等[h,p,muci,stats]=ttest2(x,y,alpha,tail,vartype) %使用test函数输出数据x = 27 15 18 22 32 26 29 25h = 0p =0.9383muci =-6.5969 7.0969stats = tstat: 0.0789df: 13sd: 6.1237接受原假设可以认为男子较女子膝关节反射强度多4弧度。

3.1.5两个正态总体方差比的假设检验分析两批葡萄酒的醇含量,现分别对两批葡萄酒进行6次和4次测定,已算出其标准差分别为0.07%和0.06%,假定这两批葡萄酒的醇含量均服从正态分布,试问:这两批葡萄酒醇含量的方差有无显著差异?在MATLAB中输入如下:n=6sigmahat1=0.0007[muhat,sigmahat,muci,sigmaci]=normfit(x,0.1)输出数据为n = 6sigmahat1 =7.0000e-04muhat =0.0600sigmahat =0.1227muci = -0.0160 0.1360sigmaci =0.088 0.2099输入如下n=4sigmahat=0.0006[muhat,sigmahat,muci,sigmaci]=normfit(x,0.1)输出数据n = 4sigmahat = 6.0000e-04muhat =0.0600igmahat = 0.1227muci =-0.0160 0.1360sigmaci =0.0881 0.20996这两批葡萄酒醇含量的方差无显著差异3.1.6成对数据的检验有两台光谱仪XY,用来测量材料中某种金属的含量,为鉴定它们的测量结果有无显著的差异,制备了9件试块(它们的成分、金属含量、均匀性等均各不相同),现在分别用这两台仪器对每一试块测量一次,得到9对观察值如下。

x(%) 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00y(%) 0.10 0.21 0.52 0.32 0.78 0.59 0.68 0.77 0.89d=x-y(%) 0.10 0.09 -0.12 0.18 -0.18 0.11 0.12 0.13 0.11问能否认为这两台仪器的测量结果有显著的差异(取α=0.01)?在MATLAB 中输入如下:x=[0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00]; %输入xy=[0.10 0.21 0.52 0.32 0.78 0.59 0.68 0.77 0.89]; %输入yd=[0.10 0.09 -0.12 0.18 -0.18 0.11 0.12 0.13 0.11] %输入d[h,p,muci,stats]=ttest(d,0,0.01) %使用test 函数输出数据d =0.1000 0.0900 -0.1200 0.1800 -0.1800 0.1100 0.1200 0.1300 0.1100h =0p = 0.1805muci = -0.0343 0.1543stats = tstat: 1.4673df: 8sd: 0.1227接受原假设这两台仪器的测量结果没有显著的差异。

相关文档
最新文档