高中数学向量汇总归纳

高中数学向量汇总归纳
高中数学向量汇总归纳

平面向量的数量积及平面向量的应用

1.定义及运算律.

两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”.

设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c .

2.平面向量数量积的重要性质.

①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=|

|||)

(b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号.

②设a =(x 1,y 1),b =(x 2,y 2),则:|a |=

21

21y x +;cos θ=

22

22

21

21

2121)

(y x y x y y x x +

?

+

+;|x 1x 2+y 1y 2|≤

2

2

222121y x y x +?+

3.两向量垂直的充要条件

若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0.

4.向量的模及三角不等式

|a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |.

5.三角不等式的推广形式

|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

小练习一

【例1】 计算下列各题:

(1)已知等边三角形ABC 边长为1,且=a ,=b ,=c ,求a ·b +b ·c +c ·a ;

(2)已知a 、b 、c 是空间中两两垂直的向量,且|a |=1,|b |=2,|c |=3,求r =a +b +c 的长度以及它和a ,b ,c 的夹角;

(3)已知(a +3b )与(7a -5b )垂直,且(a -4b )与(7a -2b )垂直,求a 、b 的夹角;

(4)已知|a |=2,|b |=5,a ,b 的夹角是3

2π,p =3a -b ,q =λa +17b ,问系数λ取向值时,p ⊥q .

【解前点津】 (1)利用x 2=x ·x ,通过对(a +b +c )2的计算得出结论;(2)运用公式及运算律;(3)利用两向量垂直的充要条件;(4)利用两向量垂直的充要条件,运算律以及内积定义.构造关于λ的方程,解之即得.

【规范解答】 (1)∵(a +b +c )2=a 2+b 2+c 2-2(a ·b +b ·c +c ·a )=3-2(a ·b +b ·c +c ·a )=0

?a ·b +b ·c +c ·a =

2

3. (2)cos ?r ,a ?=

|

|||a r a

r ??,∵|r |=2r 且

r 2=(a +b +c )2=a 2+b 2+c 2-2(a ·b +b ·c +c ·a )=14-2(a ·b +b ·c +c ·a )=14. ∴|r |=14? cos ?r ,a ?=

1414

||14|||

|14)(2=

=

??++a a a a c b a ; cos ?r ,b ?=

7

14

|

|14|||

|14)(2=

=??++b b b b c b a ; cos ?r ,c ?=

14

3

|

|14|||

|14)(2=

=

??++c c c c c b a . (3)由条件:(a +3b )·(7a -5b )=7|a |2-15|b |2+16a ·b =0,(a -4b )·(7a -2b )=7|a |2+8|b |2-30a ·b =0? |a |2=|b |2=2a ·b ?(|a |·|b |)2=4(a ·b )2?2

1

||||±=??b a b a .

由cos ?a ,b ?=21得: ?a ,b ?=3π; 由cos ?a ,b ?=-21得: ?a ,b ?=π3

2. (4)令p ·q =0得:(3a -b )·(λa +17b )=0?3λ|a |2-17|b |2+(51-λ)a ·b =0 ①

将|a |=2,|b |=5,a ·b =|a |·|b |·cos π32代入①得3λ·4-17×25+(51-λ)·(-5)=0解之:λ=40.

【解后归纳】 综合利用内积的定义及运算律,内积运算形式与实数运算形式的相互转化,是计算的一项基本功.

【例2】 在△ABC 中,AB =(2,3),AC =(1,k ),且△ABC 的一个内角为直角,求k 的值. 【解前点津】 因谁是直角,尚未确定,故必须分类讨论. 【规范解答】 ①当∠A =90°时,因为·=0, ∴2×1+3·k =0,∴k =-3

2.

②当∠B =90°时,BC =AC -AB =(1-2,k -3)=(-1,k -3) ∵AB ·BC =0,∴2×(-1)+3×(k -3)=0?k =3

11.

③当∠C =90°时,∵AC ·BC =0,∴-1+k ·(k -3)=0,k 2-3k -1=0?k =2

3

3±. ∴k 的取值为:-32,311或2

3

3±.

【例4】 已知平行四边形以a =(2,1),b =(1,-3)为两邻边. (1)求它的边长和内角;

(2)求它的两对角线的长和夹角.

【解前点津】 利用内积的有关运算性质.

【规范解答】 (1)|a |=51222=+,|b |=10)3(122=-+ ? cos α=

10210

5)3112(||||-=??-?=?b a b a , ∴α=π-arccos 10

2.

(2)|a +b |=13)1(21052)(222=-++=++=+ab b a b a

,

|a -b |=17)1(2105222=-?-+=-+ab b a . cos β=221221

517

1310517

13)(2

1

)(2

1

)(21

)(21

2

2-

=--=

?-=-?+-?+b a b a b a b a b a . 【解后归纳】 本题综合运用了向量的有关运算性质,也可利用余弦定理求解.

小练习二

一、基础夯实

1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是 ( ) A.60° B.30° C.135° D.45°

2.已知|a |=2,|b |=1,a 与b 之间的夹角为3π,则向量m =a -4b 的模为 ( )

A.2

B.23

C.6

D.12

3.a ,b 是两个非零向量,(a +b )2=a 2+b 2是a ⊥b 的 ( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分又不必要条件 4.若a =(-4,3),b =(5,6),则3|a |2-4a ·b 等于 ( ) A.23 B.57 C.63 D.83

5.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是 ( ) A.λ>310 B.λ≥310 C.λ<310 D.λ≤310

6.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于 ( ) A.??? ??54,53或??? ??53,54 B ??? ??53,54或??? ??--54,53 C ??? ??-54,53或??? ??-53,54 D ??? ??-54,53或??

? ??-54,53 7.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 ( ) A.55 B.5

5- C.565 D.1313

8.已知A (3,2),B (-1,-1),若点P (x ,-2

1

)在线段AB 中垂线上,则x 为 ( ) A.-

47 B.4

7

C.2

D.-2 9.已知a =(3,0),b =(k,5),且a 与b 的夹角为

4

,则k 的值为 ( ) A.-4 B.4 C.5 D.-5

10.已知a =(3,-1),b =(1,2),求满足条件:x ·a =9与x ·b =-4的向量x 为 ( ) A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 二、思维激活

11.已知向量a 、b 的夹角为3

π,|a |=2,|b |=1,则|a +b |·|a -b |= .

12.已知a ⊥b 、c 与a ,b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2= . 13.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c = .

14.已知点A (1,0),B (3,1),C (2,0),且a =BC ,b =CA ,则a 与b 的夹角为 . 三、能力提高

15.设A 、B 、C 、D 是平面内任意四点,求AB ·CD +BC ·AD +CA ·BD 值.

16.设=(3,1),=(-1,2),⊥,∥,O 是原点,求满足+=时的坐标. 17.已知两单位向量a 与b 的夹角为120°,若c =2a -b ,d =3b -a ,试求:c 与d 的夹角. 18.已知a =(3,-1),b =???

? ??23,21,且存在实数k 和t ,使得x =a +(t 2-3)·b , y =-k a +t ·b ,且x ⊥y ,试求t t k 2+的最小值.

平面向量的数量积及平面向量的应用解答

1.D ∵a ·(a -b )=a 2-a ·b =0,∴a ·b =1=1·2cos θ,∴cos θ=21.

2.B |m |=2m =323

cos 1620cos 128162816222=π

θ-=θ??-+=?-+b a b a . 3.C 展开得:a 2+b 2+2a ·b =a 2+b 2?a ·b =0. 4.D 原式=3(42+32)-4·(-20+18)=83.

5.A ∵a ·b =10-3λ,|a |=24λ+,|b |=34,∴由cos α=

2

434310λ+?λ-<0得λ>3

10.

6.D 设b =(x ,y ),则x 2+y 2=1且4x +3y =0解方程组得???????-==5453y x 或???

????=-=5453y x . 7.C ∵a ·b =2×(-4)+3×7=13,|a |=13,|b|=65,∴13=6513?·cos θ,∴|a |·cos θ=

5

65

65

13

=. 8.C 由条件知AB 中点为M ??

?

??21,1,令·=0得:(x -1,-1)·(-4,-3)=-4(x -1)+(-1)·(-3)=0,x =2.

9.D 作内积:a ·b =3k =3·252+k cos 4

?k <0且252+k =-2k ?k =-5. 10.B 设x =(m ,n ),则由条件得?

??-==???

?-=+=-32

4293n m n m n m ,故x =(2,-3).

11.由已知条件得:a ·b =1,故原式=21)214()214()()(22=-+?++=-?+b a b a . 12.由条件得:c ·a =3×1×cos60°=

2

3

,c ·b =3×2·cos60°=3. ?原式=a 2+4b 2+c 2

+2a ·c +4a ·b -4b ·c =1+16+9+3-12=17.

13.∵c =(1-k ,1-2k ),∴由c ·a =0得1·(1-k )+2(1-2k )=0得k =

53?c =??

? ??-51,52. 14.由条件a =(-1,-1),b =(-1,0)?|a |=2,|b |=1,由a ·b =2cos θ得:(-1·(-1)+(-1)·0=2cos θ ?cos θ=

2

2

?θ=45°.

15.∵=-,=-,=-,

∴原式=(-)·+(-)·+(-)·

=AD ·CD -BD ·CD +AD ·BD -AD ·CD +BD ·CD -AD ·BD =0.

16.设OC =(x ,y ),由OC ⊥OB 得:-x +2y =0,又BC =OC -OB =(x +1,y -2),而BC ∥OA ?3(y -2)-(x +1)=0解关于x ,y 的方程组得x =14,y =7.

∴OC =(14,7)?OD =OC -OA =(11,6).

17.∵a 、b 是两单位向量,∴|a |=|b |=1,且a ,b 夹角为120°. ∴a ·b =|a |·|b |·cos120°=-2

1, ∵|c |2=c ·c =(2a -b )·(2a -b )=4a ·a -4a ·b +b ·b =4|a |2-4a ·b +|b |2=7, ∴|c |=7.

∵|d |2=d ·d =(3b -a )·(3b -a )=9b ·b -6a ·b +a ·a =13, ∴|d |=13.

∵c ·d =(2a -b )·(3b -a )=6a ·b -3b ·b -2a ·a +a ·b =-2

17

, ∴cos θ=-182911713

7217

-=?(θ为c 、d 夹角).

∴θ=π-arccos

182

91

17. 18.∵|a |=2)1(32

=-+,|b |=123212

2

=???

? ??+??? ??,

∵a ·b =02

3

1213=?-?,故a ⊥b ,

∵x ·y =0,∴[a +(t 2

-3)·b ]·[-k a +t b ]=0化简得:k =4

33t

t -.

∴4

7

)2(41)34(414222-+=-+=+t t t t k ≥-47.

当且仅当t =-2时,t

t k 2

+有最小值-47

.

小练习三

一选择题

1.已知A 、B 、C 为三个不共线的点,P 为△ABC 所在平面内一点,若AB PC PB PA +++,则点P 与△ABC

的位置关系是 ( ) A 、点P 在△ABC 内部 B 、点P 在△ABC 外部 C 、点P 在直线AB 上 D 、点P 在AC 边上

2.已知三点A (1,2),B (4,1),C (0,-1)则△ABC 的形状为 ( ) A 、正三角形 B 、钝角三角形 C 、等腰直角三角形 D 、等腰锐角三角形

3.当两人提起重量为|G|的旅行包时,夹角为θ,两人用力都为|F|,若|F|=|G|,则θ的值为( ) A 、300 B 、600 C 、900 D 、1200 二、填空题

5.一艘船以5km/h 的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h 。

6.两个粒子a ,b 从同一粒子源发射出来,在某一时刻,以粒子源为原点,它们的位移分别为S a =(3,-4),S b =(4,3),(1)此时粒子b 相对于粒子a 的位移 ; (2)求S 在S a 方向上的投影 。 三、解答题

7.如图,点P 是线段AB 上的一点,且A P ︰PB=m ︰n ,点O 是直线AB 外一点,设OA =a ,OB =b ,试用

,,,m n a b 的运算式表示向量OP .

高三数学平面向量综合练习题

一、选择题

1、设平面向量=(-2,1),=(λ,-1),若与的夹角为钝角,则λ的取值范围是

A 、),2()2,21

(+∞?-

B 、(2,+∞)

C 、(21-,+∞)

D 、(-∞,2

1-)

2、设=(x 1,y 1),=(x 2,y 2),则下列为与共线的充要条件的有 ①存在一个实数λ,使=λ或=λ;②|·|=||·||;

2

121y y x x =;④(a +b )//(a -b ) A 、1个 B 、2个 C 、3个 D 、4个

3、若函数y=2sin(x+θ)的图象按向量(6

π

,2)平移后,它的一条对称轴是x=

4

π

,则θ的一个可能的值是

A 、

125π B 、3π C 、6

π D 、12π 4、ΔABC 中,若

?=?,则ΔABC 必约

A 、直角三角形

B 、钝角三角形

C 、锐角三角形

D 、等腰三角形

5、已知ΔABC 的三个顶点A 、B 、C 及所在平面内一点P 满足=++,则点P 与ΔABC 的关

系是

A 、P 在ΔABC 内部

B 、P 在ΔAB

C 外部

C 、P 在直线AB 上

D 、P 在ΔABC 的AC 边的一个三等分点上 6、在边长为1的正三角形ABC 中,=,AB c =,CA b =,则?+?+?=

A 、1.5

B 、-1.5

C 、0.5

D 、-0.5

二、填空题

1、已知a =(cos θ,sin θ),b =(

3,-1),则|2a -b |的最大值为____________

2、已知P(x ,y)是椭圆14

22

=+y x 上一点,F 1、F 2是椭圆的两焦点,若∠F 1PF 2为钝角,则x 的取值范围为________________

3、设=(a,b),=(c,d),规定两向量m, n 之间的一个运算“×”为×=(ac -bd ,ad+bc),若已知=(1,

2),

×

=(-4,-3),则=____________

4、将圆x 2+y 2=2按=(2,1)平移后,与直线x+y+λ=0相切,则实数λ的值为____________ 三、解答题

1、已知平面内三向量、、的模为1,它们相互之间的夹角为1200。 (1)求证:⊥-)(;(2)1||>++k ,求k 的取值范围。

2、设两个向量1e 、2e 满足|1e |=2,|2e |=1,1e 与2e 的夹角为600,若向量21

72e e +=λ与向量

21e e λ+=的夹角为钝角,求实数λ的取值范围。

3、△ABC 内接于以o 为圆心,l 为半径的圆,且=++543,求:?,?,?。

4、抛物线2

2x y -=与过点M(1,0)的直线l 相交于A 、B 两点,O 为坐标原点,若OB OA ?=0,求直线l 的

方程。

5、设=(m ,n),=(p ,q),定义向量间运算“*”为:*=(mp -nq ,mq+np)。 (1)计算||、|| 及 |*|;(2)设=(1,0),计算cos<*,>及cos<,>; (3)根据(1)、(2)的结果,你能得到什么结论?

6、已知=(cos α,sin α),=(cos β,sin β),0<α<β<π。 (1)求证:+与-垂直;

(2)若k +与-k 的长度相等,求β-α的值(k 为非零的常数) 7、已知A(3,0),B(0,3),C(cos α,sin α)。(1)若

1-=?,求sin2α的值;(2)若13||=+OC OA ,

且α∈(0,π),求OB 与OC 的夹角。

8、已知a =(2,2),b 与a 的夹角为

4

,且a ·b =-2。 (1)求向量b ;(2)若t =(1,0),且b ⊥t ,c =(cosA ,2cos 2

2

C

),其中A 、C 是△ABC 的内角,若A 、B 、C 依次成等差数列,求|b +c |的取值范围。

9、已知向量、、、及实数x 、y ,且||=||=1,=+(x 2-3),=-y +x ,⊥,若⊥

,且||≤10。

(1)求y 关于x 的函数关系y=f(x)及定义域; (2)求函数f(x)的单调区间。

10、平面向量=(1,7),=(5,1),=(2,1),点M 为直线OP 上一动点。

(1)当?取最小值时,求的坐标;(2)当点M 满足(1)中的条件和结论时,求∠AMB 的余弦。

11、已知P(x ,y),A(-1,0),向量与=(1,1)共线。

(1)求y 是x 的函数;(2)是否在直线y=2x 和直线y=3x 上分别存在一点B 、C ,使得满足∠BPC 为锐角时x 取值集合为{x| x<-

7或x>7}?若存在,求出这样的B 、C 的坐标;若不存在,说明理由。

12、已知21

e e -=,2134e e +=,其中1e =(1,0),2e =(0,1)。

(1)计算·,|+|的值;

(2)如果存在n 个不全为零的实数k 1,k 2,…,k n ,使a k a k a k n n =+???++221

1成立,

则称n 个向量1a ,2a ,…,n a “线性相关”

,否则为“不线性相关”,依此定义,三个向量1a =(-1,1),2a =(2,1),3a =(3,2)是否为“线性相关”的,请说明你的判断根据;

(3)平面上任意三个互不共线的向量1a ,2a ,3a 一定是线性相关的吗?为什么? 参考答案

选择题1-5 ACADDB

填空题 1. 4 ,2

(33

,3 (-2,1), 4 -1或-5,

解答题1:k>0 或k<-2

2:1(7,()22

2-?-

3:OB OA ?=0,OC OB ?=-0.8,OA OC ?=-0.6 4:y=2x-2

5: | | |* cos= cos

6:2π

βα-=

7: sin2α

=59- ;

6

π

8(1) (-1,0);(0,-1) (2)[

2

9: y=x 3-3x [x ∈ 增区间(,1];[1,)-∞-+∞ 减区间[1,1]-

10:(1)(4,2)(2)

11:(1)y=x+1 (2)存在 B(2,4);C(-1,-3)或91841123

(,),(,)772828

B C --

12 (1)a ·b =1,|a +b |= (2)线性相关

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中数学向量专项练习(含答案)

高中数学向量专项练习 一、选择题 1.已知向量(1,),(1,),a x b x ==-r r 若(2).a b b -⊥r r r 则a =r ( ) A .2 B .3 C .2 D .4 2.化简+ + + 的结果是( ) A . B . C . D . 3.已知向量(1,2),(4,)a b m ==-v v ,若2a b +v v 与a v 垂直,则m =( ) A .-3 B .3 C .-8 D .8 4.已知向量(1,1)a =-r ,(1,)b m =r ,若(2)4a b a -?=r r r ,则m =() A .1- B .0 C .1 D .2 5.设向量(12)a =-r , ,(1)b m =r ,,若向量a r 与b r 平行,则a b ?=r r A .27- B .21- C .23 D .2 5 6.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ?=u u u r u u u r ( ) A .8 B .10 C .12 D .14 7.在△ABC 中,若点D 满足2BD DC =u u u v u u u v ,则AD =u u u v ( ) A .1233AC A B +u u u v u u u v B .5233AB A C -u u u v u u u v C .2133AC AB -u u u v u u u v D .2133 AC AB +u u u v u u u v 8.在ABC ?中,已知90BAC ∠=o ,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ?u u u r u u u r 的值为 ( ). A .6 B .12 C .24 D .48 9.已知向量(1,1),(2,2),m n λλ→ → =+=+若()()m n m n → → → → +⊥-,则=λ( ) A .4- B .3- C .2- D .1- 10.已知向量(12)=,a ,(4)x =,b ,若向量//a b ,则实数的x 值为 A .2 B .2- C .8 D .8- 11.已知向量()()2,1,3,4==-a b ,则2+=a b A .()1,5- B .()1,5 C .()1,6- D .()1,6 12.已知向量()()2,1,3,4==-a b ,则+=a b A .()1,5- B .()1,5 C .()1,3-- D .()1,3

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

2020年高考数学平面向量专题复习(含答案)

2020年高考数学平面向量专题练习 一、选择题 1、P是双曲线上一点,过P作两条渐近线的垂线,垂足分别为A,B 求的值() A. B. C. D. 2、向量,,若,且,则x+y的值为() A.-3 B.1 C.-3或1 D.3或1 3、已知向量满足,若,则向量在方向上的投影为A. B. C.2 D.4 4、.如图,为等腰直角三角形,,为斜边的高,为线段的中点,则 () A.B. C.D. 5、在平行四边形中,,若是的中点,则() A. B. C. D. 6、已知向量,且,则()

A. B. C. D. 7、已知是边长为2的等边三角形,D为的中点,且,则( ) A. B.1 C. D. 3 8、在平行四边形ABCD中,,则该四边形的面积为 A. B. C.5 D.10 9、下列命题中正确的个数是() ⑴若为单位向量,且,=1,则=;⑵若=0,则=0 ⑶若,则;⑷若,则必有;⑸若,则 A.0 B.1 C.2 D.3 10、如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为() 二、填空题 11、已知向量与的夹角为120°,且,则____. 12、若三点满足,且对任意都有,则的最小值为________. 13、已知,,则向量在方向上的投影等于___________. 14、.已知,是夹角为的两个单位向量,,,若,则实数的值为 __________.

15、已知向量与的夹角为120°,,,则________. 16、已知中,为边上靠近点的三等分点,连接为线段的中点,若 , 则__________. 17、已知向量为单位向量,向量,且,则向量的夹角为. 18、在矩形ABCD中,已知E,F分别是BC,CD上的点,且满足,。若 (λ,μ∈R),则λ+μ的值为。 三、简答题 19、已知平面直角坐标系中,向量,,且. (1)求的值;(2)设,求的值. 20、已知向量=(sin,cos﹣2sin),=(1,2). (1)若∥,求的值; (2)若,0<<,求的值. 21、已知向量,.(1)若在集合中取值,求满足的概率;(2)若 在区间[1,6]内取值,求满足的概率. 22、在平面直角坐标系xOy中,已知向量, (1)求证:且; (2)设向量,,且,求实数t的值.

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

高中数学向量总结归纳

平面向量的数量积及平面向量的应用 1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”. 设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c . 2.平面向量数量积的重要性质. ①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=| |||) (b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号. ②设a =(x 1,y 1),b =(x 2,y 2),则:|a |= 21 21y x +;cos θ= 22 22 21 21 2121) (y x y x y y x x + ? + +;|x 1x 2+y 1y 2|≤ 2 2 222121y x y x +?+ 3.两向量垂直的充要条件 若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0. 4.向量的模及三角不等式 |a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |. 5.三角不等式的推广形式 |a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

届高三文科数学平面向量专题复习

2014届高三数学四步复习法—平面向量专题(311B ) 第一步:知识梳理——固本源,基础知识要牢记 1.基本概念:(1)向量:既有大小又有方向的量. (2)向量的模:有向线段的长度,a r . (3)单位向量:长度为1 的向量 .(4)零向量0r ,00=r ,方向任意. (5)相等向量:长度相等,方向相同.(6)共线向量(平行向量):方向相同或相反的向量。 规定零向量与任意向量平行。 (7)向量的加减法 ①共起点的向量的加法:平行四边形法则 ②首尾相连的向量的加法:口诀:首尾连,起点到终点. 如:AB BC CD AD ++=u u u r u u u r u u u r u u u r ③共起点的向量的减法:共起点,连终点,指向被减向量 ④化减为加:AB AC AB CA CA AB CB -=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r (8)平面向量基本定理(向量的分解定理)1e u r ,2e u u r 是平面内两个不共线的 向量,a r 为该平面内任一向量,则存在唯一的实数对12,λλ,使得 1122a e e λλ=+u r u u r r ,12,e e u r u u r 叫做表示这一平面内所有向量的一组基底.

2. 平面向量的坐标运算?? ①设()()1122,,,a x y b x y ==r r ,则()()()11221212,,,a b x y x y x x y y ±=±=±±r r ; ()()1111,,a x y x y λλλλ==r , ②(),B A B A AB x x y y =--u u u r ,AB = u u u r ③(),a x y =r ,则a =r 3. 平面向量的数量积 ①向量a r 与b r 的数量积:cos a b a b θ?=r r r r (θ为向量a r 与b r 的夹角,[]0,θπ∈) ; ②若()()1122,,,a x y b x y ==r r ,则1212a b x x y y ?=+r r ; ③22a a a a =?=r r r r ;④a r 在b r 方向上的投影:cos a θr (θ为向量a r 与b r 的夹角); ⑤θ为锐角?0a b ?r r f ,且a r 与b r 不同向;θ为钝角?0a b ?r r p ,且a r 与b r 不 反向; θ为直角?0a b ?=r r (θ为向量a r 与b r 的夹角). 4.向量的平行: ① a r ∥b r a b λ?=r r (0b ≠r r ,λ唯一确定); ②a r ∥b r 1221x y x y ?= 5.向量的垂直: 121200a b a b x x y y ⊥??=?+=r r r r 第二步:典例精析——讲方法,究技巧,悟解题规律.

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

高三数学平面向量专题复习

高三数学平面向量专题复习 一、选择题: 1.若r r |a -b|=r r |a|=4, |b|=5,则r r a与b 的数量积为 ( ) A .10 3 B .-10 3 C .10 2 D .10 2.若点P 分 AB 所成的比为 4 3 ,则A 分BP 所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 3.若将向量r a =(2, 1)围绕原点按逆时针方向旋转π 4 得到向量b r ,则向量b r 的坐标为( ) A .) 2 23,22(-- B .)223,22( C .)22,223(- D .)2 2,223(- 4.在矩形ABCD 中,u u r u u r u u r u u r u u r u u r 设11AE =AB,BF =BC, AB =(a,0),AD =(0,b)22,当u u r u u r EF ⊥DE 时, |a| |b| 的值为 ( ) A .2 B .3 C .2 D .3 5.已知A (5,7),B (2,3),将u u r r AB a 按=(4,1)平移后的坐标为 ( ) A .(-3,-4) B .(-4,-3) C .(1,-3) D .(-3,1) 6.将函数 )(x f y =图象上的点P (1,0)平移至P ′(2,0),则经过这种平移后得到的新 函数的解析式为 ( ) A .y =f(x -1) B .y =f(x)-1 C .y =f(x +1) D .y =f(x)+1 7.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-2 1 ) 8.已知02 =+?AB BC AB ,则△ABC 一定是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 9.若非零向量r r a,b 互相垂直,则下列各式中一定成立的是 ( ) A .r r r r a + b =a -b B .r r r r |a +b|=|a -b| C .r r r r (a +b)(a -b)=0 D .r r 2 (a -b)=0 10.设四边形ABCD 中,有DC =2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 11.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是 A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 12.将椭圆0716******* 2 =---+y x y x 按向量r a 平移,使中心与原点重合,则r a 的坐标为 ( ) A .(2,1) B .(-1,-2) C .(-1,2) D .(1,-2)

高中数学向量专题复习(知识点+典型例题+大量习题附解析)精编材料值得拥有

平面向量 平面向量 平面向量的概念 与线性运算 向量概念及表示 向量的线性运算 平面向量基本定理 及坐标表示 平面向量基本定理 正交分解及坐标表示 坐标运算 平面向量的数量积 数量积的定义 数量积的性质

一、平面向量的概念与线性运算 1.向量概念及表示 定义:即有大小,又有方向的量叫做向量. 表示: 有向线段 小字母上加箭头 起点到终点,大字母加箭头 向量的长度(模):a r 或AB 的模记作||a 或||AB . 几种特殊向量:

2.向量的线性运算 例如:AB BC CD AD +=u u u r u u u r u u u r u u u r +,0AB BC CA +=u u u r u u u r u u u r r +,BC BA AC -=u u u r u u u r u u u r ,DE DF FE -=u u u r u u u r u u u r . 向量不等式:||||||||||||a b a b a b -≤±≤+r r r r r r (等号在向量a r ,b r 共线时取得). 例如:||3a =r ,||5b =r ,则||a b +r r 的最大值为8,当且仅当a r ,b r 同向时取到;最小值为2, 当且仅当a r ,b r 反向时取到. 3 如图:正六边形ABCDEF 中,BA CD EF ++=u u u r u u u r u u u r ( ) A .0r B .BE u u u r C .A D u u u r D .CF u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r

高一数学必修四,平面向量知识点总结,2020最新版

平面向量知识点专题 知识点梳理: 一、向量的基本概念 1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如(其中A 为起点,B 为终点)。 2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||。 3. 零向量:长度为0的向量,记作0,其方向是不确定的。我们规定零向量与任何向量a 共线(平行),即a ∥0。 4. 单位向量:模长为1个单位的向量叫做单位向量。当≠||a 0时,很明显| |a a ± 是与向量a 共线(平行)的单位向量。 5. 相等向量:大小相等,方向相同的向量,记为b a =。 6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。 7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。 二、向量的线性运算 1. 向量的加法: 1.1. 求两个向量和的运算叫做向量的加法。已知向量b a ,,在平面内任取一点A ,作b a ==,,则向量叫做向量a 和b 的和(或和向量),即b a =+=+。 1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图: 1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。 1.4. 三角形法则可推广至若干个向量的和,如图:

2. 向量的减法: 2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。 2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图: 3. 向量的数乘运算: 3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ= ②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。 3.2. 向量数乘运算的运算律:设μλ,为实数,则 ①a a a μλμλ+=+)(; ②a a )()(λμμλ=; ③b a b a λλλ+=+)(。 三、重要定理和性质 1. 共线向量基本定理:如果)(R b a ∈=λλ,则b a ∥;反之,如果b a ∥且0≠b 时,一定存在唯一实数λ,使b a λ=。 2. 平面向量基本定理: 2.1. 如果21,e e 是同一平面内不共线的两个向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数21λλ,,使得2211e e a λλ+=。 2.2. 基底:我们把不共线的向量21,e e 叫做表示该平面内所有向量的一组基底,记为{21,e e }。2211e e λλ+叫做向量a 关于基底{21,e e }的分解式。 2.3. 平面向量基本定理又叫做平面向量分解定理,是平面向量正交分解的理论依据,也是向量坐标表示的基础。 3. 线段定比分点的向量表达:如图,在△ABC 中,若点D 是边BC 上的点,且)1(-≠=λλDC BD ,则向

2020高考数学《平面向量》复习专题

a 高一平面向量复习专题 一、选择题 1.化简AC -BD +CD -AB 得() A.AB B.DA C.BC D.0 2.设a0 , b0 分别是与a, b 向的单位向量,则下列结论中正确的是() A.a0 =b0B.a ?b = 1C.| a0 | + | b0 |= 2 D.| a0 +b0 |= 2 0 0 3.已知下列命题中: (1)若k ∈R ,且kb = 0 ,则k = 0 或b = 0 , (2)若a ?b = 0 ,则r = 0 或b = 0 (3)若不平行的两个非零向量a, b ,满足| a |=| b |,则(a +b) ? (a -b) = 0 (4)若a 与b 平行,则a g b =| a | ? | b | 。其中真命题的个数是() A.0 B.1 C.2 D.3 4.下列命题中正确的是() A.若a?b=0,则a=0 或b=0 B.若a?b=0,则a∥b C.若a∥b,则a 在b 上的投影为|a| D.若a⊥b,则a?b=(a?b)2 r 5.已知平面向量a = (3,1) ,b = (x, -3) ,且a ⊥b ,则x =() A.-3 B.-1 C.1 D.3 6.已知向量a = (cos, sin) ,向量b = ( 3,-1) 则| 2a -b | 的最大值,最小值分别是() A.4 2,0 B.4, 4 C.16, 0 D.4, 0 7.下列命题中正确的是() A.OA -OB =AB B.AB +BA = 0 C.0 ?AB = 0 D.AB +BC +CD =AD 1 2

2 3 2 7 10 13 a r r u u u r u u u r 8. .设点 A (2, 0) , B (4, 2) , 若点 P 在直线 AB 上,且 AB = 2 AP ,则点 P 的坐标为( ) A . (3,1) B . (1, -1) C . (3,1) 或(1, -1) D .无数多个 9. 若平面向量b 与向量 a = (1,-2) 的夹角是180o ,且| b |= 3 A . (-3,6) B . (3,-6) C . (6,-3) D . (-6,3) ,则b = ( ) 10.向量 a = (2, 3) , b = (-1, 2) ,若 ma + b 与 a - 2b 平行,则 m 等于( ) A . -2 B . 2 C . 1 D . - 1 2 2 11.若 a , b 是非零向量且满足(a - 2b ) ⊥ r , (b - 2a ) ⊥ b ,则 a 与b 的夹角是( ) A . B . 6 C . 3 2 5 D . 3 6 r 3 r 1 12.设 a = ( , sin ) , b = (cos , ) ,且a // b ,则锐角为( ) 2 3 A . 30 B . 600 C . 750 D . 450 13.若三点 A (2, 3), B (3, a ), C (4, b ) 共线,则有( ) A . a = 3, b = -5 B . a - b +1 = 0 C . 2a - b = 3 D . a - 2b = 0 14.设 0 ≤< 2,已知两个向量 OP 1 = (cos , sin ), OP 2 = (2 + sin , 2 - cos ), 则向量 P 1 P 2 长度的最大值是( ) A. B. C. 3 D. 2 15. 下列命题正确的是( ) A .单位向量都相等 B .若 a 与b 是共线向量, b 与c 是共线向量,则 a 与c 是共线向量( ) C .| a + b | =| a - b | ,则 a ? b = 0 D .若 a 0 与b 0 是单位向量,则 a 0 ? b 0 = 1 r 0 r r 16. 已知 a , b 均为单位向量,它们的夹角为60 ,那么 a + 3b = ( ) A . B . C . D . 4 5 3

相关文档
最新文档