二次函数专题之参数范围问题

合集下载

中考热点-- 二次函数与方程、不等式,求参数范围(原卷版)

中考热点-- 二次函数与方程、不等式,求参数范围(原卷版)

中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0.点P在此抛物线上,其横坐标为m.,点B0,3(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.7(2023·浙江杭州·统考二模)已知函数y1=x2-m+2x+2m+3,y2=nx+k-2n(m,n,k为常数且n≠0).(1)若y1的图象经过点A-1,3,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当-1≤x≤2时,总有y1≤y2,求m+n的取值范围.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0.和一次函数y2=ax+b a≠0(1)二次函数y1的图象过1,0点,求二次函数的表达式;,2,2(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x=-2和x=4时,二次函数y=ax2+bx-2(a,b是常数,a≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x轴有且只有一个交点,求a,b的值.(3)记(2)中的抛物线为y1,将抛物线y1向上平移2个单位得到抛物线y2,当-2≤x≤m时,抛物线y2的最大值与最小值之差为8,求m的值.10(2023·浙江丽水·统考二模)二次函数y=x2+bx+c的图象与x轴交于点A x1,0且x1≠,B x2,0x2.(1)当x1=2,且b+c=-6时,①求b,c的值②当t≤x≤t+2时,二次函数y=x2+bx+c的最小值为2t,求t的值;(2)若x1=3x2,求证:3b-c≤3.211(2023·浙江杭州·统考二模)二次函数y=ax2+bx-1(a,b为常数,a≠0)的图像经过点A1,2.(1)求该二次函数图像的对称轴(结果用含a的代数式示)(2)若该函数图像经过点B3,2;①求函数的表达式,并求该函数的最值.②设M x1,y1,N x2,y2是该二次函数图像上两点,其中x1,x2是实数.若x1-x2=1,求证:y1+y2≤11 212(2023·浙江杭州·统考一模)二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点.(1)当a=1,b=2时,求m的值.(2)当0<a<2,c=2时,①求证:m>1.②点C x1,y1,D x2,y2在该抛物线上,且x1>x2,x1+x2<2,试比较y1与y2的大小.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m在抛物线y=x2-2tx+1上,试比较m,n的大小;,N t+3,n(3)P x1,y1是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2, ,Q x2,y2求t的取值范围;(4)P t+1,y1是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值. ,Q2t-4,y214(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).20(2023·浙江·校联考三模)已知点x1,y1,x2,y2为二次函数y=-x2图象上的两点(不为顶点),则以下判断正确的是()A.若x1>x2,则y1>y2B.若x1<x2,则y1<y2C.若:x1x2<x22,则y1>y2 D.若x1x2>x22,则y1<y221(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y222(2023·浙江杭州·统考二模)点P m,n在二次函数y=ax2-2ax a≠0的图象上,针对n的不同取值,存在点P的个数不同,甲乙两位同学分别得到如下结论:甲:若P的个数为1,则n=-a;乙:若P的个数为2,则n≥-a则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误23(2023·浙江宁波·校考二模)已知点A x1,y1,B x2,y2在抛物线y=-(x-4)2+m(m是常数)上.若x1<4<x2,x1+x2>8,则下列大小比较正确的是()A.y1>y2>mB.y2>y1>mC.m>y1>y2D.m>y2>y124(2023·统考二模)已知二次函数y=x2+bx+c过点A x1,y1,B x1+t,y2,C x1+2t,y3三点.记m=y2-y1,n=y3-y2,下列命题正确的是()A.若n-m>2,则t<-1B.若n-m<2,则t>-1C.若t>1,则n-m>2D.若t<1,则n-m<225(2023·浙江杭州·统考二模)已知y关于x的二次函数y=2mx2+1-mx-1-m,下列结论中正确的序号是()①当m=-1时,函数图象的顶点坐标为12,12 ;②当m≠0时,函数图象总过定点:③当m>0时,函数图象在x轴上截得的线段的长度大于3 2;④若函数图象上任取不同的两点P1x1,y1、P2x2,y2,则当m<0时,函数在x>14时一定能使y2-y1x2-x1<0成立.A.①②③B.①③④C.②③④D.①②④26(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3a ≠0 上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.2<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥427(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3(a ≠0)上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.1<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥428(2023·浙江宁波·校考一模)已知二次函数y =ax 2+bx +c 的图象经过点A x 1,y 1 ,B 1-m ,n ,C x 2,y 2 ,D m +3,n ,若x 1-2 >x 2-2 ,则下列表达式正确的是()A.y 1>y 2B.y 1<y 2C.a y 1-y 2 >0D.a y 1-y 2 <029(2022·浙江宁波·校考三模)如图,二次函数y =ax 2+bx +c a <0 与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有()①abc <0;②4ac -b 24a>0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为-2<x <-1.A.1个B.3个C.4个D.5个。

探究一类含参数二次函数范围(最值)问题

探究一类含参数二次函数范围(最值)问题

√ (2)当 a , b 满足 M (a, b) 2 ,求 a b 的最大值. 全省17.7万 2.21分
高考分值分配:7分+8分结构
f ( x) x2 ax b
f ( x) x2 2x 2 ( x 1)2 3
( 1) 若存在 x0 [2,1] , 使得 f ( x0 ) t 成立, 求实数 t 的取值范围? y
a 2时,M (a) a 1 a 2时 M (a) max{ f (1) , f (1)}
a 1 2
y
O
max{ a 1 , a 1}
1 a
x
f ( x) x2 ax b
4.对任意 a 2 时, 记 M (a, b) 为 f ( x) 在 x [1,1] 时的最大值,证明 M (a) 2 .
y a 1 2
O
x
a 1 a 2 M (a) 3.对任意 a 2 , b 2 时, 1 a a 2
f ( x) x2 ax b f ( x) x2 ax 2
记 M (a) 为 f ( x) 在 x [1,1] 时的最大值,求 M (a) .
O
a
数缺形时少直观,形少数时难入微; 数形结合百般好,隔离分家万事休。
f ( x) x2 ax b
f ( x) x2 ax 2
3.对任意 a 2 , b 2 时, 记 M (a) 为 f ( x) 在 x [1,1] 时的最大值,求 M (a) .
a 2时,M (a) a 1 a 2时
探究一类含参数二次 函数范围(最值)问题
杭州市源清中学 数学组 王凯
2015年6月7日

二次函数——取值范围

二次函数——取值范围

专题十一:二次函数之取值范围坐标相关的取值范围例题1 :如图所示,抛物线y=ax2+bx+c与x轴交于A、B两点,A(﹣5,0),与y轴交于C(0,﹣5),并且对称轴x=﹣3.(1)求抛物线的解析式;(2)P在x轴上方的抛物线上,过P的直线y=x+m与直线AC交于点M,与y 轴交于点N,求PM+MN的最大值;(3)点D为抛物线对称轴上一点,①当△ACD是以AC为直角边的直角三角形时,求D点坐标;②若△ACD是锐角三角形,求点D的纵坐标的取值范围.例题2 :A是直线x=1上一个动点,以A为顶点的抛物线y1=a(x﹣1)2+t和抛物线y2=ax2交于点B(A,B不重合,a是常数),直线AB和抛物线y2=ax2交于点B,C,直线x=1和抛物线y2=ax2交于点D.(如图仅供参考)(1)求点B的坐标(用含有a,t的式子表示);(2)若a<0,且点A向上移动时,点B也向上移动,求的范围;(3)当B,C重合时,求的值;(4)当a>0,且△BCD的面积恰好为3a时,求的值.练习1. 抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出M点横坐标的变化范围,并说明理由.练习2 . 已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点.(1)求抛物线解析式;(2)抛物线与y轴交于点C,在抛物线上存在点P,使S△BAP =S△CAP,求P点坐标;(3)已知直线l:y=2x﹣1,将抛物线沿y=2x﹣1方向平移,平移过程中与l 相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在一点P,使∠EPF=90°,求m的范围.角度相关取值范围例题1 :已知抛物线经过A(﹣3,0),B(1,0),C(2,5)三点,其对称轴2交x轴于点H,一次函数y=k x+b(k≠0)的图象经过点C,与抛物线交于另一点D(点D在点C的左边),与抛物线的对称轴交于点E.(1)求抛物线的解析式;=S△EAB时,求一次函数的解析式;(2)如图1,当S△EOC(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k的取值范围.练习1 . 已知在平面直角坐标系x O y中,O为坐标原点,线段AB的两个端点A (0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a ≠0)经过点D..(1)如图1,若该抛物线经过原点O,且a=﹣13①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.动点相关的取值范围例题1 :已知二次函数y=ax2+bx+c的图像如图,顶点坐标D为(3,4√3)。

初中二次函数参数取值范围的解题思路和方法

初中二次函数参数取值范围的解题思路和方法

初中二次函数参数取值范围的解题思路和方法二次函数参数取值范围的解题思路和方法主要包括以下几个步骤:1. 理解二次函数的基本形式:二次函数的一般形式为 $f(x) = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a \neq 0$。

2. 确定参数与函数性质的关系:开口方向:由 $a$ 决定。

当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。

对称轴:由 $b$ 决定。

对称轴为 $x = -\frac{b}{2a}$。

顶点:坐标为 $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$。

与坐标轴的交点:令 $f(x) = 0$ 解得与 $x$ 轴的交点;令 $x =0$ 解得与 $y$ 轴的交点。

3. 根据题目要求求解参数范围:求最值:如果题目要求二次函数的最大值或最小值,可以通过顶点坐标或对称轴来求解。

求交点:如果题目要求二次函数与坐标轴的交点,可以令 $f(x) = 0$ 或 $x = 0$ 来求解。

求参数范围:根据题目给出的条件,如函数在某个区间上的单调性、与坐标轴的交点位置等,列出不等式或方程来求解参数的范围。

4. 验证解的有效性:解出参数后,需要代入原函数进行验证,确保解满足题目的所有条件。

下面是一个具体的例子:例:已知二次函数 $f(x) = x^2 - 2mx + m^2 + m - 2$,求 $m$ 的取值范围,使得函数在区间 $[1, 3]$ 上单调递减。

解:1. 确定对称轴:二次函数 $f(x) = x^2 - 2mx + m^2 + m - 2$ 的对称轴为$x = m$。

2. 判断单调性:由于二次项系数 $a = 1 > 0$,抛物线开口向上。

因此,函数在对称轴左侧单调递减,在对称轴右侧单调递增。

3. 求解参数范围:要使函数在区间 $[1, 3]$ 上单调递减,需要对称轴 $x = m$ 在区间 $[1, 3]$ 的右侧,即 $m \geq 3$。

专题09 二次函数中取值范围专题(一)(解析版)九下数学专题培优训练

专题09 二次函数中取值范围专题(一)(解析版)九下数学专题培优训练

专题09 二次函数中的取值范围专题(一)班级:___________姓名:___________得分:___________ 一、选择题1. 如果二次函数y =x 2−6x +8在x 的一定取值范围内有最大值(或最小值)为3,满足条件的x 的取值范围可以是( )A. −1≤x ≤5B. 1≤x ≤6C. −2≤x ≤4D. −1≤x ≤1【答案】D 【分析】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答. 【解答】解:∵y =x 2−6x +8=(x −3) 2−1, 当y =3时,得出x =1或5,∴在自变量−1≤x ≤1的取值范围内,当x =1时,有最小值3,2. 已知函数y =x 2+x −1在m ≤x ≤1上的最大值是1,最小值是,则m 的取值范围是( )A. m ≥−2B. 0≤m ⩽12C. −2≤m ⩽−12D. m ⩽−12【答案】C【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是−54,得出m ≤−12;再求得当x =1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m 的下限.本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键. 【解答】解:∵函数y =x 2+x −1的对称轴为直线x =−12, ∴当x =−12时,y 有最小值,此时y =14−12−1=−54, ∵函数y =x 2+x −1在m ≤x ≤1上的最小值是−54, ∴m ≤−12;∵当x =1时,y =1+1−1=1,对称轴为直线x =−12,∴当x=−12−[1−(−12)]=−2时,y=1,∵函数y=x2+x−1在m≤x≤1上的最大值是1,且m≤−12;∴−2≤m≤−12.3.已知二次函数y=−x2+2x+3,截取该函数图象在0≤x≤4间的部分记为图象G,设经过点(0,t)且平行于x轴的直线为l,将图象G在直线l下方的部分沿直线l翻折,图象G在直线上方的部分不变,得到一个新函数的图象M,若函数M的最大值与最小值的差不大于5,则t的取值范围是()A. −1≤t≤0B. −1≤tC. D. t≤−1或t≥0【答案】A【分析】本题主要考查的是二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的最值等有关知识,找到最大值和最小值差刚好等于5的时刻,则t的范围可知.【解答】解:如图1所示,当t等于0时,∵y=−(x−1)2+4,∴顶点坐标为(1,4),当x=0时,y=3,∴A(0,3),当x=4时,y=−5,∴C(4,−5),∴当t=0时,D(4,5),∴此时最大值为5,最小值为0;如图2所示,当t=−1时,此时最小值为−1,最大值为4.综上所述:−1≤t≤0,m−1的图象与x轴有交点,则m的取值范围是() 4.已知二次函数y=x2−x+14A. m≤5B. m≥2C. m<5D. m>2【答案】A【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.m−1的图象与x轴有交点,【解答】解:∵二次函数y=x2−x+14∴△=(−1)2−4×1×(1m−1)≥0,4解得:m≤5,5.下表列出了函数y=ax2+bx+c(a、b、c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是()A. 6<x<6.17B. 6.17<x<6.18C. 6.18<x<6.19D. 6.19<x<6.20【答案】C【分析】本题考查了图象法求一元二次方程的近似解,解答此题的关键是利用函数的增减性.根据二次函数的增减性,可得答案.【解答】解:由表格中的数据,得在6.17<x<6.20范围内,y随x的增大而增大,当x=6.18时,y=−0.01,当x=6.19时,y=0.02,方程ax2+bx+c=0的一个根x的取值范围是6.18<x<6.19,6.已知二次函数y=ax2+bx+c的部分对应值如下表:x−3−2−1012345y1250−3−4−30512当函数值y<0时,x的取值范围是()A. x<0或x>2B. 0<x<2C. x<−1或x>3D. −1<x<3【答案】D【分析】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围,同学们应熟练掌握.由表格给出的信息可看出,二次函数y=ax2+bx+c的对称轴为直线x=1,函数有最小值,抛物线开口向上a>0,与x轴交于(−1,0)、(3,0)两点,根据二次函数的性质可得出y<0时,x的取值范围.【解答】解:根据表格中给出的二次函数图象的信息,对称轴为直线x=1,a>0,开口向上,与x轴交于(−1,0)、(3,0)两点,则当函数值y<0时,x的取值范围是−1<x<3.7.如图,二次函数y=ax2+bx+c的最大值为3,一元二次方程ax2+bx+c−m=0有实数根,则m的取值范围是()A. m≥3B. m≤3C. m≥−3D. m≤−3【答案】B【分析】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.方程ax2+bx+c−m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【解答】解:方程ax2+bx+c−m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,二、填空题8.我们把函数在m≤x≤n上的最大图值和最小值的差称为区间极差,比如一次函数y=−x+1在−2≤x≤0上的最大值为3,最小值为1,所以一次函数y=−x+1在−2≤x≤0上的区间极差为3−1=2.若二次函数y=−x2+2x+3在−1≤x≤a 上的区间极差为4,则a的取值范围是____________.【答案】1⩽a⩽3【分析】本题考查二次函数的综合问题和其最值问题以及一元二次方程的求解,通过二次函数在−1≤x≤a的区间,求解a的范围。

专题二次函数的单调性及求参数的范围课件高一上学期数学人教A版(2019)

专题二次函数的单调性及求参数的范围课件高一上学期数学人教A版(2019)
3 (1) 求证 : f (x)是 R 上的减函数; (2) 求f (x)在[3, 3]上的最大值和最小值; (3) 求满足不等式 f (m 2) f (2m) 2 0的解.
3
抽象函数单调性的证明与应用问题
练习1:已知函数f (x)的定义域为(0, ), 且满足 f ( x ) f (x) f ( y), 当 x 1时, 有f (x) 0.
专题 二次函数的单调性及 求参数的范围
问题 1 已知函数 f(x)的单调区间是 M 与函数 f(x) 在区间 N 上单调, 则区间 M, N 有怎样的关系?
NM
问题2 二次函数的单调性与它的什么要素有关系?
与二次函数的开口方向和对称轴有关系
二次函数的单调性问题
例1已知函数f (x) kx2 2x 1的减区间是[2, ),
y (1) 判断并证明函数 f (x)的单调性; (2) 若f (2) 1, 解不等式f (x 3) f ( 1) 2.
x
课后思考
练习2 : 若函数 f (x) x2 a x 2 在(0, )上单调递增,
则实数 a的取值范围是 _[__4_,_0_] .
2
二次函数的单调性问题
例3已知函数 f (x) 4x2 kx 8在[5, 20]上是增函数,
则实数 k的取值范围是 ____k___4_0_____;
变式 :已知函数 f (x) 4x2 kx 8在[5, 20]上是减函
数,则实数 k的取值范围是 __k___1_6_0__;
例4已知函数 f (x) 4x2 kx 8在[5, 20]上是单调函 数,则实数 k的取值范围是 _k___4_0_或__k___1_6_0_; 变式 :已知函数 f (x) 4x2 kx 8在[5, 20]上不是单

二次函数中的取值范围(最值)问题 - 学生版

二次函数中的取值范围(最值)问题 - 学生版

二次函数中的取值范围(最值)问题班级:________ 姓名:_______复习:已知二次函数223y x x =--.(1)y 的取值范围是_______________________________________________________. (2)当24x <<时,y 的取值范围是_________________________________________. (3)当04x <<时,y 的取值范围是_________________________________________. (4)当0y >,x 的取值范围是______________________________________________. (5)当3y >-,x 的取值范围是_____________________________________________. (6)当1x a -≤≤时,y 有最小值4-,最大值0,则实数a 的取值范围是____________.方法归纳: x y ⎧⎪⎨⎪⎩求范围:_________________.求范围:_________________.参数范围:_________________. 大方向.⎧⎪⎨⎪⎩求值:_________________求范围:________________.一、最值计算 _________________________例1. (2014成都改编) 在美化校园的活动中,某综合实践小组的同学借如图所示的直角墙角(两边足够长),用8m 长的篱笆围成一个矩形的花圃ABCD (篱笆只围AB 、BC 两边)设AB =x m .若在点P 处有一棵小树与墙CD 、AD 的距离分别为5m 和2m ,要将这棵树围在花圃内(含边界,不考虑树干的粗细),求花圃面积y 的最大值.二、求参范围 _________________________ 题型一、增减性 _________________________例2. (1)抛物线22y x ax =-,当3x >时,y 随着x 的增大而增大,则实数a 的取值范围是______________.(2)抛物线221y ax x =++,当3x <时,y 随着x 的增大而增大,则实数a 的取值范围是___________.C题型二、图象求参 _________________________例3. (1)已知抛物线2y ax bx c =++的一段图象如图所示, 则a b c ++的取值范围是___________________.(2)已知抛物线2y ax bx c =++的图象如图所示, 则实数a 的取值范围是_________________________.题型三、交点判断 _________________________例4.(1)若抛物线2y x m =-与直线2y x =-最多有一个交点,则实数m 的取值范围是_____________.(2)(2017成都)若抛物线21142y x =-+与抛物线221(2)42y x m =--在y 轴右侧有两个不同的交点,则m 的取值范围是__________.思考题: _________________________(1)(轴动区间定)已知二次函数22y x ax =-,当14x -≤≤, y 有最小值-3,则a 的值为_______.(2)(轴定区间动)已知二次函数22y x x =-,当1a x a -≤≤时,y 有最小值3,则a 的值为_______.yx-1-1O习 题1. 若反比例函数ay x=的图象与直线2y x =+有两个交点,则a 的取值范围是_____________. 2. 若关于x 的方程22||x x a -=有4个实数根,则a 的取值范围是_______________________.3. 如图,直线y 1=kx +n (k ≠0)与抛物线y 2=ax 2+bx +c (a ≠0)分别交于 A (﹣1,0),B (2,﹣3)两点,则关于x 的不等式kx +n > ax 2+bx +c 的解为_____.4. 已知抛物线2(2)3y x m =-+,当1m x m <<+时,y 随着x 的增大而减小,则m 的取值范围是___________.5. (宿迁中考) 如图,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =2cm ,点P 在边AC 上从点A 向点C 移动,点Q 在边CB 上从点C 向点B 移动.若点P ,Q 均以1cm /s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是__________.6. 已知抛物线221y ax x =-+,若对满足34x <<的任意x 都有0y >,则a 的取值范围是___________.7. 已知:二次函数2y ax bx c =++的图象如图所示,下列结论中:①0abc <; ②20a b +<;③()a b m am b +<+(1)m ≠;④22()a c b +<;⑤1a >。

含参数的二次函数参数取值范围-答案

含参数的二次函数参数取值范围-答案

参考答案与试题解析一.选择题(共 4 小题)1.二次函数 y=x2+(a﹣2)x+3 的图象与一次函数 y=x(1≤x≤2)的图象有且仅有一个交点,则实数 a 的取值范围是()A.a=3±2 B.﹣1≤a<2C.a=3 或﹣≤a<2 D.a=3﹣2 或﹣1≤a<﹣【解答】解:由题意可知:方程 x2+(a﹣2)x+3=x 在 1≤x≤2 上只有一个解,即 x2+(a﹣3)x+3=0 在 1≤x≤2 上只有一个解,当△=0 时,即(a﹣3)2﹣12=0a=3±2当 a=3+2 时,此时 x=﹣,不满足题意,当 a=3﹣2 时,此时 x=,满足题意,当△>0 时,令 y=x2+(a﹣3)x+3,令 x=1,y=a+1,令 x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当 a=﹣1 时,此时 x=1 或 3,满足题意;当 a=﹣时,此时 x=2 或 x=,不满足题意,综上所述,a=3﹣2 或﹣1≤a<,故选:D.2.对于题目“一段抛物线 L:y=﹣x(x﹣3)+c(0≤x≤3)与直线 l:y=x+2 有唯一公共点,若 c 为整数,确定所有 c 的值,”甲的结果是 c=1,乙的结果是 c=3 或 4,则()A.甲的结果正确第1页(共27页)B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【解答】解:∵抛物线 L:y=﹣x(x﹣3)+c(0≤x≤3)与直线 l:y=x+2 有唯一公共点∴①如图 1,抛物线与直线相切,联立解析式得 x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得 c=1②如图 2,抛物线与直线不相切,但在 0≤x≤3 上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.3.在平面直角坐标系 xOy 中,已知点 M,N 的坐标分别为(﹣1,2),(2,1),若抛物线 y第2页(共27页)=ax2﹣x+2(a≠0)与线段 MN 有两个不同的交点,则 a 的取值范围是()A.a≤﹣1 或≤a<B.≤a<C.a≤或 a>D.a≤﹣1 或 a≥【解答】解:∵抛物线的解析式为 y=ax2﹣x+2.观察图象可知当 a<0 时,x=﹣1 时,y≤2 时,且﹣>﹣1,满足条件,可得 a≤﹣1;当 a>0 时,x=2 时,y≥1,且抛物线与直线 MN 有交点,且﹣≤2 满足条件,∴a≥,∵直线 MN 的解析式为 y=﹣x+ ,由,消去 y 得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的 a 的值为 a≤﹣1 或≤a<,故选:A.4.如图,已知点 A(0,2),B(2,2),C(﹣1,0),抛物线 y=a(x﹣h)2+k 过点 C,顶点 M 位于第一象限且在线段 AB 的垂直平分线上.若抛物线与线段 AB 无公共点,则 k 的取值范围是()第3页(共27页)A.0<k<2 B.0<k<2 或 k>C.k>D.0<k<2 或 k>【解答】解:∵抛物线 y=a(x﹣h)2+k 的顶点 M 位于第一象限且在线段 AB 的垂直平分线上,且点 A(0,2),B(2,2),∴h=1,k>0.抛物线与线段 AB 无公共点分两种情况:当点 M 在线段 AB 下方时,∵点 M 的坐标为(1,k),∴0<k<2;当点 M 在线段 AB 上方时,有,解得:k>.综上所述:k 的取值范围为 0<k<2 或 k>.故选:B.二.填空题(共 3 小题)5.如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线 y=x2+k 与扇形 OAB 的边界总有两个公共点,则实数k 的取值范围是﹣2<k<.第4页(共27页)【解答】解:由图可知,∠AOB=45°,∴直线 OA 的解析式为 y=x,联立消掉 y 得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即 k=时,抛物线与 OA 有一个交点,此交点的横坐标为 1,∵点 B 的坐标为(2,0),∴OA=2,∴点 A 的坐标为(,),∴交点在线段 AO 上;当抛物线经过点 B(2,0)时,×4+k=0,解得 k=﹣2,∴要使抛物线 y=x2+k 与扇形 OAB 的边界总有两个公共点,实数 k 的取值范围是﹣2<k<.故答案为:﹣2<k<.6.已知抛物线 C1:y=x2﹣2x﹣8 及抛物线 C2:y=x2﹣(4a+3)x+4a2+6a(a 为常数),当﹣2<x<2a+3 时,C1,C2 图象都在 x 轴下方,则 a 的取值范围为﹣<a≤﹣1 .【解答】解:当 y=0 时,有 x2﹣2x﹣8=0,解得:x1=﹣2,x2=4;当 y=0 时,有 x2﹣(4a+3)x+4a2+6a=0,第5页(共27页)解得:x3=2a,x4=2a+3.∵两抛物线均开口向上,且当﹣2<x<2a+3 时,C 1,C2 图象都在 x 轴下方,∴,解得:﹣<a≤﹣1.故答案为:﹣<a≤﹣1.7.在直角坐标系中,点 A 的坐标为(3,0),若抛物线 y=x2﹣2x+n﹣1 与线段 OA 有且只有一个公共点,则 n 的取值范围为﹣2≤n<1 或 n=2 .【解答】解:∵点 A 的坐标为(3,0),抛物线y=x2﹣2x+n﹣1=(x﹣1)2+n﹣2 与线段OA 有且只有一个公共点,∴n﹣2=0 或,解得,﹣2≤n<1 或 n=2,故答案为:﹣2≤n<1 或 n=2.三.解答题(共 11 小题)8.已知抛物线 y=ax2﹣2anx+an2+n+3 的顶点 P 在一条定直线 l 上.(1)直接写出直线 l 的解析式;(2)对于任意非零实数 a,存在确定的 n 的值,使抛物线与 x 轴有唯一的公共点,求此时 n 的值;(3)当点 P 在 x 轴上时,抛物线与直线 l 的另一个交点 Q,过点 Q 作 x 轴的平行线,交抛物线于点 A,过点 Q 作 y 轴的平行线,交 x 轴于点 B,求的值或取值范围.【解答】解:(1)∵抛物线 y=ax2﹣2anx+an2+n+3=a(x﹣n)2+(n+3),∴抛物线 P(n,n+3),∵顶点 P 在一条定直线 l 上,令 n=x,n+3=y,∴y=x+3,即:直线 l 的解析式为 y=x+3,(2)抛物线与 x 轴有唯一的公共点,第6页(共27页)令 y=0,即:ax2﹣2anx+an2+n+3=0,∴△=(﹣2an)2﹣4a×(an2+n+3)=﹣4a(n+3)=0,∵任意非零实数 a,∴n+3=0,∴n=﹣3,∴抛物线与 x 轴有唯一的公共点,此时 n 的值为﹣3,(3)由(1)知,P(n,n+3),∵点 P 在 x 轴上,∴n+3=0,∴n=﹣3,∴抛物线 y=a(x+3)2,①∵直线 l 的解析式为 y=x+3②,联立①②得 Q(﹣3+ ,),∵过点 Q 作 y 轴的平行线,交 x 轴于点 B,∴BQ=| |,∵过点 Q 作 x 轴的平行线,交抛物线于点 A,∴a(x+3)2=,∴x=﹣3±,∴A(﹣3﹣,),∵Q(﹣3+ ,),∴AQ=|﹣3+ ﹣(﹣3﹣)|=| |∴=2.9.如图 1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中 m 为常数,且 m>0,E(0,n)为 y 轴上一动点,以 BC 为边在 x 轴上方作矩形 ABCD,使 AB=2BC,画射线OA,把△ADC 绕点 C 逆时针旋转 90°得△A′D′C′,连接 ED′,抛物线 y=ax2+bx+n (a≠0)过 E,A′两点.第7页(共27页)(1)填空:∠AOB=45 °,用 m 表示点 A′的坐标:A′(m ,﹣m );(2)当抛物线的顶点为 A′,抛物线与线段 AB 交于点 P,且=时,△D′OE 与△ABC 是否相似?说明理由;(3)若 E 与原点 O 重合,抛物线与射线 OA 的另一个交点为点 M,过 M 作 MN⊥y 轴,垂足为 N:①求 a,b,m 满足的关系式;②当 m 为定值,抛物线与四边形 ABCD 有公共点,线段 MN 的最大值为 10,请你探究 a 的取值范围.【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即 BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO 为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即 A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),第8页(共27页)∵A′为抛物线的顶点,∴设抛物线解析式为 y=a(x﹣m)2﹣m,∵抛物线过点 E(0,n),∴n=a(0﹣m)2﹣m,即 m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点 E 与点 O 重合时,E(0,0),∵抛物线 y=ax2+bx+n 过点 E,A′,∴,整理得:am+b=﹣1,即 b=﹣1﹣am;②∵抛物线与四边形 ABCD 有公共点,∴抛物线过点 C 时的开口最大,过点 A 时的开口最小,若抛物线过点 C(3m,0),此时MN 的最大值为 10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为 y=x2﹣x,由 A(2m,2m),可得直线 OA 解析式为 y=x,联立抛物线与直线 OA 解析式得:,解得:x=5m,y=5m,即 M(5m,5m),令 5m=10,即 m=2,当 m=2 时,a=;若抛物线过点 A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形 ABCD 有公共点时 a 的范围为≤a≤1.10.如图,已知抛物线与 x 轴交于点 A(﹣2,0),B(4,0),与y 轴交于点 C(0,8).第9页(共27页)(1)求抛物线的解析式及其顶点 D 的坐标;(2)设直线 CD 交 x 轴于点 E.在线段 OB 的垂直平分线上是否存在点 P,使得点 P 到直线 CD 的距离等于点 P 到原点 O 的距离?如果存在,求出点 P 的坐标;如果不存在,请说明理由;(3)过点 B 作 x 轴的垂线,交直线 CD 于点 F,将抛物线沿其对称轴平移,使抛物线与线段 EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?【解答】解:(1)设抛物线解析式为 y=a(x+2)(x﹣4).把 C(0,8)代入,得 a=﹣1.∴y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点 D(1,9);(2 分)(2)假设满足条件的点 P 存在.依题意设 P(2,t).由 C(0,8),D(1,9)求得直线 CD 的解析式为 y=x+8,它与 x 轴的夹角为 45°.设 OB 的中垂线交 CD 于 H,则 H(2,10).则 PH=|10﹣t|,点 P 到 CD 的距离为.又.(4 分)∴.平方并整理得:t2+20t﹣92=0,解之得 t=﹣10±8 .∴存在满足条件的点 P,P 的坐标为(2,﹣10±8 ).(6 分)(3)由上求得 E(﹣8,0),F(4,12).①若抛物线向上平移,可设解析式为 y=﹣x2+2x+8+m(m>0).第10页(共27页)当 x=﹣8 时,y=﹣72+m.当 x=4 时,y=m.∴﹣72+m≤0 或 m≤12.∴0<m≤72.(8 分)②若抛物线向下平移,可设解析式为 y=﹣x2+2x+8﹣m(m>0).由,有﹣x2+x﹣m=0.∴△=1﹣4m≥0,∴m≤.∴向上最多可平移 72 个单位长,向下最多可平移个单位长.(10 分)11.如图,在直角坐标系中,抛物线 y=x2+bx+c 的顶点 D 在直线 y=x 上运动.抛物线与 y 轴相交于 C 点.(1)当 b=﹣4 时,求 C 点坐标;(2)抛物线与 x 轴相交于 A、B 两点,当△ABD 为直角三角形时,求 b,c 的值;(3)线段 MN 的端点 M(﹣2,4),N(﹣1,1),若抛物线与线段 MN 有公共点,求 b 的取值范围.第11页(共27页)【解答】解:∵抛物线 y=x2+bx+c 的顶点 D 在直线 y=x 上运动,∴设抛物线 y=x2+bx+c 的顶点 D 的坐标是(﹣,﹣).(1)如图 1,∵点 D 在抛物线上,∴﹣=(﹣)2+b•(﹣)+c,即 c=﹣+ .又∵b=﹣4,c=﹣+ =6,即 c=6.令 x=0,则 y=c=6,即 C(0,6);(2)如图 2,连接 AD、BD.∵点 A、B 是抛物线 y=x2+bx+c 与 x 轴的两个交点,点 D 是顶点,∴AD=BD,∴在直角△ABD 中,∠ADB=90°.设 A(x1,0)、B(x2,0),则x1+x2=﹣b,x1x2=c.∴AB=|x1﹣x2|==,则,解得,即 b,c 的值分别是 2、0;(3)如图 3,当点 M(﹣1,1)在抛物线 y=x2+bx+c 上时,b 取最小值,所以,1=1﹣b+c,即 b=c,则 b=﹣+ ,解得 b=6;当点 N(﹣2,4)在抛物线 y=x2+bx+c 上时,b 取最大值,所以 4=4﹣2b+c,即 2b=c,则 2b=﹣+ ,解得 b=10,所以 b 的取值范围是 6≤b≤10.第12页(共27页)12.已知抛物线 y=a(x+1)2+c(a>0)与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与y 轴交于点 C,其顶点为 M,已知直线 MC 的函数表达式为 y=kx﹣3,与x 轴的交点为 N,且 cos∠BCO=.(1)求抛物线的解析式;(2)在此抛物线上是否存在异于点 C 的点 P,使以 N、P、C 为顶点的三角形是以 NC 为一条直角边的直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由.(3)如图 2,过点 A 作 x 轴的垂线,交直线 MC 于点 Q,若将抛物线沿其对称轴上下平移,使抛物线与线段 NQ 总有公共点,则抛物线向上最多可平移多少单位长度?向下最多可平移多少个单位长度?【解答】解:(1)由 y=kx﹣3,可知 OC=3,在 Rt△OBC 中,∵cos∠BCO =,∴BC=,OB==1,将 B(1,0))、C(0,﹣3)代入抛物线解析式,得,第13页(共27页)解得,∴抛物线解析式为 y=(x+1)2﹣4;(2)存在.由抛物线解析式得 M(﹣1,﹣4),设直线 MN 解析式为 y=kx+b,则,解得,∴y=x﹣3,N(3,0),△OCN 为等腰直角三角形.过 N 点作 CN 的垂线交 y 轴于(0,3),垂线解析式为 y=﹣x+3.联立,得 P 点坐标为(,)或(,),连接 AC,则 A(﹣3,0)点满足题意,∴P 点坐标为(,)或(,)或(﹣3,0);(3)设平移后抛物线解析式为 y=(x+1)2+m,①当抛物线与直线 MN 只有一个交点时,联立,得 x2+x+m+4=0,当方程组有一个解时,△=0,即 1﹣4(m+4)=0,解得 m=﹣,∴向上平移 4﹣=个单位,②当抛物线经过 N(3,0)时,(3+1)2+m=0,解得 m=﹣16,当抛物线经过 Q(﹣3,﹣6)时,(﹣3+1)2+m=﹣6,解得 m=﹣10,∴向下平移 16﹣4=12 个单位.即抛物线向上最多可平移个单位长度,向下最多可平移 12 个单位长度.13.如图,平面直角坐标系中,y=ax2﹣2amx+am2+2m+2 的顶点为 P,且 OP2 最小.(1)求 m 的值;(2)直线 l:y=2x+2 与 x 轴交于点 A、与 y 轴交于点 B.第14页(共27页)①抛物线与直线 l 交于两点,当这两点之间的距离为时,求 a 的值;②若抛物线与线段 AB 有两个公共点,请直接写出 a 的值或取值范围是a≥或 a≤﹣10 .【解答】解:(1)∵y=ax2﹣2amx+am2+2m+2=a(x﹣m)2+2m+2,∴P(m,2m+2),∴OP2=m2+(2m+2)2=5m2+8m+4=5(m+ )2+ ,∵OP2 最小.∴m=﹣;(2)设抛物线与直线 l 交于两点 C(x 1,y1),D(x2,y2),=2x1+2,y2=2x2+2,∴y∴y1﹣y2=2(x1﹣x2)由(1)知,m=﹣,∴y=ax2﹣2amx+am2+2m+2=ax2+ ax+ a+ ①;①∵直线 l:y=2x+2②,联立①②得,ax2+ ax+ a+ =2x+2,化简得,ax2+ x+ =0,∴x1+x2=﹣,x1x2=,∴CD2=(x1﹣x2)2+(y1﹣y2)2=5(x1﹣x2)2=5[(x1+x2)2﹣4x1x2]=5[ ﹣4×],第15页(共27页)∵两点之间的距离为,∴5[ ﹣4×]=,∴4a2=25,∴a=±;②如图,∵直线 l:y=2x+2 与 x 轴交于点 A、与 y 轴交于点 B,∴A(﹣1,0),B(0,2),y=ax2+ ax+ a+ =a(x+ )2+ ,∴抛物线的顶点 P 坐标(﹣,),把 x=﹣代入 y=2x+2 得,y=,∴点 P 在直线 l:y=2x+2 上,当 a>0 时,把 B(0,2)代入 y=a(x+ )2+ 得,a×+ =2,∴a=,∵抛物线与线段 AB 有两个公共点,且|a|越小抛物线开口就越大,根据图象得,a≥,当 a<0 时,把 A(﹣1,0)代入 y=a(x+ )2+ 得,a×+ =0,∴a=﹣10,∵抛物线与线段 AB 有两个公共点,且|a|越小抛物线开口就越大,根据图象得,a≤﹣10,即:抛物线与线段 AB 有两个公共点,a 的取值范围为 a≥或 a≤﹣10,故答案为:a≥或 a≤﹣10.第16页(共27页)14.如图,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒 1 个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c 经过点O 和点P.已知矩形ABCD 的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求 c,b(可用含t 的代数式表示);(2)当t>1 时,抛物线与线段AB 交于点M.在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;(3)在矩形 ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t 的取值范围.【解答】解:(1)把 x=0,y=0 代入 y=x2+bx+c,得 c=0,再把 x=t,y=0 代入 y=x2+bx,得 t2+bt=0,∵t>0,∴b=﹣t;(2)不变.第17页(共27页)∵抛物线的解析式为:y=x2﹣tx,且 M 的横坐标为 1,∴当 x=1 时,y=1﹣t,∴M(1,1﹣t),∴AM=|1﹣t|=t﹣1,∵OP=t,∴AP=t﹣1,∴AM=AP,∵∠PAM=90°,∴∠AMP=45°;(3)<t<.①左边 4 个好点在抛物线上方,右边 4 个好点在抛物线下方:无解;②左边 3 个好点在抛物线上方,右边 3 个好点在抛物线下方:则有﹣4<y2<﹣3,﹣2<y3<﹣1 即﹣4<4﹣2t<﹣3,﹣2<9﹣3t<﹣1,<t<4 且<t<,解得<t<;③左边 2 个好点在抛物线上方,右边 2 个好点在抛物线下方:无解;④左边 1 个好点在抛物线上方,右边 1 个好点在抛物线下方:无解;⑤左边 0 个好点在抛物线上方,右边 0 个好点在抛物线下方:无解;综上所述,t 的取值范围是:<t<.15.在平面直角坐标系 xOy 中,直线 y=4x+4 与 x 轴,y 轴分别交于点 A,B,抛物线 y=ax2+bx ﹣3a 经过点 A,将点 B 向右平移 5 个单位长度,得到点 C.(1)求点 C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段 BC 恰有一个公共点,结合函数图象,求 a 的取值范围.【解答】解:(1)与 y 轴交点:令 x=0 代入直线 y=4x+4 得 y=4,∴B(0,4),∵点 B 向右平移 5 个单位长度,得到点 C,∴C(5,4);(2)与 x 轴交点:令 y=0 代入直线 y=4x+4 得 x=﹣1,第18页(共27页)∴A(﹣1,0),∵点 B 向右平移 5 个单位长度,得到点 C,将点 A(﹣1,0)代入抛物线 y=ax2+bx﹣3a 中得 0=a﹣b﹣3a,即 b=﹣2a,∴抛物线的对称轴 x=﹣=﹣=1;(3)∵抛物线 y=ax2+bx﹣3a 经过点 A(﹣1,0)且对称轴 x=1,由抛物线的对称性可知抛物线也一定过 A 的对称点(3,0),①a>0 时,如图 1,将 x=0 代入抛物线得 y=﹣3a,∵抛物线与线段 BC 恰有一个公共点,∴﹣3a<4,a>﹣,将 x=5 代入抛物线得 y=12a,∴12a≥4,a≥,∴a≥;②a<0 时,如图 2,将 x=0 代入抛物线得 y=﹣3a,∵抛物线与线段 BC 恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段 BC 上时,则顶点为(1,4),如图 3,将点(1,4)代入抛物线得 4=a﹣2a﹣3a,解得 a=﹣1.综上所述,a≥或 a<﹣或 a=﹣1.第19页(共27页)16.如图,在平面直角坐标系中,点 P 从原点 O 出发,沿 x 轴向右以每秒一个单位长的速度运动 t 秒(t>0),抛物线y=﹣x2+bx 经过点 O 和点 P.已知矩形 ABCD 的三个顶点为A(1,0),B(3,0),D(1,3).(1)求 b 的值(用 t 的代数式表示);(2)当 3<t<4 时,设抛物线分别与线段 AD,BC 交于点 M,N.①设直线 MP 的解析式为 y=kx+m,在点P 的运动过程中,你认为 k 的大小是否会变化?若变化,请说明理由;若不变,请求出 k 的值;②在点 P 的运动过程中,当 OM⊥MN 时,求出 t 的值;第20页(共27页)(3)在点 P 的运动过程中,若抛物线与矩形 ABCD 的四条边有四个交点,请直接写出 t 的取值范围.【解答】解:(1)∵点 P 的坐标为(t,0),∴0=﹣t2+bt,解得:b=t,(2)①把 x=1 代入 y=﹣x2+tx,得 y=t﹣1,即 M(1,t﹣1),∴,解得 k=﹣1,②如图,过点 N 作 NH⊥AD 于点 H,求得:BN=3t﹣9,MH=8﹣2t,HN=AB=2,当 OM⊥MN 时,可证得△OAM∽△MHN,故可得,即,解得,(舍去)从而可得:.(3)抛物线的解析式为 y=﹣x2+bx=﹣(x﹣)2+ ,①因为抛物线的顶点纵坐标大于点 D 和点 C 的纵坐标,所以>3,解得 b>2 或 b<﹣2 ;②当 x=1 时,y=﹣1+b<3,解得:b<4,综上可得:2 <b<4.第21页(共27页)17.如图,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA、OC 分别在 y 轴和 x 轴的正半轴上,且长分别为 1、4,D 为边 AB 的中点,一抛物线 l 经过点 A、D 及点 M(﹣1,m).(1)把△OAD 沿直线 OD 折叠后点 A 落在点 A′处,DA′与 OC 交于 H,求证:△OHD 是等腰三角形.(2)求点 A′的坐标;(3)求抛物线的解析式(用含 m 的式子表示);(4)连接 OA′并延长与线段 BC 的延长线交于点 E,若抛物线与线段 CE 相交,求实数m 的取值范围.【解答】解:(1)如图 1,由折叠得:∠ADO=∠ODH,∵四边形 ABCO 为矩形,∴AB∥OC,∴∠ADO=∠DOH,∴∠DOH=∠ODH,∴△OHD 是等腰三角形;(2)如图 2,过 A′作 A′F⊥x 轴于 F,由折叠得:A′D=AD=AB=2,OA′=OA=1,∠OA′H=90°,设 A′H=x,则 DH=OH=2﹣x,第22页(共27页)由勾股定理得:12+x 2=(2﹣x )2,x = ,即 A ′H = ,∴DH =OH =2﹣ = ,∴S △A ′OH = OA ′•A ′H = OH •A ′F ,∴1× = ×A ′F ,∴A ′F = ,由勾股定理得:OF = = = ,∴A ′( ,﹣ ),(3)设抛物线的解析式为:y =ax 2+bx+c ,把 A (0,1)、D (2,1)、M (﹣1,m )代入得: ,解得: ,∴抛物线的解析式为:y = + +1,(4)∵A ′F ∥BE , ∴,∴ ,∴CE =3, ∴E (4,﹣3),当 x=4 时,y=+ +1,y=,∵﹣3≤y≤0,∴﹣3≤≤0,第23页(共27页)∴﹣≤m≤.18.在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量 x,这两个函数对应的函数值记为 y1、y2,都有点(x,y1)和(x,y2)关于点(x,x)中心对称(包括三个点重合时),由于对称中心都在直线 y=x 上,所以称这两个函数为关于直线 y =x 的特别对称函数.例如:和为关于直线 y=x 的特别对称函数.(1)若 y=3x+2 和 y=kx+t(k≠0)为关于直线 y=x 的特别对称函数,点 M(1,m)是y=3x+2 上一点.①点 M(1,m)关于点(1,1)中心对称的点坐标为(1,﹣3).②求 k、t 的值.(2)若 y=3x+n 和它的特别对称函数的图象与 y 轴围成的三角形面积为 2,求 n 的值.(3)若二次函数 y=ax2+bx+c 和 y=x2+d 为关于直线 y=x 的特别对称函数.①直接写出 a、b 的值.②已知点 P(﹣3,1)、点Q(2,1),连结PQ,直接写出 y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围.第24页(共27页)【解答】解:(1)①∵点 M(1,m)是 y=3x+2 上一点,∴m=5,∴M(1,5),∴点 M 关于(1,1)中心对称点坐标为(1,﹣4),故答案为(1,﹣3);②∵y=3x+2 和 y=kx+t(k≠0)为关于直线 y=x 的特别对称函数,∴=x,∴(1+k)x+(t+2)=0,∴k=﹣1,t=﹣2;(2)设 y=3x+n①的特别对称函数为 y=m'x+n',∴=x,∴(1+m')x+n+n'=0,∴m'=﹣1,n'=﹣n,∴y=3x+n 的特别对称函数为 y=﹣x﹣n②,联立①②解得,x=﹣n,y=﹣n,∵y=3x+n 和它的特别对称函数的图象与 y 轴围成的三角形面积为 2,∴|n﹣(﹣n)|×|﹣n|=2,∴n=±2;(3)①∵二次函数 y=ax2+bx+c 和 y=x2+d 为关于直线 y=x 的特别对称函数,∴,∴(a+1)x2+(b﹣2)x+c+d=0,∴a=﹣1,b=2,c=﹣d;②由①知,a=﹣1,b=2,c=﹣d,∴二次函数 y=﹣x2+2x﹣d 和 y=x2+d,第25页(共27页)∴这两个函数的对称轴为直线 x=1 和 x=0,∵P(﹣3,1)、点Q(2,1),当d<0 时,如图 1,当抛物线 C2:y=x2+d 恰好过点 P(﹣3,1)时,即:9+d=1,∴d=﹣8,当抛物线 C1:y=﹣x2+2x﹣d 恰好过点 Q(2,1)时,即:﹣4+2﹣d=1,∴d=﹣3,y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围为﹣8≤d <﹣3,如图 2,当 0≤d<1 时,抛物线 C1 与线段 PQ 有两个交点,而抛物线 C2 与线段 PQ 没有交点,∴y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围为 0≤d <1,即:y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围为﹣8 ≤d<﹣3 或 0≤d<1.第26页(共27页)1、一知半解的人,多不谦虚;见多识广有本领的人,一定谦虚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

···二次函数专题之参数范围问题
基本思想方法:
①函数与方程;
②数形结合;
③化归与转化;
④逆向思维;
⑤分类
1x2-x+2 1.(2015海淀一模)在平面直角坐标系xoy中,抛物线y=
2
与y轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称。

(1)求直线BC的解析式;
(2)点D在抛物线上,且点D的横坐标为4,将抛物线在点A,D之间的部分(包含点A,D)记为图像G,若图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围。

2.(2015朝阳二模)已知关于x的一元二次方程ax2-2(a-1)x+a-2=0(a >0).
(1)求证:方程有两个不等的实数根.
(2)设方程的两个实数根分别为x1,x2(其中x1>x2).若y是关于a的函数,且y=ax2+x1,求这个函数的表达式.
(3)在(2)的条件下,若使y≤-3a2+1,则自变量a的取值范围为3.(2015顺义二模)已知关于x的方程x2+(m-2)x+m-3=0.
(1)求证:方程x2+(m-2)x+m-3=0总有两个实数根;
(2)求证:抛物线y=x2+(m-2)x+m-3总过x轴上的一个定点;(3)在平面直角坐标系xoy中,若(2)中的定点记作A,抛物线y=x2+(m-2)x+m-3与x轴的另一个交点为B,与y轴交于点C,且△OBC 的面积小于或等于8,求m的取值范围.
4.(2015怀柔一模)在平面直角坐标系xoy中,二次函数y=(a-1)x2+2x+1的图像与x轴有交点,a为正整数.
(1)求a的值.
(2)将二次函数y=(a-1)x2+2x+1的图像先向右平移m个单位长度,再向下平移m2+1个单位长度,当-2≤x≤1时,二次函数有最小值-3,求实数m的值.
5.(2015石景山一模)在平面直角坐标系xoy中,抛物线y=mx2-2mx-3(m≠0)与x轴交于A(3,0),B两点.
(1)求抛物线的表达式及点B的坐标.
(2)当-2<x<3时的函数图像记为G,求此时函数y的取值范围.
(3)在(2)的条件下,将图像G在x轴上方的部分沿x轴翻折,图像G的其余部分保持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b(k≠0)与图像M在第三象限内有两个公共过点,结合图像求b的取值范围.
6.(2014北京中考) 对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y ,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1)分别判断函数y=x
1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数若是有界函数,求边界值;
(2)若函数y=-x+1(a ≤ x ≤ b,b > a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;
(3)将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数
的边界值是t ,当m 在什么范围时,满足143≤≤t
7.(2015海淀一模)在平面直角坐标系xoy 中,对于点P (a,b )和点Q(a,b ’)给出如下定义:
若b=,
<⎩⎨⎧-≥1
,1,a b a b 则称点Q 为点P 的限变点,例如,点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).
(1)①点(3,1)的限变点的坐标是____;
②在点A (-2,-1),B (-1,2)中有一个点是函数y=x 2图象上某一点的限变点, 这个点是____;
(2)若点P 在函数y=-x +3(-2≤x ≤k ,k> -2)的图象上,其限变点Q 的纵坐标b ′,的取值范围是-5≤b ’≤2,求k 的取值范围;
(3)若点P 在关于x 的二次函数y=x 2 -2tx+t2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s=m -n ,求s 关于t 的函数解析式及s 的取值范围.。

相关文档
最新文档