已知函数单调递增递减区间求参数的取值范围

合集下载

高中数学破题致胜微方法(函数的单调性):已知函数在某区间上单调求参数范围

高中数学破题致胜微方法(函数的单调性):已知函数在某区间上单调求参数范围

我们学习过用导数讨论函数的单调性,今天我们继续用导数的方法研究含参函数的单调性,并求得参数的取值范围。

先看例题:例:已知函数2()21f x ax x -=-在区间[1,2]上是单调函数,求实数a 的取值范围.注意:用导数的方法讨论,可以避免分类讨论a 是否为0的情况。

规律整理:可导函数f (x )在某区间上单调(1)可以转化为0(0)f x f x '≥'≥()()在给定区间上恒成立; (2)给定的区间是原函数单调递增区间(或递减区间)的子区间,利用集合间关系求解练:已知函数f (x )=(x 2+ax -2a 2+3a )e x(x ∈R ),其中a ∈R . 当23a ≠时,若函数f (x )在区间(- 1 ,1)上是增函数,求a 的取值范围. 解:先对函数求导得:()()22[224]x f x x a x a a e '=+++- 令()0,2,2f x x a x a '===-解得-或 又因为22 2.3a a a ≠≠,--所以两根不相等,即()0f x '=有两个不等的实根. 进而按a 的大小,分类讨论:()21,2 2.a a a ><若则--所以f (x )在(,2),(2,)a a ∞+∞---内是增函数,在(2,2)a a --内是减函数. 因为函数在(- 1 ,1)上是增函数,所以有2121a a -≥-≤-或 解得:213a ≥>()22,2 2.3a a a <>若则--所以f (x )在(,2),(2,)a a ∞--+∞-内是增函数,在(2,2)a a --内是减函数. 因为函数在(- 1 ,1)上是增函数,所以有2121a a -≥-≤-或解得:12.23a ≤< 综上所述,a 的取值范围为122[,)(,1]233a ∈ 总结:1.可导函数中,讨论原函数的单调性等价于讨论导函数的正负,在涉及参数时,要结合二者,利用方程或不等式,求得参数的值或取值范围。

三角函数已知单调性求参数范围「备战2024高考数学」

三角函数已知单调性求参数范围「备战2024高考数学」

三角函数已知单调性求参数范围「备战2024高考数学」三角函数是高中数学中的重要内容,它在几何、解析和应用题中都有着广泛的应用。

在求解三角函数的单调性时,我们需要根据函数图像或函数定义来进行判断和推导。

下面我们将分别讨论正弦函数、余弦函数和正切函数的单调性,并给出求解参数范围的方法。

首先,我们讨论正弦函数的单调性。

正弦函数的定义域为实数集,其函数图像为一条周期为2π的连续的正弦曲线。

根据图像可以看出,正弦函数在(0,π/2)和(3π/2,2π)上是单调递增的,在(π/2,3π/2)上是单调递减的。

这是因为正弦函数的周期性和交替性使得它在每个周期内的单调性相同。

因此,当我们要求解正弦函数的参数范围时,可以根据正弦函数单调递增和单调递减的区间来进行判断。

接下来,我们讨论余弦函数的单调性。

余弦函数的定义域为实数集,其函数图像为一条周期为2π的连续的余弦曲线。

根据图像可以看出,余弦函数在(0,π)上是单调递减的,在(π,2π)上是单调递增的。

与正弦函数类似,余弦函数的周期性和交替性使得它在每个周期内的单调性相同。

因此,当我们要求解余弦函数的参数范围时,可以根据余弦函数单调递减和单调递增的区间来进行判断。

最后,我们讨论正切函数的单调性。

正切函数的定义域为实数集中除去所有使得函数值为正或负无穷的点。

正切函数的函数图像在每个周期内都没有单调性,因为它会在一些点上突然跃变。

但是,正切函数有一个特点,即在每个周期中有无穷个间断点,这些间断点将周期分成了多个单调区间。

在每个单调区间内,正切函数的单调性是一致的。

因此,当我们要求解正切函数的参数范围时,可以根据正切函数的单调性区间来进行判断。

综上所述,求解三角函数的单调性可以根据函数的定义和图像来进行分析和判断。

对于正弦函数和余弦函数,可以利用它们的周期性和交替性来判断单调性区间。

对于正切函数,可以利用其无穷个间断点将周期分成多个单调区间来判断。

通过理解和掌握三角函数的单调性,我们可以在解题过程中快速定位参数的范围,提高解题的效率。

已知函数单调性求参数取值范围

已知函数单调性求参数取值范围

技法点拨已知函数单调性求参数取值范围■欧阳丽丽摘要:利用导数根据函数单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考点,下面将这类问题举例分析。

关键词:导数;单调性;参数取值范围一、转化为不等式的恒成立问题求参数取值范围若函数f (x )在(a ,b )上单调递增,则f′(x )≥0;若函数f (x )在(a ,b )上单调递减,则f′(x )≤0,将问题转化为函数最值问题求解。

一般地,分离变量后,若得到a ≥h (x ),则只需a ≥h (x )max ;若得到a ≤h (x ),则只需a ≤h (x )min 。

注意:f (x )在(a ,b )上为增函数(减函数)的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f′(x )≤0)且在(a ,b )内的任一非空子区间上f′(x )≠0。

例1,已知函数f (x )=ln x -12ax 2-2x (a ≠0)在[1,]4上单调递减,求a 的取值范围。

解:因为f (x )在[1,]4上单调递减,所以当x ∈[1,]4时,f′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立。

设h (x )=1x2-2x ,x ∈[1,]4所以只要a ≥h (x )max 。

而h′(x )=2(x +1)(x +1)x 4。

当x ∈[1,]4,h′(x )>0,所以h (x )在[1,]4上单调递增。

所以当h (x )max =h (4)=-716,所以a ≥-716,即a 的取值范围是éëêöø÷-716,+∞。

评析:由f (x )在[1,]4上单调递增,得到f′(x )≤0,进而分离参数a ,构造新的函数h (x ),本题转化为求h (x )max 。

例2,已知函数f (x )=ax +1x +2在(-2,+)∞内单调递减,求实数a 的取值范围。

(精选试题附答案)高中数学第三章函数的概念与性质真题

(精选试题附答案)高中数学第三章函数的概念与性质真题

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质真题单选题1、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.2、已知幂函数y=f(x)的图象过点P(2,4),则f(3)=()A.2B.3C.8D.9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=xα,则2α=4,得α=2,所以f(x)=x2,所以f(3)=32=9,故选:D3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项.对于A ,f (x )=−x 为R 上的减函数,不合题意,舍.对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D ,f (x )=√x 3为R 上的增函数,符合题意,故选:D.4、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.5、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x ,解得:m =±1,故必要性不成立,故选:A .6、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可求出答案.解:∵函数f (x )=x ln (x +√a +x 2)为偶函数,x ∈R ,∴设g (x )=ln (x +√a +x 2)是奇函数,则g (0)=0,即ln √a =0,则√a =1,则a =1.故选:B .7、设函数f(x)=x 2+2(4−a)x +2在区间(−∞,3]上是减函数,则实数a 的取值范围是( )A .a ≥−7B .a ≥7C .a ≥3D .a ≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x=a−4,又∵函数在(−∞,3]上为减函数,∴a−4⩾3,即a⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.8、若函数y=f(x)在R上单调递增,且f(2m−3)>f(−m),则实数m的取值范围是()A.(−∞,−1)B.(−1,+∞)C.(1,+∞)D.(−∞,1)答案:C分析:由单调性可直接得到2m−3>−m,解不等式即可求得结果.∵f(x)在R上单调递增,f(2m−3)>f(−m),∴2m−3>−m,解得:m>1,∴实数m的取值范围为(1,+∞).故选:C.9、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..10、已知f(x+1)=x−5,则f(f(0))=()A.−9B.−10C.−11D.−12答案:D分析:根据f(x+1)=x−5,利用整体思想求出f(x)的解析式,求得f(0),从而即求出f(f(0)).解:因为f(x+1)=x−5=(x+1)−6,所以f(x)=x−6,f(0)=−6,所以f(f(0))=f(−6)=−12.故选:D.填空题11、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______. 答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.所以答案是:112、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解. 设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13. 所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平.13、若函数f (x )={−x 2+x,x >00,x =0ax 2+x,x <0是奇函数,则实数a 的值为___________.答案:1分析:利用奇函数的性质进行求解.若f(x)是奇函数,则有f (−x )=−f (x ).当x >0时,−x <0,则f (−x )=a (−x )2+(−x )=ax 2−x ,又当x >0时,f (x )=−x 2+x ,所以−f (x )=x 2−x ,由f (−x )=−f (x ),得ax 2−x =x 2−x ,解得a =1.所以答案是:1.14、设函数f (x )={x,x ≤1,(x −1)2+1,x >1,则不等式f (1−|x |)+f (2)>0的解集为________. 答案:(−3,3)分析:根据分段函数的单调性,把问题中的函数值大小比较转化为自变量大小比较,从而求得解集. 由函数解析式知f(x)在R 上单调递增,且−f(2)=−2=f(−2),则f (1−|x |)+f (2)>0⇒f (1−|x |)>−f (2)=f(−2),由单调性知1−|x |>−2,解得x ∈(−3,3)所以答案是:(−3,3)小提示:关键点点睛:找到函数单调性,将函数值大小比较转化为自变量大小比较即可.15、已知函数f(x)=x3+3x,若f(a+3)+f(a−a2)>0恒成立,则实数a的取值范围是________. 答案:(−1,3)分析:先判断函数f(x)的奇偶性和单调性,根据奇偶性和单调性脱掉f,再解不等式即可.f(x)=x3+3x的定义域为R,因为f(−x)=−x3−3x=−(x3+3x)=−f(x),所以f(x)=x3+3x为奇函数,因为y=x3和y=3x都是R上的增函数,所以f(x)=x3+3x在R上单调递增,由f(a+3)+f(a−a2)>0可得f(a+3)>−f(a−a2)=f(a2−a),可得a+3>a2−a,即a2−2a−3<0,解得:−1<a<3,所以实数a的取值范围是(−1,3),所以答案是:(−1,3).解答题16、判断下列函数的奇偶性:(1)f(x)=x4−2x2;(2)f(x)=x5−x;(3)f(x)=3x;1−x2(4)f(x)=|x|+x.答案:(1)偶函数(2)奇函数(3)奇函数(4)非奇非偶函数分析:(1)利用偶函数的定义可判断函数的奇偶性;(2)利用奇函数的定义可判断函数的奇偶性;(3)利用奇函数的定义可判断函数的奇偶性;(4)利用反例可判断该函数为非奇非偶函数.(1)f(x)的定义域为R,它关于原点对称.f(−x)=(−x)4−2(−x)2=x4−2x2=f(x),故f(x)为偶函数. (2)f(x)的定义域为R,它关于原点对称.f(−x)=(−x)5−(−x)=−x5+x=−f(x),故f(x)为奇函数. (3)f(x)的定义域为(−∞,−1)∪(−1,1)∪(1,+∞),它关于原点对称. f(−x)=−3x=−f(x),故f(x)为奇函数.1−(−x)2(4)f(1)=|1|+1=2,f(−1)=0,故f(1)≠f(−1),f(−1)≠−f(1),故f(x)为非奇非偶函数. 17、已知f(x)=1(x∈R,x≠-2),g(x)=x2+1(x∈R).x+2(1)求f(2),g(2)的值;(2)求f(g(3))的值;(3)作出f(x),g(x)的图象,并求函数的值域.答案:(1)14,5;(2)112;(3)图见解析,f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 分析:(1)将2代入f (x ),g (x )计算即得;(2)先求出g (3),再将所求得的值代入f (x )计算得解;(3)用描点法作出f (x ),g (x )的图象,根据图象求出它们的值域.(1)f (2)=12+2=14,g (2)=22+1=5;(2)g (3)=32+1=10,f (g (3))=f (10)=110+2=112;(3)函数f (x )的图象如图:函数g (x )的图象如图:观察图象得f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞).18、已知幂函数f (x )=(2m 2−5m +3)x m 的定义域为全体实数R.(1)求f (x )的解析式;(2)若f (x )>3x +k −1在[−1,1]上恒成立,求实数k 的取值范围.答案:(1)f (x )=x 2(2)(−∞,−1)分析:(1)根据幂函数的定义可得2m 2−5m +3=1,结合幂函数的定义域可确定m 的值,即得函数解析式;(2)将f (x )>3x +k −1在[−1,1]上恒成立转化为函数g (x )=x 2−3x +1−k 在[−1,1]上的最小值大于0,结合二次函数的性质可得不等式,解得答案.(1)∵f (x )是幂函数,∴2m 2−5m +3=1,∴m =12或2.当m =12时,f (x )=x 12,此时不满足f (x )的定义域为全体实数R ,∴m =2,∴f (x )=x 2.(2)f (x )>3x +k −1即x 2−3x +1−k >0,要使此不等式在[−1,1]上恒成立,令g (x )=x 2−3x +1−k ,只需使函数g (x )=x 2−3x +1−k 在[−1,1]上的最小值大于0. ∵g (x )=x 2−3x +1−k 图象的对称轴为x =32,故g (x )在[−1,1]上单调递减, ∴g (x )min =g (1)=−k −1,由−k −1>0,得k <−1,∴实数k 的取值范围是(−∞,−1).19、若函数f(x)的定义域为[0,1],求g(x)=f(x +m)+f(x −m)(m >0)的定义域.答案:分类讨论,答案见解析.分析:根据复合函数的定义域的求法,建立不等式组即可得到结论.解:∴f(x)的定义域为[0,1],∴g(x)=f(x +m)+f(x −m)中的自变量x 应满足{0⩽x +m ⩽1,0⩽x −m ⩽1,即{−m ⩽x ⩽1−m,m ⩽x ⩽1+m.当1−m =m ,即m =12 时,x =12 ;当1−m >m ,即0<m <12 时,m ⩽x ⩽1−m ,如图:当1−m<m,即m>12时,x∈∅,如图综上所述,当0<m<12时,g(x)的定义域为[m,1−m];当m=12时,g(x)的定义域为{12};当m>12时,函数g(x)不存在.小提示:本题主要考查函数定义域的求法,根据复合函数的定义域之间的关系是解决本题的关键,属于中档题.。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。

专题15 已知函数的单调区间求参数的范围(解析版)

专题15 已知函数的单调区间求参数的范围(解析版)

专题15已知函数的单调区间求参数的范一、单选题■1.若函数/(])=空山在区间(0,工)上单调递增,则实数。

的取值范围是()cosx 2A.a<-\B.a<2C.a>-\D.a<\【答案】C【分析】利用导函数研究原函数的单调性,利用单调性求解实数。

的取值范围.【详解】解:函数/(1)="*COSXnJ”、cosx>cos x+sinx(sin x+a)则/M=;-----cos^xTT•••X£(0,一)上,2/.cos2x>0.要使函数/(幻=吧*在区间(0,工)上单调递增,cosx 271、、二cos2x+sin2x+asinxN0在x G(0,—)上恒成立,2T[即:asinx+120在x£(0,一)上恒成立,2TT•/xe(0,—)±,2sin XG(0,1)故选:C.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.已知函数/a)=Lf+s—a)x+(a-l)lnx,(a>l),函数y=2用的图象过定点(0,1),对于任意玉,七£(0,+8),西>々,有/(%)一/(工2)>工2一不,则实数。

的范围为()B.2<a<5C.2<a<5D.3<a<5【答案】A【分析】 由图象过定点可得人=0,设/(x)=〃x)+x,结合已知条件可得F(x)在(0,+8)递增,求尸(X )的导数,令g(x)=%2一(〃-1)工+。

一1,由二次函数的性质可得g 【详解】解:因为>=2'+〃的图象过定点(0,1),所以2人=1,解得6=0,所以一方+(。

-1)1仪(。

>1),因为对于任意X],W^(0,-KO ),X]>x 2,有/(%)一/(无2)>W 一%,则/(%)+%>%+/(七),设/(%)=f(x)+x ,即F (x)=/(%)+%=—x 2-ar+(^-l)lri¥+x=—x 2-(6f-l)x+(^-l)lri¥,所以F(x)=x-(〃-1)+0「2—令且(1)=工2—(。

第九讲导数与函数的单调性原卷版2023届高考数学二轮复习讲义

第九讲导数与函数的单调性原卷版2023届高考数学二轮复习讲义

第九讲:导数与函数的单调性【考点梳理】【典型题型讲解】考点一:求函数的单调区间(不含参)【典例例题】例1.函数()ln f x x x =的单调递减区间是( ).A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e ⎛⎫-∞ ⎪⎝⎭C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭函数单调区间的求法:解不等式法,列表格法【变式训练】2.函数ln 2f x x x =+-的单调递增区间为( )A .(),3-∞B .(),1-∞C .()1,+∞D .()1,23.已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0) B .(1,+∞) C .(-∞,1)D .(0,+∞) 4.函数()()3e x f x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,5.函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________. 【典型题型讲解】考点二:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围【典例例题】例1.如果函数()22ln f x x a x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,则a 的取值范围是( )A .1a <B .1a ≥C .1a >D .1a ≤(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围.(3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解.【变式训练】1.若函数()2()e x f x x ax a =-+在区间(1,0)-内单调递减,则实数a 的取值范围是( ) A .(,3]-∞ B .[3,)+∞ C .[1,)+∞ D .(,1]-∞2.已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( )A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-2.已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭3.已知函数()2()()x f x e x bx b R =-∈在区间1,22⎡⎤⎢⎥⎣⎦上存在单调递增区间,则实数b 的取值范围是( ) A .8(,)3-∞ B .5(,)6-∞ C .35(,)26- D .8(,)3+∞ 4.已知函数()ln 3f x ax x =++在区间()1,2上不单调,则实数a 的取值范围为( )A .12,23⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .11,2⎛⎫-- ⎪⎝⎭D .21,32⎛⎫-- ⎪⎝⎭5.函数321()53f x x x ax =-+-在区间[1,2]-上不单调,则实数a 的取值范围是( ) A .(-∞,-3]B .(-3,1)C .[1,+∞)D .(-∞,-3]∪[1,+∞)考点三:含参问题讨论单调性【典例例题】例3.已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k .讨论()f x 的单调性;例4.已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x .讨论函数()f x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明.【变式训练】1.已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程;(2)求函数()f x 的单调区间;2.(2022·广东深圳·高三期末)已知定义在R 上的函数()()1e -=-∈ax f x x a R .(1)求()f x 的单调递增区间;(2)对于()0,x ∀∈+∞,若不等式()()21ln f x x x ax ≥--恒成立,求a 的取值范围.3.已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)求函数()f x 的单调区间;4.已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;5.已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;6.(2022·广东深圳·一模)已知函数()()22ln 121f x x a x ax =-+-+(a R ∈).(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点1x ,2x .(i )求实数a 的取值范围;(ii )求证:12x x +>【巩固练习】一、单选题1.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-2.已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( ) A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞ 3.“函数sin y ax x =-在R 上是增函数”是“0a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2e D .()0,e 二、多选题5.已知()ln x f x x=,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解6.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12B .1C .2D .3三、填空题 7.写出一个具有性质①①①的函数()f x =____________. ①()f x 的定义域为()0,+∞;①()()()1212f x x f x f x =+;①当()0,x ∈+∞时,()0f x '>.四、解答题8.已知函数()ln R k f x x k k x=--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.9.已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.10.已知函数2()(1)=--x f x k x e x ,其中k ①R.当k 2≤时,求函数()f x 的单调区间;11.已知函数()e x f x ax -=+.讨论()f x 的单调性;12.已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;。

(完整版)2-4已知单调性求参数取值范围

(完整版)2-4已知单调性求参数取值范围

【知识点4】已知单调性求参数取值范围1•思路提示:⑴对于函数在某个区间上单调递增或单调递减的问题,转化为导函数在此区间上恒为非负或非正的问题,进而转化为导数在该区间上的最值问题•⑵对于可导函数在某个区间不单调的问题,转化为导函数在此区间无实根,可结合导函数的图像给出此问题的充要条件,从而求解⑶对于只有一个极值点的导函数研究其相关问题(如在给定区间上恒为正或负以及根的分布等),往往可以类比二次函数在区间上的最值或根的分布求解例1:已知函数f(x) 3ax42(3a 1)x22(3a 1)x24x1(I )当a 时,求f (x)的极值;6(ll )若f (x)在1,1上是增函数,求a的取值范围3 2例2:已知函数f (x) x ax x 1(a R)(I )讨论函数f (x)的单调区间;3 1(ll)设函数f(x)在区间(—,-)内是减函数,求a的取值范围2 3例3:已知函数f (x) (2ax x2)e ax,其中a为常数,且a 0.(l )若a 1,求函数f (x)的极值点;(ll )若f (x)在区间C 2,2)内单调递增,求a的取值范围•3 2例4:已知函数f(x) ax bx (x R)的图像过点P( 1,2),且在点P处的切线恰好与直线x 3y 0垂直•(I )求函数f (x)的解析式;(ll)若函数f (x)在区间m,m 1上单调递增,求实数m的取值范围•例5:已知函数f(x) x3(1 a)x2a(a 2)x b(a,b R).(I )若函数f (x)的图像过原点,且在原点处的切线斜率是3,求a,b的值; (II)若函数f (x)在区间(1,1)上不单调,求a的取值范围•e x例6:设f (x) ,其中a为正实数1 ax4(I)当a 时,求f (x)的极值点;3(n)若f(x)为R上的单调函数,求a的取值范围xe例7:设f(x)—,其中a为正实数•2「3(I )当a —时,求f (x)的极值点;4(n )若f (x)为R上的单调函数,求a的取值范围1 3 12 例& 设f(x) x3 x22ax3 22(I)若f(x)在(-,)上存在单调递增区间,求3 a的取值范围.(II )当0 a 2时,f (x)在[1,4]的最小值为,求f(x)在该区间上的最大值.例9:已知a,b是实数,函数f (x) x3ax,g(x) x2bx, (x)和g (x)是f (x), g(x) 的导函数,若 f (x)g(x) 0在区间I上恒成立,则称 f (x)和g(x)在区间I上单调性一3(I)设a 0,若函数f (x)和g(x)在区间[1,)上单调性一致,求实数b 的取值范围; b ,若函数f (x)和g(x)在以a ,b 为端点的开区间上单调性一致,求a b 的最大值. 1例10 :已知函数f X -x 3 x 2 ax b 的图像在点P(0,f 0 )处的切线方程为 y 3x 2(i )求实数a,b 的值;(n )设g(x) f x — 是[21,]上的增函数。

备战高考数学复习考点知识与题型讲解20---导数与函数的单调性

备战高考数学复习考点知识与题型讲解20---导数与函数的单调性

备战高考数学复习考点知识与题型讲解第20讲导数与函数的单调性考向预测核心素养考查函数的单调性,利用函数单调性解不等式,求参数范围,题型以解答题为主,中高档难度.逻辑推理、数学运算一、知识梳理1.函数单调性与导数符号的关系在某个区间(a,b)上,如果f′(x)>0,那么函数y=f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数y=f(x)在区间(a,b)上单调递减.2.函数值的变化快慢与导数的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓”.3.判断函数y=f(x)的单调性的步骤第1步:确定函数的定义域.第2步:求出导数f′(x)的零点.第3步:用f′(x)的零点将函数的定义域分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.“在某区间内f′(x)>0(f′(x)<0)”是“函数f(x)在此区间上单调递增(减)”的充分不必要条件.2.可导函数f(x)在(a,b)上单调递增(减)的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)任意子区间内都不恒为零.二、教材衍化1.(人A 选择性必修第二册P 86例2改编)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上,f (x )单调递增B .在区间(1,3)上,f (x )单调递减C .在区间(4,5)上,f (x )单调递增D .在区间(3,5)上,f (x )单调递增解析:选C.在区间(4,5)上,f ′(x )>0恒成立, 所以f (x )在区间(4,5)上单调递增.2.(人A 选择性必修第二册P 97习题5.3 T 1(2)改编)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则函数f (x )的单调递增区间是________.解析:f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即函数f (x )的单调递增区间为⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2.答案:⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)如果函数f (x )在某个区间内恒有f ′(x )≥0,则f (x )在此区间内单调递增.( )(2)在(a ,b )内f ′(x )≤0且f ′(x )=0的根有有限个,则f (x )在(a ,b )内是减函数.( )(3)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内不具有单调性.( )答案:(1)×(2)√(3)√二、易错纠偏1.(求单调区间忽视定义域致误)函数f(x)=x-ln x的单调递减区间为( ) A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0),(1,+∞)解析:选A.函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,得0<x<1,故f(x)的单调递减区间为(0,1).2.(求参数范围忽视等号成立致误)若y=x+a2x(a>0)在[2,+∞)上单调递增,则a的取值范围是________.解析:由y′=1-a2x2≥0,得x≤-a或x≥a.所以y=x+a2x的单调递增区间为(-∞,-a],[a,+∞).因为函数在[2,+∞)上单调递增,所以[2,+∞)⊆[a,+∞),所以a≤2.又a>0,所以0<a≤2.答案:(0,2]考点一不含参数的函数的单调性(自主练透) 复习指导:直接利用导函数的符号求函数的单调区间.1.当x>0时,f(x)=x+4x的单调递减区间是( )A.(2,+∞) B.(0,2) C.(2,+∞) D.(0,2)解析:选 B.令f ′(x )=1-4x 2=(x -2)(x +2)x2<0,则-2<x <2,且x ≠0.因为x >0,所以x ∈(0,2),故选B.2.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B.(0,3) C .(1,4)D.(2,+∞)解析:选 D.f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,故选D.3.函数f (x )=x +21-x 的单调递增区间是________;单调递减区间是________.解析:f (x )的定义域为{x |x ≤1},f ′(x )=1-11-x. 令f ′(x )=0,得x =0. 当0<x <1时,f ′(x )<0. 当x <0时,f ′(x )>0.所以函数f (x )的单调递增区间是(-∞,0),单调递减区间是(0,1). 答案:(-∞,0) (0,1)4.已知函数f (x )=x 2-5x +2ln 2x ,则f (x )的单调递增区间为________. 解析:f ′(x )=2x -5+2x =(2x -1)(x -2)x(x >0).由f ′(x )>0可得(2x -1)(x -2)>0, 所以x >2或0<x <12,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(2,+∞).答案:⎝ ⎛⎭⎪⎫0,12,(2,+∞)利用导函数求函数单调区间的注意点(1)当f ′(x )=0无解时,可根据f ′(x )的结构特征确定f ′(x )的符号. (2)所求函数的单调区间不止一个时,这些区间之间不能用“∪”及“或”连接,只能用“,”及“和”隔开.考点二 含参数的函数的单调性(综合研析)复习指导:含参数的函数,要根据f ′(x )的形式讨论f ′(x )的符号,确定函数的单调性.已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性. 【解】 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0), 令f ′(x )=0, 解得x 1=0,x 2=2-2aa.①当0<a <1时,令f ′(x )>0,得x <0或x >2-2aa ,令f ′(x )<0,得0<x <2-2aa;②当a =1时,f ′(x )≥0在R 上恒成立; ③当a >1时,令f ′(x )>0, 得x >0或x <2-2aa,令f ′(x )<0,得2-2aa<x <0.综上所述,当0<a <1时,f (x )在(-∞,0)和⎝ ⎛⎭⎪⎫2-2a a ,+∞上单调递增,在⎝⎛⎭⎪⎫0,2-2a a 上单调递减;当a =1时,f (x )在(-∞,+∞)上单调递增;当a >1时,f (x )在⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫2-2a a ,0上单调递减.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论;划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.(2)对参数的分类讨论要明确标准,不重不漏,体现了逻辑推理的核心素养.|跟踪训练|(2022·辽宁省辽西联合校测试)讨论函数f (x )=x 3-a ln x (a ∈R )的单调性. 解:函数f (x )的定义域为(0,+∞),f ′(x )=3x 2-a x =3x 3-ax(x >0),①若a ≤0时,f ′(x )>0,此时函数在(0,+∞)上单调递增;②若a >0时,令f ′(x )>0,可得x >3a 3,f ′(x )<0,可得0<x <3a 3,所以函数在⎝⎛⎭⎪⎪⎫0,3a 3上单调递减,在⎝⎛⎭⎪⎪⎫3a3,+∞上单调递增. 考点三 函数单调性的应用(多维探究)复习指导:利用导数与函数的单调性可以比较大小、求参数的范围等,其关键是明确函数的单调性.角度1 比较大小或解不等式(1)(2021·新高考八省联考模考)已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则( )A .c <b <a B.b <c <a C .a <c <bD.a <b <c(2)(2022·南昌摸底调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A.4f(-2)<9f(3) B.4f(-2)>9f(3)C.2f(3)>3f(-2) D.3f(-3)<2f(-2)(3)(2022·沈阳一模)函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f′(x),且满足f′(x)+2xf(x)>0,则不等式(x+2 023)f(x+2 023)3<3f(3)x+2 023的解集为( )A.{x|x>-2 020} B.{x|x<-2 020}C.{x|-2 023<x<0} D.{x|-2 023<x<-2 020} 【解析】(1)由题意得0<a<5,0<b<4,0<c<3.令f(x)=e xx(x>0),则f′(x)=e x(x-1)x2,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)在(0,1)上为减函数,在(1,+∞)上为增函数,因为a e5=5e a,所以e55=e aa,即f(5)=f(a),而0<a<5,故0<a<1.同理0<b<1,0<c<1,f(4)=f(b),f(3)=f(c).因为f(5)>f(4)>f(3),所以f(a)>f(b)>f(c),所以0<a<b<c<1.故选D.(2)根据题意,令g(x)=x2f(x),其导数g′(x)=2xf(x)+x2f′(x),由题意可知,当x>0时,有g′(x)=x(2f(x)+xf′(x))>0恒成立,即函数g(x)在(0,+∞)上为增函数,又由函数f(x)是定义在R上的偶函数,则f(-x)=f(x),则有g(-x)=(-x)2f(-x)=x2f(x)=g(x),即函数g(x)也为偶函数,则有g(-2)=g(2),且g(2)<g(3),则有g(-2)<g(3),即有4f(-2)<9f(3).故选A.(3)根据题意,设g(x)=x2f(x)(x>0),则导函数g′(x)=x2f′(x)+2xf(x).函数f(x)在区间(0,+∞)上,满足f′(x)+2xf(x)>0,则有x 2f ′(x )+2xf (x )>0,所以g ′(x )>0,即函数g (x )在区间(0,+∞)上为增函数.(x +2 023)f (x +2 023)3<3f (3)x +2 023⇒(x +2 023)2f (x +2 023)<32f (3)⇒g (x +2023)<g (3),则有0<x +2 023<3, 解得-2 023<x <-2 020,即此不等式的解集为{x |-2 023<x <-2 020}. 【答案】 (1)D (2)A (3)D角度2 已知函数单调性求参数的取值范围(链接常用结论2)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解.即a >1x 2-2x有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1,因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞).(2)由题意得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以当x =4时,G (x )max =-716, 所以a ≥-716,因为a ≠0,所以a 的取值范围是⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞).1.本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立,所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x 2-2x min =-1,所以a ≤-1,即a 的取值范围是(-∞,-1].2.若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x 2-2x min=-1,所以a >-1,因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞).根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )在区间(a ,b )上为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.|跟踪训练|1.(多选)已知定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cosxf ′(x )+sin xf (x )<0成立,则( )A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4解析:选CD.根据题意,令g (x )=f (x )cos x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +sin xf (x )cos 2x ,又由x ∈⎝ ⎛⎭⎪⎫0,π2,且恒有cos xf ′(x )+sin xf (x )<0,则有g ′(x )<0,即函数g (x )为减函数.由π6<π3,则有g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫π6cosπ6>f ⎝ ⎛⎭⎪⎫π3cos π3,分析可得f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3;又由π6<π4,则有g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cosπ4,分析可得2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4.2.若f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值范围为( ) A .(-∞,1) B.(-∞,1] C .(-∞,2)D.(-∞,2]解析:选D.由f (x )=x 2-a ln x , 得f ′(x )=2x -a x,因为f (x )在(1,+∞)上单调递增, 所以2x -a x≥0在(1,+∞)上恒成立, 即a ≤2x 2在(1,+∞)上恒成立, 因为当x ∈(1,+∞)时,2x 2>2, 所以a ≤2.3.(2022·宁波市北仑中学期中测试)函数f (x )=x 22-ln x 在其定义域内的一个子区间[k -1,k +1]内不是单调函数,则实数k 的取值范围是________.解析:函数f (x )=x 22-ln x 的定义域为(0,+∞),f ′(x )=x -1x =x 2-1x.令f ′(x )=0,因为x >0,可得x =1,列表如下:所以,函数f (x )在x =1处取得极小值,由于函数f (x )=x 22-ln x 在其定义域内的一个子区间[k -1,k +1]内不是单调函数,则1∈(k -1,k +1),由题意可得⎩⎨⎧k -1<1,k +1>1,k -1>0,解得1<k <2.因此,实数k 的取值范围是(1,2). 答案:(1,2)[A 基础达标]1.函数f (x )=x 2-2ln x 的单调递减区间是() A .(0,1) B.(1,+∞) C .(-∞,1)D.(-1,1)解析:选A.因为f ′(x )=2x -2x =2(x +1)(x -1)x(x >0),令f ′(x )<0得0<x <1,所以函数f (x )=x 2-2ln x 的单调递减区间是(0,1). 2.函数f (x )=e xx的图象大致为()解析:选B.函数f (x )=e xx的定义域为{x |x ∈R 且x ≠0},当x >0时,函数f ′(x )=x e x -e xx 2,可得函数的极值点为x =1,当x ∈(0,1)时,f ′(x )<0,函数f (x )是减函数,当x >1时,f ′(x )>0,函数f (x )是增函数,并且f (x )>0,选项B ,D 满足题意.当x <0时,函数f (x )=exx<0,选项D 不正确,选项B 正确.3.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为()A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1)解析:选A.f (-x )=(-x )·sin(-x )=x sin x =f (x ), 所以函数f (x )是偶函数, 所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3.又当x ∈⎝⎛⎭⎪⎫0,π2时,f ′(x )=sin x +x cos x >0, 所以函数f (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5.4.(2022·天津市高三模拟)函数f (x )=ln x -ax (a >0)的单调递增区间为() A.⎝⎛⎭⎪⎫0,1a B.⎝ ⎛⎭⎪⎫1a ,+∞ C.⎝⎛⎭⎪⎫-∞,1aD.(-∞,a )解析:选A.函数f (x )的定义域为(0,+∞),由f ′(x )=1x -a >0,得0<x <1a.所以f (x )的单调递增区间为⎝⎛⎭⎪⎫0,1a .5.已知函数f (x )=x 2+ax,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为()A .(-∞,8) B.(-∞,-8)∪(8,+∞) C .(-∞,16]D.(-∞,-16]∪[16,+∞)解析:选C.由题意得f ′(x )=2x -a x 2=2x 3-ax 2≥0在[2,+∞)上恒成立,则a ≤2x 3在[2,+∞)上恒成立, 所以a ≤16.6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:由题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=14-54x 2-1x =x 2-4x -54x 2,令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5). 答案:(0,5)7.f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.解析:构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ), 当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,F (x )在(-∞,0)上单调递减. 因为f (x )为偶函数,y =x 为奇函数, 所以F (x )为奇函数,所以F (x )在(0,+∞)上也单调递减,根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).答案:(-∞,-4)∪(0,4)8.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为________.解析:由f (x )图象特征可得,f ′(x )在⎝ ⎛⎦⎥⎤-∞,12和[2,+∞)上大于0,在⎝ ⎛⎭⎪⎫12,2上小于0,所以xf ′(x )≥0⇔⎩⎨⎧x ≥0,f ′(x )≥0或⎩⎨⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎢⎡⎦⎥⎤0,12∪[2,+∞). 答案:⎣⎢⎡⎦⎥⎤0,12∪[2,+∞)9.已知函数f (x )=a ln x -x -a +1x (a ∈R ).求函数f (x )的单调区间.解:由题知,f (x )的定义域为(0,+∞),f ′(x )=a x -1+1+a x 2=-(x +1)[x -(1+a )]x 2,①当a +1>0,即a >-1时,在(0,1+a )上f ′(x )>0,在(1+a ,+∞)上,f ′(x )<0,所以f (x )的单调递增区间是(0,1+a ),单调递减区间是(1+a ,+∞); ②当1+a ≤0,即a ≤-1时,在(0,+∞)上,f ′(x )<0, 所以函数f (x )的单调递减区间是(0,+∞),无单调递增区间. 10.已知函数f (x )=x +ax+b (x ≠0),其中a ,b ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(1,2)上为单调函数,求实数a 的取值范围.解:(1)f ′(x )=1-a x 2=x 2-ax2.当a ≤0时,显然f ′(x )>0(x ≠0),这时f (x )在(-∞,0),(0,+∞)上是增函数;当a >0时,f ′(x )=(x +a )(x -a )x 2,令f ′(x )=0,解得x =±a ,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-a )和(a ,+∞)上是增函数, 在(-a ,0)和(0,a )上是减函数. (2)因为函数f (x )在(1,2)上为单调函数, 若f (x )在(1,2)上为单调递增函数, 则f ′(x )≥0在x ∈(1,2)时恒成立,所以x 2-a ≥0,即a ≤x 2在x ∈(1,2)时恒成立, 所以a ≤1.若f (x )在(1,2)上为单调递减函数, 则f ′(x )≤0在x ∈(1,2)时恒成立,所以x 2-a ≤0,即a ≥x 2在x ∈(1,2)时恒成立, 所以a ≥4.综上所述,实数a 的取值范围为(-∞,1]∪[4,+∞).[B 综合应用]11.(多选)定义在⎝⎛⎭⎪⎫0,π2上的函数f (x ),已知f ′(x )是它的导函数,且恒有cosx ·f ′(x )+sin x ·f (x )<0成立,则有()A .f ⎝ ⎛⎭⎪⎫π6>2f ⎝ ⎛⎭⎪⎫π4 B.3f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π3C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4 解析:选CD.构造函数g (x )=f (x )cos x ⎝⎛⎭⎪⎫0<x <π2,则g ′(x )=f ′(x )cos x +f (x )sin x(cos x )2<0, 即函数g (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,同理,g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4.故选CD.12.(多选)(2022·辽宁压轴试题)已知正数α,β满足e α+12β+sin β>e β+12α+sin α,则()A .2α-β+1>2 B.ln α+α<ln β+βC.1α+1β>4α+β D.1e α+1α<1e β+1β 解析:选ACD.由题意,得e α-12α+sin α>e β-12β+sin β,构造函数f (x )=e x -12x +sin x,x >0,令g (x )=2x +sin x ,则g ′(x )=2+cos x >0恒成立, 所以g (x )在(0,+∞)上单调递增,由复合函数的单调性可知-12x +sin x 在(0,+∞)上单调递增,所以f (x )=e x -12x +sin x在(0,+∞)上单调递增,由f (α)>f (β),可得α>β>0,对于A ,由α>β,可得α-β+1>1,所以2α-β+1>2,故A 正确;对于B ,由α>β>0,可得ln α>ln β,则ln α+α>ln β+β,故B 错误; 对于C ,⎝ ⎛⎭⎪⎫1α+1β(α+β)=2+αβ+βα>2+2αβ·βα=4,所以1α+1β>4α+β,故C 正确;对于D ,由α>β>0,可得e α>e β>0,1α<1β,所以1e α<1e β,所以1e α+1α<1e β+1β,故D 正确.13.已知g (x )=2x+x 2+2a ln x 在[1,2]上是减函数,则实数a 的取值范围为________.解析:g ′(x )=-2x 2+2x +2ax,由已知得g ′(x )≤0在[1,2]上恒成立, 可得a ≤1x-x 2在[1,2]上恒成立.又当x ∈[1,2]时,⎝ ⎛⎭⎪⎫1x -x 2min =12-4=-72.所以a ≤-72.答案:⎝⎛⎦⎥⎤-∞,-7214.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x,由f ′(x )=0,得函数f (x )的两个极值点为1和3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案:(0,1)∪(2,3)[C 素养提升]15.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:f ′(x )=-x 2+x +2a =-⎝⎛⎭⎪⎫x -122+14+2a .由题意知,f ′(x )>0在⎣⎢⎡⎭⎪⎫23,+∞上有解,当x ∈⎣⎢⎡⎭⎪⎫23,+∞时, f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a . 令29+2a >0,解得a >-19, 所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.答案:⎝ ⎛⎭⎪⎫-19,+∞16.(2022·北京高三一模)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞); 当a <0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1); 当a =0时,f (x )为常数函数,没有单调区间. (2)由(1)及题意得f ′(2)=-a2=1,即a =-2,所以f (x )=-2ln x +2x -3,f ′(x )=2x -2x.所以g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点. 由于g ′(0)=-2,所以⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意的t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,即m >-373.所以-373<m <-9.21 / 21 即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

2022届高中数学导数通关练习专题03 利用函数的单调性求参数取值范围(解析版)

2022届高中数学导数通关练习专题03 利用函数的单调性求参数取值范围(解析版)

6.函数 f x 1 x3 ax2 2x 1 在 x 1, 2 内不单调,则( )
3
A. 1 a 1
2
2
B. 1 a 1
2
2
C. a 1 或 a 1
2
2
D. a 1 或 a 1
2
2
【解析】由题设, f (x) x2 2ax 2 ,∴ f (1) 2a 1 , f (2) 2 4a ,∵在 x 1, 2 内不单调,
x
a
1
ln
x
,若对任意
x1
,
x2
(0,
2]
,且
x1
x2 ,都有
f
x2 f x1
x2 x1
1,则实数 a 的取
值范围是( )
A.
,
27 4
B. (, 2]
C.
,
27 2
D. ,8
学科 网(北 京)股 份有限 公司
二、多选题
9.若函数 f (x) 1 x 2 9 ln x ,在区间m 1,m 1 上单调,则实数 m 的取值范围可以是(
20.已知函数 f (x) 1 x 4 x 3 9 x 2 cx 1 有三个极值点.
4
2
(1)求 c 的取值范围;
(2)若存在 c 27 ,使函数 f (x) 在区间[a, a 2]上单调递减,求 a 的取值范围.
21.已知函数 f x 2ln x 1 ax2 2a 1 x
2
(1)若 f x 在 2, 上单调,求 a 的取值范围; (2)若 f x 在 2, 上有极小值 g a ,求证: g a 4 ln 2 4 .
f (x) 1 1
1 x
(x
a 1)2

2023年新高考数学大一轮复习专题15 单调性问题(原卷版)

2023年新高考数学大一轮复习专题15 单调性问题(原卷版)

专题15单调性问题【考点预测】知识点一:单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数.2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.知识点二:讨论单调区间问题 类型一:不含参数单调性讨论(1)求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); (2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);(4)未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); (5)正负未知看零点(若导函数正负难判断,则观察导函数零点);(6)一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. (7)借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段);类型二:含参数单调性讨论(1)求导化简定义域(化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);(2)变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);(3)恒正恒负先讨论(变号部分因为参数的取值恒正恒负);然后再求有效根;(4)根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); (5)导数图像定区间; 【方法技巧与总结】1.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数;(3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性. 注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:()0f x '>⇒()f x 单调递增;()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减;()f x 单调递减()0f x '⇒≤.【题型归纳目录】题型一:利用导函数与原函数的关系确定原函数图像 题型二:求单调区间题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围 题型四:不含参数单调性讨论 题型五:含参数单调性讨论 情形一:函数为一次函数 情形二:函数为准一次函数 情形三:函数为二次函数型 1.可因式分解 2.不可因式分解型情形四:函数为准二次函数型 题型六:分段分析法讨论 【典例例题】题型一:利用导函数与原函数的关系确定原函数图像例1.(2022·陕西·汉台中学模拟预测(文))设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .例2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-例3.(2022·安徽马鞍山·三模(理))已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列结论正确的是( )A .()()()f b f c f a >>B .()()()f b f c f e >=C .()()()f c f b f a >>D .()()()f e f d f c >>【方法技巧与总结】原函数的单调性与导函数的函数值的符号的关系,原函数()f x 单调递增⇔导函数()0f x '≥(导函数等于0,只在离散点成立,其余点满足()0f x '>);原函数单调递减⇔导函数()0f x '≤(导函数等于0,只在离散点成立,其余点满足0()0f x <).题型二:求单调区间例4.(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)例5.(2021·西藏·林芝市第二高级中学高三阶段练习(理))函数()()3e xf x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,例6.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.【方法技巧与总结】求函数的单调区间的步骤如下: (1)求()f x 的定义域 (2)求出()f x '.(3)令()0f x '=,求出其全部根,把全部的根在x 轴上标出,穿针引线.(4)在定义域内,令()0f x '>,解出x 的取值范围,得函数的单调递增区间;令()0f x '<,解出x 的取值范围,得函数的单调递减区间.若一个函数具有相同单调性的区间不只一个,则这些单调区间不能用“”、“或”连接,而应用“和”、“,”隔开.题型三:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围例7.(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m的取值范围为( ) A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-例8.(2021·河南·高三阶段练习(文))已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭例9.(2022·全国·高三专题练习)若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =( ) A .-12B .-10C .8D .10例10.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______.例11.(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.例12.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.例13.(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.例14.(2022·全国·高三专题练习(文))若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上存在单调递减区间”,则实数a 的取值范围为________.例15.(2020·江苏·邵伯高级中学高三阶段练习)若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______.例16.(2022·全国·高三专题练习(文))已知函数f (x )=3xa-2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则实数a 的取值范围是________.【方法技巧与总结】(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围. (3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解. 题型四:不含参数单调性讨论例17.(2022·山东临沂·三模)已知函数()21ln ax f x x-=,其图象在e x =处的切线过点()22e,2e .(1)求a 的值;(2)讨论()f x 的单调性;例18.(2022·天津·模拟预测)已知函数()()()1ln 10x f x x x++=>.试判断函数()f x 在()0+∞,上单调性并证明你的结论;例19.(2022·天津市滨海新区塘沽第一中学三模)已知函数()()ln 1x a x a f x x+++=(1)若函数()f x 在点()()e,e f 处的切线斜率为0,求a 的值.(2)当1a =时.设函数()()()xf x G x f x '=,求证:()y f x =与()y G x =在[]1,e 上均单调递增;例20.(2022·浙江·杭州高级中学模拟预测)已知函数()()ln ln e1,,0x af x x a x a a +=+-+>->. 当1a =时,求()f x 的单调区间题型五:含参数单调性讨论 情形一:函数为一次函数例21.(2022·江西·二模(文))己知函数()ln 1(),()e 1x f x ax x a R g x x =++∈=-. 讨论()f x 的单调性;例22.(2022·北京八十中模拟预测)已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例23.(2022·广东·模拟预测)已知函数()ln(1)(),()22f x x mx m g x x n =--∈=+-R . 讨论函数()f x 的单调性;情形二:函数为准一次函数例24.(2022·全国·模拟预测(文))设函数()1ln a xf x x+=,其中R a ∈. 当0a ≥时,求函数()f x 的单调区间;例25.(2022·江苏·华罗庚中学三模)已知函数()()2e 3x R f x ax a =-+∈ ,()ln e x g x x x =+(e 为自然对数的底数,25e 9<). 求函数()f x 的单调区间;例26.(2022·云南师大附中模拟预测(理))已知函数()()21ln 12f x x x ax a x =-+-,其中0a .讨论()f x 的单调性;例27.(2022·云南师大附中高三阶段练习(文))已知函数()ln f x x x ax =-. 讨论()f x 的单调性;情形三:函数为二次函数型 1.可因式分解例28.(2022·全国·模拟预测)已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k . 讨论()f x 的单调性;例29.(2022·天津·二模)已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;例30.(2022·安徽师范大学附属中学模拟预测(文))已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;例31.(2022·浙江省江山中学模拟预测)函数2()ln 1(,0)x f x x a R a a=-+∈≠.讨论函数()y f x =的单调性;例32.(2022·广东·潮州市瓷都中学三模)已知函数()()()322316R f x x m x mx x =+++∈.讨论函数()f x 的单调性;例33.(2022·湖南·长沙县第一中学模拟预测)已知函数()()()21ln 2a f x x a x x a R =+--∈. 求函数()f x 的单调区间;例34.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈ (1)当1a =-时,求()f x 在点()()1,1f 处的切线方程; (2)当0a >时,求函数()f x 的单调递增区间.2.不可因式分解型例35.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x . 讨论函数()f x 的单调性;例36.(2022·天津南开·三模)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明. 情形四:函数为准二次函数型例37.(2022·安徽·合肥市第八中学模拟预测(理))设函数23ln 2()2,()2,e e x xx x f x ax ax g x ax a x =+-=++∈R . 讨论()f x 的单调性;例38.(2022·全国·二模(理))已知函数()()2x e 2e xf x a ax =+++.讨论()f x 的单调性;例39.(2022·安徽·合肥一六八中学模拟预测(理))已知函数()e e x x f x ax -=--(e 为自然对数的底数),其中R a ∈.试讨论函数()f x 的单调性;例40.(2022·浙江·模拟预测)已知函数()()2e 2e x x f x a a x =+--.讨论()f x 的单调性;题型六:分段分析法讨论例41.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()()12211ln x f x a x x x a -+=+-++-(0a >,且1a ≠)求函数()f x 的单调区间;【方法技巧与总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.【过关测试】 一、单选题1.(2022·江西·上饶市第一中学模拟预测(理))已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-2.(2022·全国·哈师大附中模拟预测(理))已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( )A .B .C .D .3.(2022·江西师大附中三模(理))下列函数中既是奇函数又是增函数的是( )A .1()f x x x=-B .122()xxf x ⎛+⎫⎪⎝⎭= C .3()tan f x x x =+ D .)()lnf x x =4.(2022·北京·首都师范大学附属中学三模)下列函数中,既是偶函数又在()0,2上单调递减的是( ) A .2x y = B .3y x =- C .cos 2x y =D .2ln2xy x-=+ 5.(2022·陕西·西北工业大学附属中学模拟预测(文))已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞6.(2022·江西宜春·模拟预测(文))“函数sin y ax x =-在R 上是增函数”是“0a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.(2022·江西宜春·模拟预测(文))已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2eD .()0,e8.(2022·江苏·南京市天印高级中学模拟预测)已知1,1a b >>,且1(1)e e (e a b b a a ++=+为自然对数),则下列结论一定正确的是( )A .ln()1a b +>B .ln()0-<a bC .122a b +<D .3222a b +< 二、多选题9.(2022·广东·信宜市第二中学高三开学考试)已知()ln x f x x =,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+ B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解 10.(2022·全国·模拟预测)已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12 B .1 C .2 D .311.(2022·全国·高三专题练习)下列函数在区间(0,+∞)上单调递增的是( )A .y =x ﹣(12)x B .y =x +sin x C .y =3﹣x D .y =x 2+2x +112.(2022·广东·模拟预测)已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为( )A .B .1-C .1D 三、填空题13.(2022·山西运城·模拟预测(理))若命题3:[1,1],2p x x a x ∀∈-≥-为假命题,则实数a 的取值范围是___________.14.(2022·重庆八中模拟预测)写出一个具有性质①②③的函数()f x =____________.①()f x 的定义域为()0,+∞;②()()()1212f x x f x f x =+;③当()0,x ∈+∞时,()0f x '>.15.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.16.(2022·江西萍乡·二模(文))已知函数()f x 是R 上的奇函数,且()33f x x x =+,若非零正实数,m n 满足()()20f m mn f n -+=,则11m n+的小值是_______.四、解答题17.(2022·北京工业大学附属中学三模)已知函数()ln R k f x x k k x =--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.18.(2022·青海·大通回族土族自治县教学研究室二模(文))已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.19.(2022·全国·高三专题练习)已知函数2()(1)=--x f x k x e x ,其中k ∈R.当k 2≤时,求函数()f x 的单调区间;20.(2022·全国·高三专题练习)已知函数()e x f x ax -=+.讨论()f x 的单调性;21.(2022·全国·高三专题练习)已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;22.(2022·全国·高三专题练习)讨论函数2(x)e 2x x f x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>.。

专题03 利用函数的单调性求参数取值范围(解析版)

专题03 利用函数的单调性求参数取值范围(解析版)

专题03利用函数的单调性求参数取值范围一、单选题1.已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为()A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【解析】()232f x x x a '=+-,因为()f x 在R 上为单调递增函数,故()0f x ¢³在R 上恒成立,所以4120a ∆=+≤即13a ≤-,故选:A.2.若函数ln y x a x =+在区间[)1,+∞内单调递增,则a 的取值范围是()A .(),2-∞-B .(),1-∞-C .[)2,-+∞D .[)1,-+∞【解析】由ln 1a y x a x y x'=+⇒=+,因为函数ln y x a x =+在区间[)1,+∞内单调递增,所以有0y '≥在[)1,+∞上恒成立,即10a x +≥在[)1,+∞上恒成立,因为[)1,x ∞∈+,所以由100a x a a x x +≥⇒+≥⇒≥-,因为[)1,x ∞∈+,所以(,x -∈-∞-,于是有1a ≥-,故选:D3.若函数()cos f x ax x =+在(),-∞+∞上单调递增,则实数a 的取值范围是()A .(-1,1)B .[)1,+∞C .(-1,+∞)D .(-1,0)【解析】()sin f x a x '=-,由题意得:()sin 0f x a x '=-≥,即sin a x ≥在(),-∞+∞上恒成立,因为[]sin 1,1y x =∈-,所以1a ≥恒成立,故实数a 的取值范围是[)1,+∞.故选:B4.若函数()2sin f x bx x =+在ππ,42x ⎡⎤∈⎢⎣⎦上单调递增,则实数b 的取值范围是()A .0b ≥B .0b >C .b ≥D .b >【解析】由题意()2cos 0f x b x '=+≥在ππ,42⎡⎤⎢⎣⎦上恒成立,2cos b x ≥-,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,2cos y x =-是增函数,max 0y =(π2x =时取得),所以0b ≥.故选:A .5.若函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是()A .(,2)-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .(2,)-+∞D .(8,)-+∞【解析】由2()ln 2f x x ax =+-可得:1()2f x ax x'=+.因为函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,所以()0f x '>在1,14x ⎛⎫∈ ⎪⎝⎭上有解,即212a x >-在1,14x ⎛⎫∈ ⎪⎝⎭上有解.设()21,1124,g x x x ⎛⎫∈-⎝=⎪⎭,由()30g x x -'=>在1,14x ⎛⎫∈ ⎪⎝⎭上恒成立,所以()g x 在1,14x ⎛⎫∈ ⎪⎝⎭单调递增,所以()()114g g x g ⎛⎫<< ⎪⎝⎭.所以184a g ⎛⎫>=- ⎪⎝⎭.故选:D 6.已知函数32()132x ax f x ax =+++存在三个单调区间,则实数a 的取值范围是()A .(0,4)B .[0,4]C .(,0)(4,)-∞+∞ D .(,0][4,)-∞+∞ 【解析】由题意,函数32()132x ax f x ax =+++,可得2()f x x ax a '=++,因为函数()f x 存在三个单调区间,可得()'f x 有两个不相等的实数根,则满足240a a ∆=->,解得0a <或4a >,即实数a 的取值范围是(,0)(4,)-∞+∞ .故选:C.7.若函数()219ln 2f x x x =-在区间[]1,a a -上单调递减,则实数a 的取值范围是()A .13a <£B .4a ≥C .23a -≤≤D .14a <≤【解析】函数()219ln 2f x x x =-,()0x >.则()299x f x x x x-'=-=,因为()f x 在区间[1]a a -,上单调递减,则()0f x '≤在区间[1]a a -,上恒成立,即290x -≤,所以03x <≤在区间[1]a a -,上恒成立,所以103a a ->⎧⎨≤⎩,解得13a <£,故选:A.8.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为()A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-【解析】因为函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,所以()cos 2sin 0f x a x x '=-≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,即2tan a x ≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,由2tan y x =在π(,0)2-上单调递增知,max π2tan()24y =-=-,所以2a ≥-,故选:C9.若()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,则实数a 的取值范围是()A .5,4⎡⎫+∞⎪⎢⎣⎭B .(],1-∞-C .5,4⎛⎤-∞ ⎝⎦D .[)1,+∞【解析】由1sin 2()()cos 24x f x a x x =--+,得1cos 2()sin 22xf x a x '=---,因为()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,所以1cos 2()sin 022x f x a x '=---≤在R 上恒成立,即221cos2sin cos sin 1sin sin 22x a x x x x x ≤++=+=-+=215(sin )24x --+在R 上恒成立,由于1sin 1x -≤≤,所以215(1124a ---+=-≤.故选:B.10.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在区间7,24ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为()A .10,7⎡⎤⎢⎥⎣⎦B .16,09⎡⎤-⎢⎥⎣⎦C .1,7⎛⎤-∞ ⎥⎝⎦D .(],0-∞【解析】函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-()()1cos 23sin cos 412x a x x a x =+-+-()()()()2'sin 23cos sin 41cos sin 3cos sin 40f x x a x x a x x a x x a ∴=-+++-=-++++≤,对7π,2π4x ⎡⎤⎢⎥⎣⎦∈恒成立.πcos sin sin 4x x x ⎛⎫ ⎪⎝++⎭ ,∴当7π,2π4x ⎡⎤⎢⎥⎣⎦∈时,0cos sin 1x ≤+≤.令()()23401g t t at a t =-++≤≤,欲使()0g t ≤恒成立,只需满足231t a t ≤+,当01t ≤≤时,恒成立,即2min31t a t ⎛⎫≤ ⎪+⎝⎭,设[]311,4t m +=∈,13m t -=,222112203199999t m m m t m m -+==+-≥=+,当199m m =时,等号成立,即0a ≤.故选:D 11.若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【解析】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝=-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A .二、多选题12.若函数21()9ln 2f x x x =-,在区间[]1,1m m -+上单调,则实数m 的取值范围可以是()A .4m =B .2m ≤C .12m <≤D .03m <≤【解析】定义域为()0,∞+,299()x f x x x x'-=-=;由()0f x '≥得函数()f x 的增区间为[)3,+∞;由()0f x '≤得函数()f x 的减区间为(]0,3;因为()f x 在区间[]1,1m m -+上单调,所以1013m m ->⎧⎨+≤⎩或13m -≥解得12m <≤或4m ≥;结合选项可得A,C 正确.故选:AC.三、填空题13.若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【解析】()'2f x x a =-+,由于函数()313f x x ax =-+有三个单调区间,所以()'20f x x a =-+=有两个不相等的实数根,所以0a >.故答案为:()0,∞+14.已知函数322()3(1)1(0)f x kx k x k k =+--+>,若()f x 的单调递减区间是(0,4),则实数k 的值为________.【解析】由322()3(1)1(0)f x kx k x k k =+--+>,得'2()36(1)f x kx k x =+-,因为()f x 的单调递减区间是(0,4),所以'()0f x <的解集为(0,4),所以4x =是方程236(1)0kx k x +-=的一个根,所以126(1)0k k +-=,解得13k =15.若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则实数m 的取值范围为________.【解析】由()2sin x f x e mx x =+-,得()'2cos xf x e mx x =+-,若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则()'2cos 0xf x e mx x =+-在[)0,∞+上恒成立,令()2cos xg x e mx x =+-,0x,则()'2sin x g x e m x =++,再令()2sin xh x e m x =++,0x,则()'cos x h x e x =+,因为0x ,所以01x e e = ,所以()'cos 0xh x e x =+在[)0,∞+上恒成立,则()h x 在[)0,∞+上单调递增,故()min ()012h x h m ==+;当120m +时,得12m - ,此时()()'0g x h x = ,则()g x 在[)0,∞+上单调递增,则()()00g x g =,此时符合()'2cos 0x f x e mx x =+- 在[)0,∞+上恒成立;当120m +<时,得12m <-,()00,x ∃∈+∞,使得0()0h x =,故[)00,x x ∈时,()0h x <,即()'0g x <,()0,x x ∈+∞时,()0h x >,即()'0g x >,故()g x 在[)00,x 上单调递减,则当[)00,x x ∈时,()()00g x g =,此时()'2cos 0x f x e mx x =+- ,不合题意;综上,实数m 的取值范围为12m - .16.已知函数1()2ln f x x x x=--,21()(1)2x g x x e ax =--,R a ∈.对于任意12,(1,)x x ∈+∞,且12x x ≠,必有()()()()12120f x f x g x g x ->-,则a 的取值范围是___________.【解析】()f x 定义城为(0,)+∞.22212(1)()10x f x x x x-'=+-=≥.故()f x 在(1,)+∞内单调递增.对于任意12,(1,)x x ∈+∞,不妨设12x x <,则()()120f x f x -<.故()()120g x g x -<,()()12g x g x <,()g x 在(1,)+∞内单调递增.故()()0x xg x xe ax a e x '=-=-≥在(1,)+∞恒成立,即x a e ≤恒成立,可知a e ≤.∴a 的取值范围为(,]e -∞.17.已知函数32()23f x x kx x =-+-在R 上不单调,则k 的取值范围是______.【解析】22()341f x x kx '=-+,因为函数32()23f x x kx x =-+-在R 上不单调,所以223410x kx -+=必有解,当223410x kx -+=只有一个解时,22()3410f x x kx '=-+≥得出函数()f x 在R 上单调递增,与题干矛盾,故223410x kx -+=必有两个不等实根则()2044310k ∆>⇒--⨯⨯>,解得k <或k >18.若实数()0,2a ∈,()0,2b ∈,则函数()232211432f x a x b x x =+-在区间()1,+∞单调递增的概率为___________.【解析】由题意222()40f x a x b x ¢=+-³在(1,)+∞上恒成立,二次函数的对称轴是2202bx a=-<,因此()'f x 在(1,)+∞上单调递增,所以22(1)40f a b ¢=+-³,易知满足02,02a b <<<<的点(,)a b 据区域为图中正方形OABC ,面积为224⨯=,又满足2240a b +-³的(,)a b 在正方形OABC 在圆224x y +=外部的部分,面积为214244p p -´=-,所以概率为44P π-=.19.若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.【解析】 函数()324132x af x x x =-++,'2()4f x x ax ∴=-+,若函数()f x 在区间(1,4)上不单调,则()'240f x x ax =-+=在(1,4)上存在变号零点,由240x ax -+=得4a x x =+,令4()g x x x =+,(1,4)x ∈,'2(2)(2)()x x g x x +-=,()g x ∴在()1,2递减,在()2,4递增,而()422+42g ==,()411+51g ==,()444+54g ==,所以45a <<.故答案为:()45,.四、解答题20.已知函数()31f x x ax =--.(1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围.(2)若()f x 的单调递减区间为(1,1)-,求a 的值.【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立,所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞(2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得x <()f x 的单调递减区间为(,又已知()f x 的单调递减区间为(1,1)-,所以(=(1,1)-1=,即3a =.21.已知函数()ln af x x x=-.(1)若3a =-,求函数()f x 的极值;(2)若函数()f x 在3,e e ⎡⎤⎣⎦上单调递增,求a 的取值范围.【解析】(1)当3a =-时,3()ln (0)f x x x x =+>,则'22133()x f x x x x-=-=,令'()0f x =,得3x =,x ,'()f x 和()f x 的变化情况如下表x(0,3)3(3,)+∞'()f x -0+()f x 递减极小值递增所以当3x =时,()f x 取得极小值(3)ln 31f =+,无极大值(2)由()ln a f x x x =-(0x >),得()'221a x a f x x x x+=+=(0x >),当0a ≥时,'()0f x >,所以()f x 在(0,)+∞上单调递增,所以()f x 在3,e e ⎡⎤⎣⎦上单调递增,当0a <时,由'()0f x =,得x a =-,x ,'()f x 和()f x 的变化情况如下表x (0,)a -a-(,)a -+∞'()f x -0+()f x 递减极小值递增因为()f x 在3,e e ⎡⎤⎣⎦上单调递增,所以a e -≤,得0e a -≤<,综上,a 的取值范围为[,)e -+∞22.已知a R ∈,函数2()()e (xf x x ax x R =-+∈,e 为自然对数的底数).(1)当2a =时,求函数()f x 的单调递增区间;(2)若函数()f x 在(1,1)-上单调递增,求a 的取值范围;【解析】(1)当2a =时,2()(2)e x f x x x =-+,2()(2)e x f x x '=--令()0f x '>,得220x -<,∴x <()f x ∴的单调递增区间是(;(2)2()[(2)]e x f x x a x a '=-+-+,若()f x 在(1,1)-内单调递增,即当11x -<<时,()0f x ',即2(2)0x a x a -+-+对(1,1)x ∈-恒成立,即111a x x +-+ 对(1,1)x ∈-恒成立,令111y x x =+-+,则2110(1)y x '=+>+,111y x x ∴=+-+在(1,1)-上单调递增,1311112y ∴<+-=+,32a ∴ ,当32a =时,当且仅当0x =时,()0f x '=,a ∴的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭.23.已知函数1()xxf x ax e +=-.(1)若曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,求实数a ,b 的值;(2)若函数()f x 在区间(0,2)上存在..单调增区间,求实数a 的取值范围;(3)若()f x 在区间(0,2)上存在极大值,求实数a 的取值范围(直接写出结果).【解析】(1)因为1(1)()x x x xf x a a e e'-+=-=+,所以(0)f a '=,因为曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,所以切线斜率为1,即1a =,(0)1f b =-=,所以1,1a b ==-.(2)因为函数()f x 在区间(0,2)上存在单调增区间,所以()0x xf x a e='+>在(0,2)上有解,即只需()'f x 在(0,2)上的最大值大于0即可.令1()(),()x x x xh x f x a h x e e-==+='',当(0,1)x ∈时,()0,()h x h x '>为增函数,当(1,2)x ∈时,()0,()h x h x '<为减函数,所以,当1x =时,()h x 取最大值1a e +,故只需10a e +>,即1a e >-.所以实数a 的取值范围是1,e ⎛⎫-+∞ ⎪⎝⎭.(3)212,⎛⎫-- ⎪⎝⎭e e 24.1.已知函数()()31R f x x ax a =--∈.(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若函数()f x 的单调递减区间是)-,求实数a 的值;(3)若函数()f x 在区间()1,1-上单调递减,求实数a 的取值范围.【解析】(1)易知()23f x x a '=-.因为()f x 在R 上单调递增,所以()0f x '≥恒成立,即23a x ≤恒成立,故()2min30a x≤=.经检验,当0a =时,符合题意,故实数a 的取值范围是(],0-∞.(2)由(1),得()23f x x a '=-.因为()f x 的单调递减区间是()1,1-,所以不等式230x a -<的解集为()1,1-,所以-1和1是方程230x a -=的两个实根,所以3a =.(3)由(1),得()23f x x a '=-.因为函数()f x 在区间()1,1-上单调递减,所以()0f x '≤在()1,1x ∈-上恒成立,即23a x ≥在()1,1x ∈-上恒成立.又函数23y x =在()1,1-上的值域为[)0,3,所以3a ≥.故实数a 的取值范围是[)3,+∞.25.已知函数22()ln ()f x x a x ax a R =-+∈.(1)当1a =时,求函数()f x 的最值(2)若函数()f x 在区间[1,)+∞上是减函数,求实数a 的取值范围.【解析】(1)当1a =时,2()ln f x x x x =-+,则()()2211121()21x x x x f x x x x x+---'=-+=-=-,当01x <<时,()0f x '>,当1x >时,()0f x '<,所以当1x =时,()f x 有最大值0,无最小值;(2)21()2f x a x a x-'=+,因为函数()f x 在区间[1,)+∞上是减函数,所以21()20f x a x a x=-+≤'在区间[1,)+∞上恒成立,令()212g x a x a x =-+,则()22120g x a x'=--<,所以()g x 在区间[1,)+∞上递减,所以()()2max 121g x g a a ==-++,则2210a a -++≤,即2210≥--a a ,即()()2110a a +-≥,解得12a ≤-或1a ≥,所以实数a 的取值范围1(,[1,)2-∞-⋃+∞.26.已知函数()22f x x a x x =⋅-+.(1)当1a =时,求曲线()y f x =在点()()22f ,处的切线方程;(2)若()22f x x a x x =⋅-+在区间[0,1]上单调递增,求实数a 的取值范围.【解析】(1)当1a =时,()22·21||()1f x x x x x x =+=--,则2()341'=-+f x x x ,所以()(252,2)f f '==,所以,所求切线方程为25(2)y x -=-,即580x y --=.(2)设()()2201g x x x a x =+≤≤-,则()2(1)0g x x '=-≤,所以()g x 在[]0,1上单调递减,从而()()()10g g x g ≤≤,即()1a g x a ≤≤-.(i )当1a ≥时,()10g x a ≥≥-,则()22()f x x x x a -=+,则2()34f x x x a '=-+,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+≥对于任意的[]0,1x ∈恒成立,即234a x x ≥-+.因为2224343(33x x x -+=--+,所以当23x =时,2434()3max x x +=-,所以43a ≥,又1a ≥,此时a 的取值范围为4,3⎡⎫+∞⎪⎢⎣⎭(ii )当0a ≤时,()0g x ≤,则()2()2f x x x x a =-+-,则2()34f x x x a '=-+-,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+-≥对于任意的[]0,1x ∈恒成立,即234a x x ≤-+.因为2224343(33x x x -+=--+,所以当0x =时,2min 340()x x +=-,所以0a ≤,此时a 的取值范围为(,0]-∞.(iii )当01a <<时,则存在唯一的()00,1x ∈,使得()00g x =.当()100,x x ∈时,()10g x >,即存在()010,1x x ∈,且10x x <,使得()()10g x g x >,从而()()1100x g x x g x >,即()()10f x f x >,这与“()f x 在[]0,1上为增函数”矛盾,此时不合题意.综上,实数a 的取值范围(]4,0,3⎡⎫-∞+∞⎪⎢⎣⎭27.已知函数()ln f x ax x =-,()e 2ax g x x =+,其中a ∈R .(1)当2a =时,求函数()f x 的极值;(2)若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上具有相同的单调性,求实数a 的取值范围.【解析】(1)当2a =时,()2ln f x x x =-,定义域为(0,)+∞,则1()2f x x'=-,故当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.所以()f x 在12x =处取得极小值,且11ln 22f ⎛⎫=+ ⎪⎝⎭,无极大值.(2)由题意知,1()f x a x'=-,()e 2ax g x a '=+.当0a >时,()0g x '>,即()g x 在R 上单调递增,而()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,故必存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上单调递增;当0a =时,1()0f x x '=-<,故()f x 在(0,)+∞上单调递减,而()g x 在(0,)+∞上单调递增,故不存在满足条件的区间D ;当0a <时,1()0f x a x '=-<,即()f x 在(0,)+∞上单调递减,而()g x 在12,ln a a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递减,在12ln ,a a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上有相同的单调性,则有12ln 0a a ⎛⎫-> ⎪⎝⎭,解得2a <-.综上可知,a 的取值范围为(,2)(0,)-∞-+∞ .。

利用函数的单调性求参数的取值范围使用

利用函数的单调性求参数的取值范围使用

利用函数的单调性求参数的取值范围使用在数学中,单调性指的是函数图像在定义域内的增减趋势是否保持一致。

具体而言,如果函数f(x)在一些区间上是递增的,则称它在该区间上是单调递增的;如果函数f(x)在一些区间上是递减的,则称它在该区间上是单调递减的。

假设我们面对的问题为求使函数f(x)大于等于一些给定值的参数x 的取值范围。

我们可以通过以下步骤来解决这个问题:1.首先,我们需要确定函数f(x)的单调性。

可以通过函数的导数来判断函数的增减性。

如果f'(x)大于零,那么函数f(x)在该区间上是单调递增的;如果f'(x)小于零,那么函数f(x)在该区间上是单调递减的。

2.其次,我们可以将函数f(x)大于等于给定值转化为不等式f(x)-C>=0的形式,其中C表示给定值。

例如,如果我们需要求函数f(x)大于等于0的参数x的取值范围,可以将不等式f(x)>=0转化为f(x)-0>=0。

3.接下来,我们可以利用不等式的性质来求解参数的取值范围。

对于单调递增的函数,我们可以将不等式f(x)-C>=0转化为x>=g(C)的形式,其中g(C)表示函数f(x)-C=0的解。

对于单调递减的函数,我们可以将不等式f(x)-C>=0转化为x<=g(C)的形式。

4.最后,我们可以利用函数f(x)的定义域来进一步限制参数x的取值范围。

函数f(x)的定义域表示函数f(x)的取值范围,此范围也是参数x的取值范围的一部分。

因此,我们需要将函数f(x)的定义域与参数x的取值范围进行交集运算,以得到最终的参数取值范围。

需要注意的是,在利用函数的单调性求参数的取值范围时,我们需要确保函数f(x)存在单调性。

如果函数f(x)在一些区间上既不是递增的也不是递减的,那么我们无法利用单调性来求解参数的取值范围。

举例说明:假设我们需要求函数f(x)=x^2+3x+2大于等于5的参数x的取值范围。

专题12 导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题12  导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】

【热点聚焦】单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.从高考命题看,对函数单调性的考查主要有:利用导数求函数的单调区间、判断单调性、已知单调性,求参数等.【重点知识回眸】(一)函数的单调性与导数的关系 条件 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数优先”原则. (二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零. (三)常见问题解题方法1.导数求单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间.即确定定义域→求出导函数→令()'0f x >解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格.2.求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解3.求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4.含参数问题分类讨论的时机分类时机:并不是所有含参问题均需要分类讨论,当参数的不同取值对下一步的结果影响不相同时,就是分类讨论开始的时机.【典型考题解析】热点一 不含参数的函数的单调性【典例1】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)- B .(0,1)C .(1,)+∞D .(0,2)【答案】B【分析】求导,解不等式()0f x '<可得. 【详解】()f x 的定义域为(0,)+∞ 解不等式1(1)(1)()0x x f x x x x-+'=-=<,可得01x <<, 故函数21()ln 2f x x x =-的递减区间为(0,1). 故选:B .【典例2】(广东·高考真题(文))函数的单调递增区间是 ( )A .B .(0,3)C .(1,4)D .【答案】D 【解析】 【详解】试题分析:由题意得,()()(3)(3)(2)x x x f x x e x e x e '=-+-=-'',令()0f x '>,解得2x >,所以函数()f x 的单调递增区间为,故选D .【典例3】(2023·全国·高三专题练习)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________. 【答案】(0,)6π,5(,)6ππ【分析】对()f x 求导,令f ′(x )=0,得x =6π或x =56π,求出()0f x '> 的解即可求出答案. 【详解】f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =6π或x =56π, 当0<x <6π时,f ′(x )>0, 当6π<x <56π时,f ′(x )<0,当56π<x <π时,f ′(x )>0, ∴f (x )在(0,)6π和5(,)6ππ上单调递增,在5(,)66ππ上单调递减.故答案为:(0,)6π,5(,)6ππ.【典例4】(2023·全国·高三专题练习)已知函数211,0()2,0x f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 【答案】20,2⎛⎫ ⎪ ⎪⎝⎭,[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<,所以当1≥x 时,12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增,当01x <<时,21122()loglog g x x x =-+,则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=,由()0g x '>,得1212log 0x -<,解得202x <<, 所以()g x 在20,2⎛⎫ ⎪ ⎪⎝⎭上递增, 综上得函数()g x 的单调递增区间为20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. 故答案为:20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. (1)函数的一阶导数可以用来研究函数图象的上升与下降,函数的二阶导数可以用来研究函数图象的陡峭及平缓程度,也可用来研究导函数图象的上升与下降. (2)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错. 热点二 含参数的函数的单调性【典例5】(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【典例6】(2023·全国·高三专题练习)已知函数()ln R kf x x k k x=--∈,,讨论函数()f x 在区间(1,e)内的单调性. 【答案】见解析 【分析】先求出2()x kf x x +'=-,然后分k -与(1,e)的关系进行分类讨论,从而得出答案. 【详解】由()ln kf x x k k R x=--∈,,(1,e)x ∈ 221()k x k f x x x x+'∴=--=- ①当1k -≤,即1k ≥-时,10x k x +≥->, ()0f x '∴< ,()f x ∴在(1,e)单调递减;②当e k -≥,即e k ≤-时,e 0x k x +≤-<, ()0f x '∴> ,()f x ∴在(1,e)单调递增;③当1e k <-<,即e 1k -<<-时,当1x k <<-时,()0f x '>,()f x 单调递增; 当e k x -<<时,()0f x '<,()f x 单调递减; 综上所述,当1k ≥-时,()f x 在(1,e)单调递减 当e k ≤-时,()f x 在(1,e)单调递增当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减.【方法总结】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.热点三 已知函数的单调性求参数的取值范围【典例7】(全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .【典例8】(全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】 【详解】试题分析:()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【典例9】(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【规律方法】由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,从而构建不等式,求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间D 上的单调性,区间端点含有参数时,可先求出f (x )的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围. 热点四 函数单调性与函数图像【典例10】(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.【典例11】(2023·全国·高三专题练习)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .【答案】D【分析】根据导函数的图象判断原函数的单调性,即可判断选项.【详解】原函数先减再增,再减再增,且0x =位于增区间内.符合条件的只有D. 故选:D【典例12】(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D. 【规律方法】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 热点五 函数单调性与比较大小、解不等式 【典例13】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A【典例14】(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.【典例15】(2022·重庆南开中学高三阶段练习)已知函数()()3log 912xf x x =+-+,则不等式()()21f x f x -<的解集为( ) A .()1,3 B .(),1-∞ C .[)1,+∞D .1,13⎛⎫⎪⎝⎭【答案】D【分析】根据导数判断出函数的单调性,根据解析式可判断函数为偶函数,从而可求不等式的解.【详解】函数的定义域为R ,()()()9ln 92991119191ln 391x x x x x x f x ⋅-'=-=-=+++,当0x <时,0f x ;当0x >时,0f x ,故()f x 在(),0-∞上为减函数,在()0,+∞上为增函数. 又()()3391log 912log 29x xx f x x x -+-=+++=++()()3log 9122x x x f x =+-++=,故()f x 为R 上的偶函数,故()()21f x f x -<等价于()()21f x f x -<, 即21x x -<,两边平方得23410x x -+<,故1,13x ⎛⎫∈ ⎪⎝⎭.故选:D.'()f x 当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f x g x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.【典例17】(2021·山东·临沂市兰山区教学研究室高三开学考试)已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()20f x x xf '+>,则不等式()()()220212021420x f x f +++-<的解集为( )A .()2019,+∞B .()2021,2019--C .(),2019-∞-D .()2019,0-【答案】C【分析】根据已知条件构造函数2()()g x x f x =,可得()g x 在(0,)+∞上为增函数,且()g x 为奇函数,然后将()()()220212021420x f x f +++-<可转化为(2021)(2)g x g +<,从而可求出不等式的解集.【详解】令2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因为当0x >时,有()()20f x x xf '+>, 所以当0x >时,()0g x '>, 所以()g x 在(0,)+∞上为增函数,因为()f x 为奇函数,所以()()f x f x -=-, 所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上的奇函数, 所以()g x 在R 上为增函数,由()()()220212021420x f x f +++-<,得()()()22021202142x f x f ++<--, ()()()2220212021(2)2x f x f ++<---,所以(2021)(2)g x g +<--,因为()g x 为奇函数,所以(2021)(2)g x g +<, 所以20212x +<,得2019x <-,所以不等式的解集为(),2019-∞-, 故选:C【典例18】(2022·湖北·襄阳五中高三阶段练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【分析】利用导数研究函数()sin f x x x =-,()ln(1)g x x x =-+,6()ln(1)5h x x x =-+在(0,1)上的单调性,利用函数的单调性可比较,,a b c 的大小.【详解】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<. 构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x );(2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′;(5)f ′(x )-f (x )→()[]'x f x e′.(6)()()f x f x '<→()()x f x g x e = (7)()()xf x f x '<→()()f x g x x=(8)()()0xf x f x '+<→()()g x xf x =.【精选精练】一、单选题1.(2022·全国·高三专题练习)函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】C【分析】()0f x '≥的解集即为()y f x =单调递增区间,结合图像理解判断. 【详解】()0f x '≥的解集即为()y f x =单调递增区间 结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦故选:C .2.(2023·全国·高三专题练习)已知函数()f x 的导函数()f x '的图像如图所示,则下列判断正确的是( )A .在区间()1,1-上,()f x 是增函数B .在区间()3,2--上,()f x 是减函数C .2-为()f x 的极小值点D .2为()f x 的极大值点【答案】D【分析】利用函数与导函数的关系及其极值的定义即可求解. 【详解】由导函数()f x '的图像可知,在区间()1,0-上为单调递减,在区间()0,1上为单调递增,则选项A 不正确; 在区间()3,2--上,()0f x '>,则()f x 是增函数,则选项B 不正确;由图像可知()20f '-=,且()3,2--为单调递增区间,()2,0-为单调递减区间,则2-为()f x 的极大值点,则选项C 不正确;由图像可知()20f '=,且()1,2为单调递增区间,()2,3为单调递减区间,则2为()f x 的极大值点,则选项D 正确; 故选:D.3.(2023·全国·高三专题练习)函数()3221343f x x ax a x =---在()3,+∞上是增函数,则实数a 的取值范围是( ) A .0a ≥ B .1a ≥ C .3a ≤-或1a ≥ D .31a -≤≤【答案】D【分析】结合函数单调性得到()22230f x x ax a -'=-≥在()3,+∞上恒成立,分0a =,0a >和0a <三种情况,数形结合列出不等式,求出实数a 的取值范围. 【详解】∵函数()3221343f x x ax a x =---在()3,+∞上是增函数,∴()22230f x x ax a -'=-≥在()3,+∞上恒成立, ∵()()()22233f x x ax a x a x a =--=-+',∴当0a =时,()20f x x '=≥恒成立,满足题意;当0a >时,()0f x '>在()(),3,a a ∞∞--⋃+上恒成立,()0f x '<在(),3a a -上恒成立,故只需33a ≤,解得:1a ≤,故可得:(]0,1a ∈ 当0a <时,()0f x '>在()(),3,a a ∞∞-⋃-+上恒成立,()0f x '<在()3,a a -上恒成立,故只需3a -≤,解得:3a ≥-,故可得:[)3,0a ∈- 综上可得:实数a 的取值范围是[]3,1-, 故选:D .4.(2022·全国·长垣市第一中学高三开学考试(理))已知函数()12ln f x x x x=+-,则不等式()()211f x f x -<-的解集为( ) A .20,3⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭【答案】B【分析】利用导数说明函数的单调性,再根据函数的单调性及定义域将函数不等式转化为自变量的不等式,解得即可.【详解】解:由题意可知,函数()12ln f x x x x=+-的定义域为()0,∞+. 因为()22211110f x x x x ⎛⎫'=--=--≤ ⎪⎝⎭恒成立,所以()f x 在()0,∞+上单调递减.则由()()211f x f x -<-可得21010211x x x x->⎧⎪->⎨⎪->-⎩,解得213x <<,即原不等式的解集为2,13⎛⎫⎪⎝⎭.故选:B.a A .ln ln ab a b -<-e e B .ln ln b a a b < C .e a b ba-> D .sin sin 1a ba b-<-【答案】D【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误. 【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|e 20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除; B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=, 所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减; 故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除; C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增, 所以e e a b a b >,即e a b ba-<,排除; D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增, 所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D6.(2022·四川成都·高三期末(理))若函数()在区间()上单调递增,则实数k 的取值范围是( ) A .[)1,+∞ B .[)2,+∞ C .(]0,1 D .(]0,2【答案】B【分析】根据已知条件等价为()20f x k x =-≥'在()1,+∞上恒成立,即2k x≥在()1,+∞上恒成立,求解()()21g x x x=>的取值情况即可得出结果. 【详解】()2ln f x kx x =-由题意,已知条件等价为()20f x k x=-≥'在()1,+∞上恒成立, 即2k x≥在()1,+∞上恒成立, 令()()21g x x x=>, ()g x 在()1,+∞上单调递减,()2g x ∴<,2k ∴≥,k ∴的取值范围是[)2,+∞.故选:B.7.(2023·全国·高三专题练习)已知函数()3ln 3f x x x ax =--在()2,+∞上单调递增,则实数a 的取值范围为( )A .72a >-B .72a ≥-C .72a <D .72a ≤【答案】D【分析】由已知可得()210f x x a x '=--≥在()2,+∞恒成立,从而进行参变分离求最值即可.【详解】解:()210f x x a x'=--≥,因为函数()31ln 3f x x x ax =--在()2,+∞上单调递增,所以()210f x x a x '=--≥在()2,+∞恒成立,即21a x x≤-在()2,+∞恒成立,令()()212g x x x x =->,则()2120g x x x '=+>在()2,+∞恒成立, 故()g x 在()2,+∞单调递增,所以()()722g x g >=, 故a 的取值范围是72⎛⎤-∞ ⎥⎝⎦,,故选:D .8.(2023·全国·高三专题练习)已知R α∈,则函数()ex x f x =的图象不可能是( )A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x xf x =且0x ≥,则12()e x x f x x-'=,所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能; 当1α=-时,1()e x f x x =且0x ≠,则21()e xxf x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >, 所以D 图象可能; 综上,排除A 、B 、D. 故选:C3232b b =,03c <<且33c c =,则( )A .a b c <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x -'=,令()0f x '=,解得e x =,当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A.10.(2022·江苏·扬中市第二高级中学高三开学考试)已知()f x '是函数()f x 的导数,且()()f x f x -=,当0x ≥时,()3f x x '>,则不等式3()(1)32f x f x x --<-的解集是( ) A .1(,0)2-B .1(,)2-∞-C .1(,)2+∞D .1(,)2-∞【答案】D【分析】构造函数23()()2g x f x x =-,根据导数判断单调性,再利用奇偶性求出解集.【详解】设23()()2g x f x x =-,则()()3g x f x x '='-,因为当0x ≥时,()3f x x '>,所以当0x ≥时,()0g x '>, 即()g x 在[0,)+∞上单调递增,因为()()f x f x -=,所以()f x 为偶函数,则()g x 也是偶函数,所以()g x 在(,0]-∞上单调递减. 因为3()(1)32f x f x x --<-,所以2233()(1)(1)22f x x f x x -<---, 即()(1)g x g x <-, 则1x x <-,解得12x <, 故选:D.b a b =下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 【答案】B【分析】利用指对数互化及对数的运算性质可得1b a =,进而可得1121a b b<=<<+,然后构造函数,利用函数的单调性即得. 【详解】由log b a a b =,可得1log log log b a b a b a==,所以log 1b a =,或log 1b a =-, ∴b a =(舍去),或1b a=,即1ab =,故A 错误; 又02b a b <<<,故120a a a<<<, ∴12a <<,对于函数()112y x x x=+<<, 则2221110x y x x-'=-=>,函数()112y x x x =+<<单调递增,∴1322,2a b a a ⎛⎫+=+∈ ⎪ ⎪⎝⎭,故D 错误; ∵02b a b <<<,112a b<=<, ∴1212a b b <<<+<, 令()()ln 12x g x x x=<<,则()21ln 0xg x x -'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确; ∵011b a b <<<<+,∴函数,x x y a y b ==-单调递增,故函数x x y a b =-单调递增, ∴11a a b b a b a b ++-<-,即11a b a b a a b b ++-<-,故C 错误. 故选:B. 12.(2023·全国·高三专题练习)已知0a <,函数322()2f x x ax a x =+-+的单调递减区间是________ . 【答案】,3a a ⎛⎫- ⎪⎝⎭【分析】求出函数导数,由()0f x '<即可求出单调递减区间. 【详解】22()32(3)()f x x ax a x a x a '=+-=-+,令()0f x '<,解得3ax a <<- , 所以()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭.故答案为:,3a a ⎛⎫- ⎪⎝⎭.13.(2021·河南宋基信阳实验中学高三开学考试(文))若函数4y x x=+在()0,a 上为单调减函数,则实数a 的取值范围是_________. 【答案】(]0,2【分析】由题可得函数4y x x=+在区间(0,2]上是减函数,结合条件即得. 【详解】对于函数4y x x=+,0x >, ∴()()222222441x x x y x x x+--'=-==,0x >, 由0y '<,可得02x <<, 因为函数4y x x=+在()0,a 上为单调减函数, 所以02a <≤,即实数a 的取值范围是(]0,2. 故答案为:(]0,2.14.(2022·江苏·扬中市第二高级中学高三开学考试)函数()2x x f x =的单调递增区间为__________. 【答案】2(0,)ln 2【分析】先求得导函数,并令'0f x ,再判断导函数的符号,由此可得函数的单调递增区间.【详解】函数2()2x xf x =,则()()()2'22ln 2ln 222222x x xxx fx x x x -⋅-⋅⋅⋅==,令()0f x '=解得20,ln 2x x ==, 当(),0x ∈-∞时,()0f x '<,函数()f x 单调递减,当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增,当2,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 故答案为:2(0,)ln 2. 15.(2023·全国·高三专题练习)()3211232f x x x ax =-++,若()f x 在,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______【答案】1,9⎛⎫-+∞ ⎪⎝⎭【分析】分析可知,2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()212a x x >-,求出函数()212y x x =-在2,3⎛⎫+∞ ⎪⎝⎭上的值域,可得出实数a 的取值范围.【详解】因为()3211232f x x x ax =-++,则()22f x x x a '=-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()0f x '>,即()212a x x >-,当()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-.故答案为:1,9⎛⎫-+∞ ⎪⎝⎭.16.(2022·重庆巴蜀中学高三阶段练习)已知奇函数()的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时, ()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e 2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞. 故答案为: ()(2,02,)-⋃+∞. 三、解答题17.(2022·四川成都·高三期末(理))设函数()()321113f x x x a x =-++--,其中a ∈R .若函数()f x 的图象在0x =处的切线与x 轴平行. (1)求a 的值;(2)求函数()f x 的单调区间. 【答案】(1)1a =(2)单调递增区间为()0,2;单调递减区间为(),0∞-,()2,+∞【分析】(1)根据导数的几何意义求解即可;(2)由(1)得()32113f x x x =-+-,再求导分析函数的单调区间即可(1)()221f x x x a '=-++-.∵函数()f x 的图象在0x =处的切线与x 轴平行,∴()010f a =-=',解得1a =.此时()010f =-≠,满足题意.∴1a =. (2)由(1)得()32113f x x x =-+-,故()()222f x x x x x '=-+=--.令()0f x '=,解得0x =或2x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),0∞-0 ()0,22 ()2,+∞()f x ' - 0 +0 -()f x单调递减1- 单调递增13单调递减∴函数()的单调递增区间为();单调递减区间为(),().18.(2023·全国·高三专题练习)已知函数()22ln x f x x a =-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程. (2)讨论函数()f x 的单调性; 【答案】(1)2ln 2y x =- (2)答案见解析【分析】(1)求得函数的导数,根据导数的几何意义即可求得切线方程;(2)求出函数的导数,分类讨论a 的取值,判断导数的正负,从而确定函数的单调性. (1)当2a =时,()22ln 2x f x x =-,所以()22n2l 2f =-,()2f x x x'=-,所以()22212f '=-=,所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-. (2)()f x 的定义域为(0)+∞,, 22()x f x a x'=-,当0a <时, ()0f x '<恒成立,所以()f x 在(0)+∞,上单调递减; 当0a > 时, ()()222()x f x x a x a a x ax'=-=+-,在()0,a 上,()0f x '<,所以()f x 单调递减;在(),a +∞上,()0f x '>,所以()f x 单调递增.。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)
即2ax 3x 2
a 3 x, x (0,2)
2
a
(
3 2
x)max
,
x
(0,2),
a3
分离参数法: 分离参数 构造函数g(x) 求g(x)的最值 求得参数范围
例2:已知函数f (x) x3 3ax2 2a2 x 1在[0,2]上是单调递增函数, 求参数a的取值范围.
解: f '( x) 3x2 6ax 2a2 , x [0,2]
例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解:
f '(x) 3x2 2ax 3, x [2,4]
则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0, 恒成立x [2,4]
方法:(分离参数) 2ax 3x2 3恒成立
B
4.已知函数 f(x)=1a-xx+ln x,若函数 f(x)在[1,+∞)上为增函数, 则正实数 a 的取值范围为___________.
∵f(x)=1- axx+ln x,∴f′(x)=axa-x2 1 (a>0),
∵函数 f(x)在[1,+∞)上为增函数, ∴f′(x)=axa-x21≥0 对 x∈[1,+∞)恒成立, ∴ax-1≥0 对 x∈[1,+∞)恒成立,即 a≥1x对 x∈[1,+∞) 恒成立,∴a≥1.
a 1
o
x

a 3
f
0 '(a)
3
0
a 6 2
分类讨论法:
在利用函数的单调性求参数的取值范围时, 当导函数可化为二次函数形式时,应注意
从对称轴,区间端点函数值方面考虑
例3:设函数f (x) 1 ax2 (2a 1)x 2 ln x.试讨论f (x)的单调区间 2

函数的单调区间求解参数取值范围

函数的单调区间求解参数取值范围

函数的单调区间求解参数取值范围首先,我们需要明确函数的定义域以及对应的表达式。

假设函数为f(x),则定义域为D={x∈R},表达式为f(x)=...要求函数的单调区间,即需要找到函数在哪些区间上是单调递增或单调递减的。

我们可以通过求解函数的导数来得到单调区间。

导数反映了函数的变化率,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的。

首先,我们需要求解函数的导数。

假设函数的导数为f'(x)。

根据函数的定义,我们可以通过求导的方式得到导数表达式。

接下来,我们需要找到函数的驻点(导数为0的点)以及可能的不连续点。

这些点可能是函数的极值点或断点,需要考虑在求解单调区间时。

然后,我们可以根据求解出的导数表达式,找到导数为正(大于0)或导数为负(小于0)的区间。

这些区间即为函数的单调递增区间或单调递减区间。

最后,我们可以根据单调性的定义来求解参数的取值范围。

例如,如果需要函数在整个定义域上是单调递增的,则需要将函数的导数始终大于0,即找出使得导数大于0的参数取值范围。

举例说明:假设我们要求解函数f(x)=ax^2+bx+c的单调区间,其中a、b、c为实数且a不等于0。

首先,我们求解函数的导数f'(x)=2ax+b。

然后,我们要找出使得导数大于0的参数范围。

当a>0时,导数f'(x)为一元二次函数开口向上的抛物线,该抛物线在开口向上的区间上是递增的。

因此,参数a大于0时,函数f(x)在整个定义域上是单调递增的。

当a<0时,导数f'(x)为一元二次函数开口向下的抛物线,该抛物线在开口向下的区间上是递减的。

因此,参数a小于0时,函数f(x)在整个定义域上是单调递减的。

综上所述,参数a的取值范围为a>0或a<0。

这是使得函数f(x)=ax^2+bx+c单调递增或单调递减的参数取值范围。

在实际问题中,求解函数的单调区间是一个重要的数学问题,可应用于经济学、物理学、工程学等领域。

高一数学 已知函数单调性求参数(简单)

高一数学 已知函数单调性求参数(简单)

一、选择题1.函数y=ax3-x在(-∞,+∞)上是减函数,则()A.a=B.a=1C.a=2D.a≤02.若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A. (-∞,-2]B. (-∞,-1]C. [2,+∞)D. [1,+∞)3.若函数f(x)=a ln x+在区间(1,+∞)上单调递增,则实数a的取值范围是()A. (-∞,-2]B. (-∞,-1]C. [1,+∞)D. [2,+∞)4.已知f(x)=a ln x+x2,若对任意两个不等的正实数x 1,x2都有>0成立,则实数a的取值范围是()A. [0,+∞)B. (0,+∞)C. (0,1)D. (0,1]5.已知函数f(x)=-x3+2ax在(0,1]上是单调递增函数,则实数a的取值范围是()A. (-∞,)B. [,+∞)C. (,+∞)D. (-,)6.函数f(x)=e x-ax-1在R上单调递增,则实数a的取值范围为()A.RB. [0,+∞)C. (-∞,0]D. [-1,1]7.已知a,b是正实数,函数f(x)=-x3+ax2+bx在x∈[-1,2]上单调递增,则a+b的取值范围为()A. (0,]B. [,+∞)C. (0,1)D. (1,+∞)8.已知函数f(x)=x3+ax在[1,+∞)上是增函数,则a的最小值是()A.-3B.-2C. 2D. 39.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是减函数,则实数a的取值范围是()A. (-∞,-)∪[,+∞)B. [-,]C. (-∞,-)∪(,+∞)D. (-,)10.已知函数f(x)=x-a ln x在区间(0,2]上单调递减,则实数a的取值范围是() A. (0,)B. (0,2)C. (,+∞)D. [2,+∞)11.已知f(x)=x3+bx2+(b+2)x+3在R上是单调增函数,则b的取值范围是() A.b≤-1或b≥2B.b<-1或b>2C.-1≤b≤2D.-1<b<212.已知函数f(x)=在[1,+∞)上为减函数,则a的取值范围是()A. 0<a<B.a≥eC.a≥D.a≥413.若函数f(x)=-x2+a ln x在区间(1,+∞)上是减函数,则实数a的取值范围为() A. [1,+∞)B. (1,+∞)C. (-∞,1]D. (-∞,1)14.若函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是()A. (3,+∞)B. [-3,+∞)C. (-3,+∞)D. (-∞,-3)二、填空题15.已知函数f(x)=ax3+3x2-x+1在(-∞,+∞)上是减函数,则实数a的取值范围是________.16.函数f(x)=x3-mx2+m-2的单调递减区间为(0,3),则m=________.17.若函数y=a(x3-x)的单调减区间为(-,),则a的取值范围是________.18.若函数y=-x3+ax有三个单调区间,则a的取值范围是________.19.若函数f(x)=x3+bx2+cx+d的单调减区间为[-1,2],则b=________,c=________.20.已知函数f(x)=在(-2,+∞)内单调递减,则实数a的取值范围为________.21.已知函数f(x)=x3-x2+mx+2,若对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,则实数m的取值范围是________.22.已知a>0,函数f(x)=ln x+在[1,+∞)上是增函数,则实数a的取值范围是________.23.若函数y=ax+sin x在R上单调递增,则a的最小值为________.24.若函数f(x)=在(0,+∞)上单调递增,则实数a的取值范围是________.25.函数y=x3-ax+4在(1,+∞)上为增函数,则a的取值范围是________.三、解答题26.已知函数f(x)=2ax-,x∈(0,1].若f(x)在x∈(0,1]上是增函数,求a的取值范围.27.已知函数f(x)=x3-ax-1.(1)是否存在a,使f(x)的单调减区间是(-1,1);(2)若f(x)在R上是增函数,求a的取值范围.28.已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0).若f(x)的单调递减区间为(0,4),单调递增区间为(-∞,0)与(4,+∞),求k的值.答案解析1.【答案】D【解析】y′=3ax2-1,∵函数y=ax3-x在(-∞,+∞)上是减函数,则3ax2-1≤0在R上恒成立,∴a=0或∴a≤0.2.【答案】D【解析】由条件知f′(x)=k-≥0在(1,+∞)上恒成立,∴k≥1.3.【答案】C【解析】f′(x)=-=.∵f(x)在(1,+∞)上单调递增,∴f′(x)≥0在(1,+∞)上恒成立,∴ax-1≥0在(1,+∞)上恒成立,显然,需a>0,∴函数y=ax-1在(1,+∞)上是增函数,∴a-1≥0,a≥1,∴实数a的取值范围是[1,+∞).4.【答案】A【解析】对任意两个不等的正实数x 1,x2,都有>0恒成立,即f(x)为增函数.则当x>0时,f′(x)>0恒成立,f′(x)=+x>0在(0,+∞)上恒成立,则a>(-x2)max,而-x2<0,则a≥0.5.【答案】B【解析】由f(x)=-x3+2ax,所以f′(x)=-3x2+2a,因为f(x)=-x3+2ax在(0,1]上是单调递增函数,所以f′(x)=-3x2+2a≥0在(0,1]上恒成立,即2a≥3x2在(0,1]上恒成立.因为函数y=3x2≤3在(0,1]上恒成立,所以a≥.6.【答案】C【解析】∵f(x)=e x-ax-1在R上单调递增,∴f′(x)≥0恒成立,即f′(x)=e x-a≥0恒成立,即a≤e x,∵e x>0,∴a≤0.7.【答案】B【解析】∵a,b是正实数,函数f(x)=-x3+ax2+bx在x∈[-1,2]上单调递增,∴f′(x)=-x2+2ax+b,且f′(x)=-x2+2ax+b≥0在区间[-1,2]上恒成立.由于二次函数f′(x)=-x2+2ax+b的图象是抛物线,开口向下,对称轴为x=a,故有f′(-1)≥0,且f′(2)≥0,即化简可得 2a+2b≥5,a+b≥,故a+b的取值范围为[,+∞).8.【答案】A【解析】f′(x)=3x2+a,∵函数f(x)=x3+ax在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立,∵f′(x)=3x2+a在[1,+∞)上是增函数,∴3x2+a≥3×12+a=3+a,∴3+a≥0,∴a≥-3.9.【答案】B【解析】f′(x)=-3x2+2ax-1≤0在(-∞,+∞)上恒成立,由Δ=4a2-12≤0得-≤a≤.10.【答案】D【解析】若函数f(x)=x-a ln x在区间(0,2]上单调递减,则等价为f′(x)≤0在(0,2]上恒成立,即1-≤0,即≥1,即a≥x,∵0<x≤2,∴a≥2.11.【答案】C【解析】∵f(x)=x3+bx2+(b+2)x+3,∴f′(x)=x2+2bx+b+2,∵f(x)是R上的单调增函数,∴x2+2bx+b+2≥0恒成立,∴Δ≤0,即b2-b-2≤0,则b的取值是-1≤b≤2.12.【答案】B【解析】f′(x)=,∵函数f(x)=在[1,+∞)上为减函数,∴f′(x)=≤0在[1,+∞)上恒成立,即1-ln a≤ln x在[1,+∞)上恒成立,∴1-ln a≤0,∴a≥e.13.【答案】C【解析】∵f′(x)=-x+,∵f(x)在区间(1,+∞)上是减函数,∴f′(x)=-x+≤0在区间(1,+∞)上恒成立,∴a≤x2在区间(1,+∞)上恒成立,∵x2>1,∴a≤1.14.【答案】B【解析】因为f(x)=x3+ax-2,所以f′(x)=3x2+a,因为函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,所以f′(x)=3x2+a≥0在区间(1,+∞)内恒成立且不恒为零,即a≥-3x2在区间(1,+∞)内恒成立且不恒为零,又x∈(1,+∞)时,(-3x2)max=-3,所以实数a的取值范围是[-3,+∞).15.【答案】(-∞,-3]【解析】由题意得3ax2+6x-1≤0在(-∞,+∞)上恒成立.当a=0时,6x-1≤0,x≤不满足题意,∴a≠0;当a≠0时,由题意得∴a≤-3.综上可知,实数a的取值范围是(-∞,-3].16.【答案】【解析】令f′(x)=3x2-2mx=0,解得x=0或x=m,所以m=3,m=.17.【答案】(0,+∞)【解析】由f′(x)=a(3x2-1)=3a(x-)(x+)<0的解集为(-,),知a>0.18.【答案】(0,+∞)【解析】y′=-4x2+a且y有三个单调区间,∴方程y′=-4x2+a=0有两个不等的实根,∴Δ=02-4×(-4)×a>0,∴a>0.19.【答案】--6【解析】∵y′=3x2+2bx+c,由题意知[-1,2]是不等式3x2+2bx+c<0的解集,∴-1,2是方程3x2+2bx+c=0的根,由根与系数的关系得b=-,c=-6.20.【答案】(-∞,)【解析】f′(x)=,由题意得f′(x)≤0在(-2,+∞)内恒成立,∴解不等式得a≤,但当a=时,f′(x)=0恒成立,不合题意,应舍去,∴a的取值范围是(-∞,).21.【答案】[,+∞)【解析】对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,即函数f(x)在R上为增函数,即有f′(x)≥0在R上恒成立.由f(x)=x3-x2+mx+2的导数为f′(x)=3x2-2x+m,由3x2-2x+m≥0恒成立,可得判别式Δ=4-12m≤0,解得m≥,则所求m的取值范围是[,+∞).22.【答案】[1,+∞)【解析】f′(x)=-=,若函数f(x)=ln x+在[1,+∞)上是增函数(a>0),则ax-1≥0在[1,+∞)恒成立,即a≥()max=1. 23.【答案】1【解析】y′=a+cos x,∵y=ax+sin x在R上单调递增,∴a+cos x≥0,在R上恒成立.∴a≥-cos x,-cos x的最大值为1,∴a≥1,即a的最小值为1.24.【答案】(0,+∞)【解析】f′(x)=(ax-)′=a+,由题意得,a+≥0在x∈(0,+∞)上恒成立,所以a≥-在x∈(0,+∞)上恒成立,故a≥0.25.【答案】(-∞,3)【解析】y′=3x2-a,∵y=x3-ax+4在(1,+∞)上为增函数,∴y′=3x2-a≥0在(1,+∞)上恒成立,∴a≤3x2在(1,+∞)上恒成立,∵3x2>3在(1,+∞)上恒成立,∴a≤3.26.【答案】解由已知得f′(x)=2a+,∵f(x)在(0,1]上单调递增,∴f′(x)≥0,即a≥-在x∈(0,1]上恒成立.而g(x)=-在(0,1]上单调递增,∴g(x)max=g(1)=-1,∴a≥-1,∴f(x)在(0,1]上为增函数,a的取值范围是[-1,+∞).【解析】27.【答案】解f′(x)=3x2-a.(1)∵f(x)的单调减区间是(-1,1),∴-1<x<1是f′(x)<0的解,∴x=±1是方程3x2-a=0的两根,∴a=3.(2)∵f(x)在R上是增函数,∴f′(x)=3x2-a≥0对x∈R恒成立,即a≤3x2对x∈R恒成立.∵y=3x2在R上的最小值为0.∴a≤0.【解析】28.【答案】解f′(x)=3kx2-6(k+1)x,由题意知x=0或x=4为方程f′(x)=0的两根,∴0+4=4=,∴k=1.【解析】。

三角函数专题三角函数中ω的取值范围问题(6大题型)(原卷版)

三角函数专题三角函数中ω的取值范围问题(6大题型)(原卷版)

三角函数专题:三角函数中ω的取值范围问题一、求ω取值范围的常用解题思路 1、依托于三角函数的周期性因为f(x)=Asin(ωx +φ)的最小正周期是T =2π|ω|,所以ω=2πT,也就是说只要确定了周期T ,就可以确定ω的取值. 2、利用三角函数的对称性(1)三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T2,相邻的对称轴和对称中心之间的“水平间隔”为T4,也就是说,我们可以根据三角函数的对称性来研究其周期性,进而可以研究ω的取值。

(2)三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x 轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.3、结合三角函数的单调性函数f (x )=Asin(ωx +φ)的每一“完整”单调区间的长度(即两相邻对称轴的间距)恰好等于T 2,据此可用来求ω的值或范围。

反之,从函数变换的角度来看ω的大小变化决定了函数图象的横向伸缩,要使函数f (x )=Asin(ωx +φ)在指定区间上具有单调性,我们忘完可以通过调整周期长度来实现,犹如通过弹簧的伸缩来抬举三角函数在区间上的单调性和最值等。

二、已知函数y =Asin(ωx +φ)在给定区间上的单调性,求ω的取值范围已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围 第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2−x 1≤12T =πω,求得0<ω≤πx2−x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[−π2+2kπ,π2+2kπ],解得ω的范围; 第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围. 三、结合图象平移求ω的取值范围 1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数()f x =平移后的函数()g x .2、平移后与新图象重合:平移后的函数()f x =新的函数()g x .3、平移后的函数与原图象关于y 轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于x 轴对称:平移前的函数()f x =平移后的函数()g x ;5、平移后过定点:将定点坐标代入平移后的函数中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知函数单调递增递减区间求参数的取值范

在数学中,函数是指一种映射关系,即根据给定的自变量,得到相应的因变量。

而单调性则是指函数随着自变量的增加或减少,函数值是单调递增还是单调递减的特性。

在求函数参数的取值范围时,我们需要分别考虑函数的单调递增和单调递减区间,并利用这些信息来确定参数的取值范围。

步骤一:确定函数的单调性
首先,我们需要确定已知函数的单调性。

对于单调递增函数,我们可以通过求导数的方式来确定函数在哪些区间内单调递增。

对于单调递减函数,则需要求导数,并将导函数的取值范围确定在负数区间内。

步骤二:确定参数的取值范围
对于已知单调递增函数,我们需要确定函数在单调递增的区间内的值,以及函数在单调递减的区间内的值。

然后,我们可以根据约束条件来确定参数的取值范围。

例如,如果我们需要求函数在一个区间内的最大值或最小值,那么我们需要将约束条件加入方程中,并用求导数的方式来确定该值在何处达到最大或最小值。

对于已知单调递减函数,我们需要确定函数在单调递减的区间内的值,以及在单调递增的区间内的值。

然后,我们同样可以根据约束条件来确定参数的取值范围。

例如,如果我们需要求使函数在一个区间内的最大值或最小值最小的参数,那么我们需要将约束条件加入方程中,并用求导数的方式来确定该值在何处达到最大或最小值。

步骤三:检验所得的结果是否正确
在确定参数的取值范围后,我们需要检验所得的结果是否符合实际情况。

例如,我们可以将所得的参数代入原函数,检验该函数是否在所有定义域内都满足所要求的单调性特征。

如果不满足,我们需要
重新修改参数的取值范围,直到满足所要求的单调性特征为止。

综上所述,围绕已知函数单调递增递减区间求参数的取值范围,我们需要先确定函数的单调性,然后根据约束条件确定参数的取值范围,并最终检验结果是否正确。

这种方法不仅可以帮助我们计算出函数中的重要参数,还可以用来解决各种最优化问题,从而提高工程和科学计算的效率和精度。

相关文档
最新文档