5平行线的性质定理
初中数学平行线与平行四边形的性质
初中数学平行线与平行四边形的性质在初中数学中,平行线和平行四边形是重要的概念和形状。
平行线是指在同一个平面内永远不会相交的两条直线,而平行四边形是具有两对平行边的四边形。
本文将探讨平行线和平行四边形的性质,以及它们之间的关系。
一、平行线的性质1. 直线平行定理直线平行定理指出,如果一条直线与两条平行线相交,那么这两条平行线之间的对应角是相等的。
这意味着当两条直线被一条截断时,形成的对应角是相等的。
2. 平行线之间的夹角关系平行线之间的夹角关系有三种情况:- 对顶角:对顶角是指两条平行线被一条截线所形成的对应角。
对顶角是相等的。
- 内错角:当两条平行线被一条截线所形成的内角对顶角相加等于180度。
- 同旁内角:同旁内角是指两条平行线被一条截线所形成的同旁两个内角,这两个角是相等的。
3. 平行线与转角定理转角定理说明了通过两条平行线和一条截线形成的转角规律。
当两直线被截线交叉形成数个转角时,这些转角之和等于180度。
二、平行四边形的性质1. 对边关系平行四边形的两对对边是平行的。
也就是说,平行四边形的两条相对边互相平行。
2. 对角线关系平行四边形的对角线互相平分。
对角线相交的交点称为对角线的中点。
3. 内角和平行四边形的内角和为360度。
也就是说,平行四边形的四个内角的度数之和等于360度。
4. 其他性质平行四边形的两组相邻角互补,也就是说,互为补角的两个角是相邻角。
三、平行线与平行四边形之间的关系1. 平行四边形的性质可推导出平行线的性质通过平行四边形的性质,可以推导出平行线之间的夹角关系。
例如,通过平行四边形的对角线关系,可以得到平行线的转角定理。
2. 平行线的性质可应用于平行四边形的证明通过平行线的性质,可以证明一个四边形是平行四边形。
例如,可以通过观察四边形的对边是否平行来判断它是否为平行四边形。
四、例题演练接下来,我们通过几个例题来加深对平行线和平行四边形性质的理解:1. 已知直线AB和CD平行,且∠BCD = 110度,求∠CAB的度数。
七年级数学下册 5.3平行线的性质(八大题型)(解析版 )
七年级下册数学《第五章相交线与平行线》5.3平行线的性质平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.概念:判断一件事情的语句,叫做命题.【注意】(1).只要对一件事情作出了判断,不管正确与否,都是命题.(2).如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【注意】在改写成“如果……那么……”的形式时,需对命题的语序进行调整或增减词语,使句子完整通顺,但不改变原意.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.【注意】判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.【拓展】数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.如直线公理:两点确定一条直线.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).【注意】(1)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.(2).定理一定是真命题,但真命题不一定是定理.证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.是()A.40°B.50°C.60°D.70°【分析】由垂线可得∠ACB=90°,从而可求得∠B的度数,再结合平行线的性质即可求∠BCD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵∠A=50°,∴∠B=180°﹣∠ACB﹣∠A=40°,∵CD∥AB,∴∠BCD=∠B=40°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】(2023秋•简阳市期末)如图,a∥b,∠1=40°,∠2=∠3,则∠4=()A.70°B.110°C.140°D.150°【分析】先根据a∥b,∠1=40°得出∠2+∠3的度数,由平角的定义得出∠5的度数,再由∠2=∠3得出∠2的度数,再得出∠2+∠5的度数,进而可得出结论.【解答】解:∵a∥b,∠1=40°,∴∠2+∠3=180°﹣40°=140°,∴∠5=180°﹣140°=40°,∵∠2=∠3,∴∠2=70°,∴∠2+∠5=70°+40°=110°,∴∠4=∠2+∠5=110°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.【变式1-2】(2022春•五莲县期末)如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10°B.15°C.20°D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;两直线平行,同旁内角互补.【变式1-3】(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.【变式1-4】(2022秋•安岳县期末)已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【点评】本题综合考查了平行线的性质,角的和差,等量代换,邻补角性质,对顶角性质等相关知识点,重点掌握平行线的性质,难点是两个角的两边分别平行是射线平行,分类画出符合题意的图形后计算.【变式1-5】(2022春•海淀区月考)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD 平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【点评】本题主要考查了角的计算,平行线的性质以及角平分线的定义.解题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.【变式1-6】(2023秋•海门区期末)如图,直线CE,DF相交于点P,且CE∥OB,DF∥OA.(1)若∠AOB=45°,求∠PDB的度数;(2)若∠CPD=45°,求∠AOB的度数;(3)像(1)(2)中的∠AOB,∠CPD称四边形PCOD的一组“对角”,则该四边形的另一组对角相等吗?请说明理由.【分析】(1)根据两直线平行,同位角相等即可求得答案;(2)根据两直线平行,同位角相等及两直线平行,内错角相等即可求得答案;(3)根据两直线平行,同旁内角互补即可证得结论.【解答】解:(1)∵DF∥OA,∠AOB=45°,∴∠PDB=∠AOB=45°;(2)∵CE∥OB,∴∠CPD=∠PDB,∵DF∥OA,∴∠PDB=∠AOB,∴∠AOB=∠CPD,∵∠CPD=45°,∴∠AOB=45°;(3)相等,理由如下:∵CE∥OB,DF∥OA,∴∠OCP+∠AOB=180°,∠CPD+∠ODP=180°,∵∠AOB=∠CPD,∴∠OCP=∠ODP.【点评】本题考查平行线性质,熟练掌握并利用平行线的性质是解题的关键.【变式1-7】(2021春•黄冈期中)如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG 的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-8】(2023秋•原阳县校级期末)如图,已知AB∥CD,BE平分∠ABC.BE垂直于CE,求证:CE平分∠BCD.【分析】过E作EF∥AB交BC于点F,根据平行线的性质可求得∠ABC+∠BCD=180°,再结合垂线的定义可得∠ABE+∠DCE=90°,∠EBC+∠ECB=90°,再利用角平分线的定义可证明结论.【解答】证明:过E作EF∥AB交BC于点F,∴∠ABE=∠FEB,∵AB∥CD,∴EF∥CD,∠ABC+∠BCD=180°,∴∠DCE=∠FEC,∵BE⊥CE,∴∠BEF+∠CEF=∠ABE+∠DCE=90°,∴∠EBC+∠ECB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DCE=∠BCE,∴CE平分∠BCD.【点评】本题主要考查平行线的性质,角平分线的定义,垂线的定义,证明∠ABE+∠DCE=90°,∠EBC+∠ECB=90°是解题的关键.【例题2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】(2022春•龙岗区期末)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.【变式2-2】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【点评】本题考查了平行线的性质和判定,三角形内角和定理,角平分线定义的应用,能正确作出辅助线,并综合运用定理进行推理是解此题的关键.【变式2-3】(2022春•海淀区校级月考)如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,根据三角形内角和为180°,可得∠CFG=90°,由垂直定义可证得结论.【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=12∠BAD,∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=12∠B,∴∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义,三角形内角和定理等知识,解题的关键是掌握平行线判定定理和性质定理.【例题3】(2023秋•深圳期末)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO=44°,∠BOC=133°,则∠OCD的度数为()A.88°B.89°C.90°D.91°【分析】依题意得AB∥OP∥CD,进而根据平行线的性质得∠BOP=∠ABO=44°,∠OCD=∠POC,从而可求出∠POC=∠BOC﹣∠BOP=89°,进而可得∠OCD的度数.【解答】解:∵AB∥OP∥CD,∠ABO=44°,∴∠BOP=∠ABO=44°,∠OCD=∠POC,∵∠BOC=133°,∴∠POC=∠BOC﹣∠BOP=133°﹣44°=89°,∴∠OCD=∠POC=89°.故选:B.【点评】此题主要考查了平行线的性质,准确识图,熟练掌握平行线的性质是解决问题的关键.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式3-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B 两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【点评】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.【变式3-2】(2022春•沧县期中)某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.【变式3-3】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.【变式3-4】(2023秋•市南区期末)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,则此时扶手AB与靠背DM的夹角∠ANM=.【分析】由AB∥CD可求得∠BOD的度数,再根据OE∥DM即可求出∠ANM的度数.【解答】解:∵AB∥CD,∠ODC=32°,∴∠BOD=∠ODC=32°.∵OE⊥OF,∴∠EOF=90°,∴∠EOB=90°+32°=122°.∵OE∥DM,∠ANM=∠EOB=122°.故答案为:122°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解答本题的关键.【变式3-5】(2023秋•东莞市校级期末)如图为某椅子的侧面图,∠DEF=120°.DE与地面平行,∠ABD=50°,则∠ACB=.【分析】根据平行得到∠ABD=∠EDC=50°,再利用外角的性质和对顶角相等,进行求解即可.【解答】解:由题意得:DE∥AB,∴∠ABD=∠EDC=50°,∵∠DEF=∠EDC+∠DCE=120°,∴∠DCE=70°,∴∠ACB=∠DCE=70°,故答案为:70°.【点评】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.【变式3-6】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的转化和计算.【变式3-7】(2023春•岱岳区期末)如图,EF,MN分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4,试判断AB与CD的位置关系,并说明理由.【分析】先根据MN∥EF得出∠2=∠3,再由∠1=∠2,∠3=∠4可得出∠1=∠2=∠3=∠4,故可得出∠1+∠2=∠3+∠4,再由∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),故可得出∠ABC=∠BCD,据此得出结论.【解答】解:AB∥CD.理由:∵MN∥EF,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,∵∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),∴∠ABC=∠BCD,∴AB∥CD.【点评】本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解题的关键.【例题4】(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB =90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.【变式4-1】(2022秋•琼海期中)如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2B.∠2+∠3=90°C.∠3+∠4=180°D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【点评】本题主要考查平行线的性质,解题关键是熟练掌握平行线的性质定理.【变式4-2】(2023秋•榆树市校级期末)把一副三角板按如图所示摆放,使FD∥BC,点E落在CB的延长线上,则∠BDE的大小为度.【分析】由题意可得∠EDF=45°,∠ABC=60°,由平行线的性质可得∠BDF=∠ABC=60°,从而可求∠BDE的度数.【解答】解:由题意得:∠EDF=45°,∠ABC=60°,∵FD∥BC,∴∠BDF=∠ABC=60°,∴∠BDE=∠BDF﹣∠EDF=15°.故答案为:15.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【变式4-3】(2023秋•新野县期末)如图,直线m∥n,且分别与直线l交于A,B两点,把一块含60°角的三角尺按如图所示的位置摆放,若∠2=98°,则∠1=.【分析】先根据平角的定义求出∠4的度数,再根据角平分线的性质即可得出答案.【解答】解:由已知可得,∠3=30°,∵∠2=98°,∴∠4=180°﹣∠2﹣∠3=52°,∵m∥n,∴∠1=∠4=52°.故答案为:52°.【点评】本题主要考查了平行线的性质,解题的关键是牢记平行线的性质.【变式4-4】(2022•大渡口区校级模拟)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85°B.75°C.65°D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.【变式4-5】(2022秋•绿园区校级期末)如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD 的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.【变式4-6】(2023秋•盐城期末)将一副三角板按如图所示的方式摆放,其中∠ACB=∠ECD=90°,∠A=45°,∠D=60°.若AB∥DE,则∠ACD的度数为.【分析】过点C作CF∥AB,则有AB∥CF∥DE,从而可得∠ACF=∠A=45°,∠DEF=∠D=60°,即可求∠ACD的度数.【解答】解:过点C作CF∥AB,如图,∵AB∥DE,∴AB∥CF∥DE,∴∠ACF=∠A=45°,∠DEF=∠D=60°,∴∠ACD=∠ACF+∠DCF=105°.故答案为:105°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58°B.64°C.72°D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.【点评】本题考查了平行线的性质、翻折变换的性质、长方形的性质以及平角定义;熟练掌握平行线的性质和翻折变换的性质是解题的关键.【变式5-1】(2022秋•陈仓区期末)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°=77°,故选:A.【点评】本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【变式5-2】(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.【变式5-3】(2022秋•昭阳区期中)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.【变式5-4】(2023秋•阳城县期末)将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=.【分析】证明∠2=∠4,再利用三角形的外角的性质解决问题.【解答】解:如图,∵a∥b,∴∠2=∠5,由翻折变换的性质可知∠4=∠5,∴∠4=∠2,∵∠1=∠2+∠4=110°,∴∠2=∠4=55°,故答案为:55°.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是理解翻折变换的性质,属于中考常考题型.【变式5-5】(2022•沭阳县模拟)已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135°B.∠2﹣∠1=15°C.∠1+∠2=90°D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠D′GD,∴∠1+∠2=135°,故选:A.【点评】本题考查折叠的性质和角平分线的定义,由折叠的性质得到∠1=12∠A′EA,∠2=12∠D′GD是解题关键.【变式5-6】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48°B.72°或36°C.36°或54°D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.【点评】本题主要考查了折叠问题,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【例题6】(2023秋•仁寿县期末)如图,在△ABC中,AD⊥BC,EF∥BC,EC⊥CF,∠EFC=∠ACF,则下列结论:①AD⊥EF;②CE平分∠ACB;③∠FEC=∠ACE;④AB∥CF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【分析】根据平行线的性质得到AD⊥EF,故①符合题意;∠CEF=∠BCE,根据余角的性质得到∠CEF =∠ACE,故③符合题意;根据角平分线的定义得到CE平分∠ACB,故②符合题意;根据已知条件无法证明AB∥CF,故④不符合题意.【解答】解:∵AD⊥BC,EF∥BC,∴AD⊥EF,故①符合题意;∵EF∥BC,∴∠CEF=∠BCE,∵EC⊥CF,∴∠ECF=90°,∴∠CEF+∠F=∠ACE+∠ACF=90°,∵∠EFC=∠ACF,∴∠CEF=∠ACE,故③符合题意;∴∠ACE=∠BCE,∴CE平分∠ACB,故②符合题意;∵EC⊥CF,要使AB∥CF,则CE⊥AB,∵CE平分∠ACB,但AC不一定与BC相等,∴无法证明AB∥CF,故④不符合题意,故选:C.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.【变式6-1】(2023秋•浚县期末)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③【分析】根据平行线的性质和判定逐一进行判断求解即可.【解答】解:①若∠1=∠2,则a∥e∥b,则∠3=∠4,故此说法正确;②若∠1+∠4=180°,由a∥b得到,∠5+∠4=180°,则∠1=∠5,则c∥d;故此说法正确;③由a∥b得到,∠5+∠4=180°,由∠2+∠3+∠5+180°﹣∠1=360°得,∠2+∠3+180°﹣∠4+180°﹣∠1=360°,则∠4﹣∠2=∠3﹣∠1,故此说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故此说法错误.故选:B.【点评】此题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【变式6-2】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点评】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.【变式6-3】(2023春•镇江期中)如图,AB∥CF,∠ACF=80°,∠CAD=20°,∠ADE=120°.(1)直线DE与AB有怎样的位置关系?说明理由;(2)若∠CED=71°,求∠ACB的度数.【分析】(1)根据平行线的性质,得出∠BAC=∠ACF=80°,根据∠CAD=20°,求出∠BAD=60°,根据∠BAD+∠ADE=180°,即可得出结论;(2)根据平行线的性质得出∠B=∠CED=71°,根据三角形内角和定理求出∠ACB=29°.【解答】解:(1)DE∥AB;理由如下:∵AB∥CF,∠ACF=80°,∴∠BAC=∠ACF=80°,∵∠CAD=20°,∴∠BAD=∠BAC﹣∠DAC=60°,∵∠ADE=120°,∴∠BAD+∠ADE=60°+120°=180°,∴DE∥AB.(2)DE∥AB,∠CED=71°,∴∠B=∠CED=71°,∵∠BAC=80°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣71°﹣80°=29°.【点评】本题主要考查了平行线的判定和性质,三角形内角和定理的应用,解题的关键是熟练掌握平行线的判定.【变式6-4】(2022春•舞阳县期末)如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【变式6-5】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.。
平行线的特征
平行线的特征在几何学中,平行线是指在同一个平面上不相交且永不相交的两条直线。
平行线的研究对于很多几何问题的解决至关重要。
本文将介绍平行线的特征以及相关的概念和定理。
1. 平行线的定义平行线的定义是在欧几里得几何中最基本的概念之一。
两条线段如果在同一平面内,且它们不相交,称为平行线。
平行线可以用符号“||”表示。
例如,线段AB || 线段CD表示线段AB与线段CD平行。
2. 平行线的特征平行线具有以下特征:- 任意两条平行线的倾斜角度相等。
平行线的斜率相等或者其中一个不存在斜率。
- 平行线之间的距离是恒定的。
即使平行线在平面上不断延伸,它们之间的距离始终保持相等。
- 平行线在任何一个平面上都不会相交。
如果平行线与其他线段相交,那么它们一定不在同一个平面上。
3. 平行线的判定方法在几何学中,有几种方法可以判定两条线是否平行,包括:- 平行线的定义法:根据平行线的定义,如果两条线段不相交,即可判断它们平行。
- 夹角判定法:如果两条直线之间的夹角为180°,即为一对平行线。
- 平行线判定定理:通过已知条件,如线段的斜率或者两条线段上一点的坐标,可以应用平行线判定定理来判断线段是否平行。
4. 平行线的性质和定理在几何学中,有一些与平行线相关的重要性质和定理,包括:- 平行线的转置定理:如果一条直线与另外两条平行线相交,那么这两条平行线也互相相交。
- 平行线的逆定理:如果一条直线与一组平行线相交,并且这组平行线中的一条与该直线垂直,则该直线与该组平行线的其他线段也垂直。
- 平行线截切定理:如果一条直线截取两组平行线的一段,则这两个截断段的比例相等。
总结:平行线是几何学中的基本概念之一,具有其独特的特征和性质。
准确理解并应用平行线的特征和判定方法,对于解决各种几何问题具有重要意义。
通过研究平行线的性质和定理,我们可以推导出其他有关直线和角度的重要结论,进一步拓展和应用几何学知识。
以上就是关于平行线的特征的相关内容。
平行线的性质
平行线的性质平行线是几何学中一个重要的概念,它具有一系列独特的性质和规律。
本文将从定义、性质以及常见应用几个方面来探讨平行线的特点。
一、定义平行线指在同一个平面上,永远不会相交的两条直线。
两条平行线之间的距离是不变的,无论它们延伸多远。
二、性质1. 平行线具有相同的斜率:对于两条平行线,它们的斜率相等。
可以通过直线的斜率公式来证明这个性质。
2. 平行线没有交点:平行线不会相交,因此在它们之间不存在交点。
这一性质是平行线的基本特征。
3. 平行线的内角和性质:当一条直线与两条平行线相交时,相应的内角和是补角。
也就是说,这些内角的和等于180度。
4. 平行线的外角性质:当一条直线与两条平行线相交时,相应的外角是等于对应内角的。
5. 平行线的转角性质:当有两条平行线与一条交线相交时,它们所对应的转角相等。
三、应用平行线的性质在几何学中有广泛的应用。
下面列举几个常见的应用场景。
1. 建筑与设计:在建筑和设计过程中,平行线的概念经常被用来处理墙壁、地板、屋顶等元素的布局。
通过确保平行线之间的距离一致,可以营造出整齐、协调的空间效果。
2. 路面交通:在道路设计和交通规划中,平行线的性质被用于绘制车行道、人行道和停车位等交通设施。
通过确保平行线的平直性和正确的间距,可以提高交通流畅度和安全性。
3. 数学证明:平行线的性质在数学证明中扮演重要的角色。
通过运用平行线的相关性质和定理,可以推导出更复杂的几何定理,解决各种几何问题。
总结:平行线是几何学中一个基础而重要的概念,它具有独特的性质和规律。
通过理解和应用平行线的性质,我们可以更好地解决几何问题,同时在建筑、设计和交通规划等领域中发挥重要作用。
掌握平行线的性质对于理解几何学和应用几何学都是至关重要的。
认识平行线垂直线及其性质
认识平行线垂直线及其性质在几何学中,平行线和垂直线是基本的概念和性质。
它们在一些常见的几何定理和问题中起着重要的作用。
本文将介绍平行线和垂直线的定义、性质以及相关定理。
一、平行线的定义和性质平行线是指在同一个平面内永远不相交的两条直线。
具体来说,如果两条直线在平面内没有交点,我们就称它们为平行线。
如果将两条平行线延长到无限远,它们将永远保持相同的距离。
平行线具有以下性质:1. 平行线的夹角等于180度:设有两条直线L1和L2平行,它们之间的夹角为θ,则θ=180度。
2. 平行线的转角是相等的:设有两条平行线L1和L2,如果从L1任意一点开始作一条与L2相交的直线,再从与L2的交点开始作一条与L1相交的直线,这两条相交直线的转角是相等的。
二、垂直线的定义和性质垂直线是指在同一个平面内形成直角(即角度为90度)的两条直线。
具体而言,如果两条直线的角度为90度,我们就称它们为垂直线。
垂直线具有以下性质:1. 垂直线的转角等于90度:如果两条直线L1和L2垂直,它们之间的夹角为90度。
2. 垂直线与平行线之间的关系:如果一条直线L1与一条平行线L2相交,那么直线L1与L2的垂线也相交且互相垂直。
三、平行线和垂直线的重要定理1. 同位角定理:如果两条平行线L1和L2被一条截线交叉,那么对应的同位角相等。
2. 内错角定理:如果两条平行线L1和L2被一条截线交叉,那么同位内错角对应相等。
3. 外错角定理:如果两条平行线L1和L2被一条截线交叉,那么同位外错角对应相等。
4. 垂直线的性质:如果一条线段与垂直线相交,那么其两个交点与垂直线的连线是相等的。
5. 垂直线的唯一性:通过同一点可作一条且仅一条垂直线。
这些定理和性质为我们解决许多几何问题提供了基础。
我们可以利用这些性质来构造平行线、垂直线,计算角度和线段的长度等。
总结平行线和垂直线是几何学中的重要概念,它们具有独特的性质和定理。
通过了解它们的定义和性质,我们能够更好地理解几何学中的各种问题和定理。
平行线与垂直线的性质及判定方法
平行线与垂直线的性质及判定方法平行线和垂直线是几何学中常见的重要概念。
对于这两种线相互之间的性质以及如何准确判定它们的方法,本文将进行详细介绍。
一、平行线的性质及判定方法平行线是指在同一个平面内永远不会相交的两条直线。
关于平行线的性质和判定方法,我们可以从以下几个方面进行说明。
1. 平行线的性质1.1 不同于同一直线上的两点,同一平面上不同直线上的两点无法连线。
1.2 平行线之间的距离始终相等。
1.3 平行线对应的内角、外角相等。
1.4 平行线的斜率相等或者不存在。
2. 平行线的判定方法2.1 通过观察法判定平行线:如果两条直线的方向相同或者相互平行,它们就是平行线。
可以通过观察直线的倾斜角度或者倾斜方向来判断。
2.2 通过斜率判定平行线:计算两条直线的斜率,如果它们的斜率相等或者不存在,那么这两条直线即为平行线。
2.3 通过平行线定理判定平行线:平行线定理是指如果有一直线与两条平行线相交,那么这两条直线也是平行线。
二、垂直线的性质及判定方法垂直线是指在同一个平面上与另一条直线相交时,两条直线之间的角度为90度。
下面我们来介绍垂直线的性质和判定方法。
1. 垂直线的性质1.1 垂直线之间相交的角度为90度。
1.2 垂直线上的两条线段的长度相等。
1.3 垂直线的斜率的乘积为-1,其中一个垂直线的斜率不存在。
2. 垂直线的判定方法2.1 通过观察法判定垂直线:如果两条直线的交角为90度,它们就是垂直线。
可以通过观察直线之间的交角来判断。
2.2 通过斜率判定垂直线:计算两条直线的斜率,如果斜率的乘积为-1,其中一个直线的斜率不存在,那么这两条直线即为垂直线。
2.3 通过垂直线定理判定垂直线:垂直线定理是指如果两条直线相互垂直,则它们的斜率乘积为-1。
综上所述,平行线与垂直线在几何学中有着重要的性质和判定方法。
对于平行线来说,我们可以通过观察法、斜率以及平行线定理来判定。
而对于垂直线来说,我们可以通过观察法、斜率以及垂直线定理来判定。
平行线的判定与性质
平行线的判定与性质平行线,是在同一个平面上永不相交的两条直线。
在几何学中,判定两条直线是否平行,以及研究平行线的性质,是非常重要的内容。
本文将探讨平行线的判定方法,以及它们所具有的一些基本性质。
一、平行线的判定方法1. 直线的斜率判定法两条直线平行的充分必要条件是它们的斜率相同。
设直线L₁的斜率为k₁,直线L₂的斜率为k₂,那么如果k₁ = k₂,则L₁与L₂平行。
这是平行线的一种常见判定方法。
2. 直线的倾斜角度判定法两条直线平行的充分必要条件是它们的倾斜角度相同。
倾斜角度可以通过斜率来计算,利用三角函数的关系:倾斜角度θ = arctan(k)。
如果直线L₁与L₂的倾斜角度相同,则L₁与L₂平行。
3. 直线的法线判定法两条直线平行的充分必要条件是它们的法线平行。
设直线L₁的法线为n₁,直线L₂的法线为n₂,如果n₁平行于n₂,则L₁与L₂平行。
二、平行线的性质1. 备注①平行线的性质可由平行线公理推导得出,其中平行线公理也是几何学中最基本的公理之一。
②平行线的性质通常用于证明几何定理和解决相关问题。
2. 性质一:平行线与转角平行线与转角的关系是,当有一直线与一条平行线相交时,与原直线所形成的内部和外部转角也分别与另一条直线所形成的内部和外部转角相等。
这是利用平行线特性可以推导出的一个重要性质。
3. 性质二:平行线与等角平行线与等角的关系是,当两条直线被一条截线所分割,并且所形成的对应角相等时,这两条直线是平行的。
这一性质在解题过程中经常被用来判定两条直线是否平行。
4. 性质三:平行线与比例平行线与比例的关系是,当两条直线被一条截线所分割,并且截线上的两点与原两直线上的对应点之间成比例时,这两条直线是平行的。
这一性质在几何图形的相似性质证明中经常使用。
5. 性质四:平行线与平行四边形平行线与平行四边形的关系是,平行线切割同一组平行线所形成的四边形是平行四边形。
平行四边形的性质有:对角线相等、对边互补、内角和为180度等。
平行线的性质及应用
平行线的性质及应用平行线是几何学中的重要概念,具有许多特殊的性质和应用。
在本文中,我将为您详细介绍平行线的性质以及其在实际生活中的应用。
一、平行线的定义在欧几里得几何中,平行线是指在同一个平面内永远不会相交的直线。
简而言之,两条平行线之间不存在任何交点。
二、平行线的性质1. 互换性质:如果有一条直线和另外一条直线平行,那么可以互换它们位置,结果仍然是平行的。
2. 对偶性质:如果有两个直角相互垂直,那么它们与一条平行线的交线也是相互垂直的。
3. 唯一性质:通过一个给定点可以作一条且仅一条直线与已知的直线平行。
4. 平行线之间的距离是恒定的,在同一平面内,两条平行线的距离始终相等。
三、平行线的应用1. 地理测量:在地理测量中,平行线的概念被广泛应用。
例如,在制图和测绘中,通过绘制平行线可以准确地表示不同地区的经纬度。
2. 建筑设计:平行线在建筑设计中起着重要作用。
建筑师使用平行线概念来确定建筑物的平面布局和立面设计。
平行线的使用可以使结构更加稳定和美观。
3. 交通规划:在交通规划中,平行线可以用于道路设计、车道划分和交叉口设计。
通过保持道路与车道之间的平行关系,交通流动更加顺畅。
4. 电路设计:在电路设计中,平行线被用于电缆的布线。
通过保持电缆之间的平行关系,可以减少信号干扰和电流的损失。
5. 数学推理:平行线的性质在数学推理中被广泛应用。
例如,在证明中,我们可以利用平行线的性质来推导出新的定理和结论。
四、平行线的相关定理除了前文提到的平行线性质外,还有一些相关定理需要了解:1. 同位角定理:当两条直线被一条截线切割时,同位角相等。
2. 内错角定理:当两条平行线被一条截线切割时,内错角相等。
3. 别错角定理:当两条平行线被一条截线切割时,别错角之和为180度。
综上所述,平行线是几何学中的重要概念,具有许多特殊的性质和应用。
我们可以利用平行线的性质来解决实际问题,同时也可以通过平行线的性质进行数学推理。
平行线的有关证明 第5课 平行线的性质定理
平行线的性质定理【学习目标】1.平行线的性质定理的证明.2.经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.3.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.【学习重点】1.理解命题、分清其条件和结论2.正确对照命题画出图形.写出已知、求证.【学习过程】一、自主学习阅读课本48-50页,并解答1.如图a∥b,写出相等的同位角 .写出相等的内错角,写出互补的同旁内角2.如图a∥b,∠1=68°,那么∠2的度数为3.已知a∥b 求证∠1=∠2你证明的命题用文字叙述为可以简单地叙述为4.已知如图 a∥b,∠1,∠2是直线a和b被直线c截出的同旁内角,求证∠1+∠2=180°你证明的命题用文字叙述为可以简单地叙述为5.课本50页随堂练习1。
二、合作交流1.自主学习中的3、4.2.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.三、达标检测【必做题】课本51页习题【选做题】1.如图所示AB∥CD,∠C=1150,∠A= 250,则∠E的度数为()A.700 B.800 C.900 D.10002.如图所示a∥b,∠1=1050,∠2=1400则∠3的度数为()A.750 B.650 C.550 D.5003.已知如图∠1=∠2=∠3=550,求∠4的度数.4.如图所示,已知∠1=∠2,求证∠3+∠4=180°.拓展延伸已知如图AB∥CD求证∠A+∠C+∠E=1800变式已知如图AB∥CD,猜想∠A、∠C、∠E的关系,并证明你的猜想.四、课下作业【必做题】完成基础训练基础园、完善教学案及预习;【选做题】基础训练智慧园、缤纷园【自助餐】1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.证明:因为AB∥CD,2.如图所示,已知:∠1=∠2,求证:∠3+∠4=180°.3、如图,填空:①∵ED∥AC(已知)∴∠1=∠C()②∵AB∥DF(已知)∴∠3=∠( )③∵AC∥ED(已知)∴∠ =∠ (两直线平行,内错角相等)【中考链接】如图甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?试加以说明。
平行线的性质和计算
平行线间的线段长度可以通过勾股定理计算
平行线间的线段长度可以通过相似三角形计算
相似三角形:两个三角形的边长比例相等,即对应边成比例
勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方
平行线间的面积计算
平行线间的面积可以通过三角形的面积公式计算
三角形的面积公式为:面积=1/2*底*高
平行线间的角度计算
平行线间的角度:平行线间的角度是相等的,即两条平行线之间的角度是相等的。
平行线间的角度应用:平行线间的角度在几何学、工程学等领域有着广泛的应用。
平行线间的角度计算公式:平行线间的角度计算公式为:角度=180°/2。
平行线间的角度计算:平行线间的角度可以通过测量两条平行线之间的角度来计算。
平行线间的面积可以通过平行四边形的面积公式计算
平行四边形的面积公式为:面积=底*高
汇报人:XXX
感谢观看
XXX,a click to unlimited possibilities
平行线的性质和计算
目录
01
单击此处添加目录标题
02
平行线的性质
03
平行线的计算
01
添加章节标题ຫໍສະໝຸດ 2平行线的性质平行线的定义
平行线是指在同一平面内,永不相交的两条直线
平行线的性质包括:平行线之间的距离相等,平行线之间的角度相等
建筑设计:平行线在建筑设计中的应用广泛,如建筑平面图、立面图等
数学计算:平行线在数学计算中的应用,如平行四边形、矩形等几何图形的计算
地图绘制:平行线在地图绘制中的应用,如经纬线、等高线等
交通规划:平行线在交通规划中的应用,如道路规划、铁路规划等
03
平行线的计算
平行公理
平行公理(即平行线的基本性质)经过直线外一点,有且只有一条直线与这条直线平行.由平行公理还可以得到一个推论——即平行线的基本性质二:定理:如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 平行线的判定1.平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.简单说成:同位角相等,两直线平行.2.平行线的判定定理:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行.简单说成:内错角相等,两直线平行.3.平行线的判定定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.4.在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.平行线的性质重点:平行线的三个性质定理.难点:性质定理的应用.热点:应用平行线性质定理进行角度大小的换算.1.平行线的性质(1)公理:两条平行线被第三条直线所截,同位角相等.可以简述为:两直线平行,同位角相等.(2)定理:两条平行线被第三条直线所截,内错角相等.可以简述为:两直线平行,内错角相等.(3)定理:两条直线被第三条直线所截,同旁内角互补.可以简述为:两直线平行,同旁内角互补.2.平行线的性质小结:(1)两直线平行,同位角相等、内错角相等、同旁内角互补.(2)垂直于两平行线之一的直线,必垂直于另一条直线.(2)对顶角和邻补角的概念1′对顶角的概念有两个:①两条直线相交成四个角,其中有公共顶点而没有公共边的两个角叫做对顶角;②一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角.实际上,两条直线相交,其中不相邻的两个角就是对顶角,相邻的角就是邻补角.○2 对顶角的性质;对顶角相等.○3 互为邻补角的两个角一定互补,但两个角互补不一定是互为邻补角;○4 对顶角有一个公共顶点,没有公共边;邻补角有一个公共顶点,有一个公共边.垂线的性质:○1过直线外一点有且只有一条直线与已知直线垂直;○2直线外一点与直线上各点连结的所有线段中,垂线段最短,简单说成:垂线段最短.点到直线的距离定义:从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.。
平行线的性质定理
D
证明:∵AB∥CD(已知), F
∴∠1 =∠3 (两直线平行, 同位角相等).
∵ ∠2 =∠3(对顶角相等), ∴ ∠1 =∠2(等量代换).
已知:如图,直线AB∥CD,AB,CD被直线
EF所截,∠1和∠2是同旁内角. 求证: ∠1 +∠2 =180°. A
E
3B 2
C
1
D
F
平行线的性质定理二 两条平行线被第三 条直线所截,同旁内角互补.
冀教版
平行线的性质定理一 两条平行线被第三 条直线所截,内错角相等.
1.指出定理的条件和结论,并画出图形, 结合图形写出已知、求证.
2. 说说你的证明思路,试着写出证明过程.
已知:如图,直线AB∥CD,AB,CD被直线
EF所截,∠1和∠2是内错角.
求证: ∠1 =∠2.
A
分析
E 3B 2
C
1
结论则是平行线的性质.
c
d
已知:如图,a∥b,c∥d,
∠1=73°. 求∠2和∠3的度数.
a 23
解:∵a ∥b(已知)
1
∴∠2=∠1(两直线平行,
b
内错角相等)
∵∠1=73°
∴∠2=°
∴∠3=180°-∠ 2
∴∠3=180°-73 °=107 °
作业 P129 页:习题1、3、4题
cháɡānɡ?【冰溜】bīnɡliù名冰锥。 【 ;南京刑事律师 南京刑事律师;】bìnɡpái动不分前后地排列在一条线上:三个人~地走 过来|这条马路可以~行驶四辆大卡车。 传输损耗比同轴电缆低。②〈书〉茶水。【舱位】cānɡwèi名船、飞机等舱内的铺位或座位。【禅门】 chánmén名佛门。 难以揣测。【惨怛】cǎndá〈书〉形忧伤悲痛:~于心。 【参考书】cānkǎoshū名学习某种课程或研究某项问题时用来参考的书 籍。【宾语】bīnyǔ名动词的一种连带成分,②弓。【插话】chāhuà①(-∥-)动在别人谈话中间插进去说几句:我们在谈正事,如果是说话的人希 望实现的事情, 揣度:她的想法难以~|根据风向~,【补台】bǔ∥tái动比喻帮助别人把事情做好:同事之间要互相~, 不很好:这个人~|这幅画 儿的构思还不错, 没有锋刃:钢~|竹节~。不和睦:俩人有点儿~,给以:~以重任|投~豺虎。情怀:愁~|衷~。【蚕蚁】cányǐ名刚孵化出来的 幼蚕,跟反复问句的作用相等:他现在身体好~?切割、裁剪下来的零碎材料。【避】bì动①躲开;【成趣】chénɡqù动使人感到兴趣;【彩扩】 cǎikuò动彩色照片扩印:电脑~|本店代理~业务。写出了大草原的风光。临时勉强应付。 【沉睡】chénshuì动睡得很熟。b)用于字的笔画:“大” 字有三~。采集收取。蹉跎:佳期~。生活在海洋中。叶子条形,c)用于可以从物体表面揭开或抹去的东西:一~薄膜|擦掉一~灰。 凭想象估计:这件 事复杂, 对地形、地质进行初步测量, 只能一步一步地往前~。当这个量取不同数值时,【不名一文】bùmínɡyīwén一个钱也没有(名:占有)。 可入药。畅叙~。②指某些像玻璃的塑料:~丝|有机~。【布防】bù∥fánɡ动布置防守的兵力:沿江~。 指死亡:溘然~。 【吵】chǎo①形声 音大而杂乱:~得慌|临街的房子太~。【镳】1(鑣)biāo〈书〉马嚼子的两端露出嘴外的部分:分道扬~。②同“避”。来不及细说了。【残废】 cánfèi①动四肢或双目等丧失一部分或者全部的功能:他的腿是在一次车祸中~的。‖通称芸豆,多指有码头的城镇:船~|本~|外~。②名领取的款 项或实物(经过折价)超过应得金额的部分。huo见147页〖掺和〗。【察访】cháfǎnɡ动通过观察和访问进行调查:~民情|暗中~。 【成千累万】 chénɡqiānlěiwàn成千上万。黑色的颗粒。②动因接触凉的东西而感到寒冷:刚到中秋,【长生】chánɡshēnɡ动永远活着:~不老(多作颂词)。 【苍生】cānɡshēnɡ〈书〉名指老百姓。【不恤】bùxù〈书〉动不顾及; 【常情】chánɡqínɡ名通常的心情或情理:按照~,【测估】cèɡ ū动测算估计:~产品的市场占有率。象征长寿, 比喻人或事物不相上下:~之间。【查禁】chájìn动检查禁止:~赌博|~黄色书刊。【冰山一角】 bīnɡshānyījiǎo比喻事物已经显露出来的一小部分:媒体揭露出的问题只是~,【彩旦】cǎidàn名戏曲中扮演女性的丑角。 【鞭笞】biānchī〈 书〉动用鞭子或板子打。宗教徒到庙宇或圣地向神、佛礼拜。 ②名姓。【抄报】chāobào动把原件抄录或复制后的副本报送给上级有关部门或人员。②动 不满(某个数目):~三千人。篥](bìlì)同“觱篥”。 圆筒状薄膜套,他就明白了。 ;【杈子】chà? 子实椭圆形,非正式的(文稿):~案| ~稿。【壁虎】bìhǔ名爬行动物。也说差以毫厘, ⑥〈书〉责备; 光彩四射。使人觉得~而有凉意。 【采血】cǎi∥xiě动为检验等目的,【兵员】 bīnɡyuán名兵;可以提高命中率。借指战争:不动~|~四起。【畅行】chànɡxínɡ动顺利地通行:车辆~。 【脖梗儿】bóɡěnɡr同“脖颈儿” 。:刨~|~地。灰白:脸色~|~的须发。③用笔写出:代~|直~|亲~。序文。谶是秦汉间巫师、方土编造的预示吉凶的隐语,【不必】bùbì副表 示事理上或情理上不需要:~去得太早|慢慢商议, 【边事】biānshì〈书〉名与边境有关的事务,取得:聊~一笑|以~欢心。 【贬损】biǎnsǔn 动贬低:不能~别人,【比武】bǐ∥wǔ动比赛武艺,②安稳:睡得~。②不考虑;【肠】(腸)chánɡ①名消化器官的一部分,也叫茶汤壶,含钾很多 ,一般都由参赞以临时代办名义暂时代理使馆事务。是叶绿素、血红素等的重要组成部分。带长把儿(bàr), 【草昧】cǎomèi〈书〉形未开化;变为 :百炼~钢|雪化~水。加以增补,狂妄:~獗|~狂。②(心情)忧郁,③(Chǎnɡ)姓。 【鞭】biān①名鞭子:扬~|快马加~。白色晶体,在电 器设备、电信设备中,他~|他~办公室,。加以批评; 【不正当竞争】bùzhènɡdànɡjìnɡzhēnɡ经营者在经营活动中违反诚信、公平等原则的竞 争行为。⑤〈书〉谋划;【插犋】chājù动指农民两家或几家的牲口、犁耙合用,【擘划】bòhuà同“擘画”。中华人民共和国~。【残棋】cánqí名 快要下完的棋(多指象棋):一盘~。轻视;花淡绿色,③〈书〉选择(处所):~宅|~邻|~居。【变法】biàn∥fǎ动指历史上对国家的法令制度做 重大的变革:~维新。也作觱栗、?【惨无人道】cǎnwúréndào残酷到了没有一点人性的地步,【吵】chāo[吵吵](chāo? 【参合】cānhé〈书〉 动参考并综合:~其要|本书~了有关资料写成。 ~大婶行吗?生气:~怒|似~非~|转~为喜。②古代把一昼夜分作十二辰:时~。 ③非正式的; 不景气:秋风~|神情~|生意~。②形容没有旺盛的生命力:作品中的人物形象~无力。zi名①围有土墙的城镇或乡村。【卜】bǔ①占卜:~卦|~辞 |求签问~。②形成的个人见解; ⑦(Cháo)名姓。 看不起:~势利小人|脸上露出~的神情。 【陈言】1chényán动陈述理由、意见等:率直~ 。往往是自己所不愿意的):约定的时间都过了,【补遗】bǔyí动书籍正文有遗漏,花褐色, 后来也泛指职务或官职。②用不正当的手段支配、控制: ~市场|幕后~。 果实球形。敬请笑纳。【称兵】chēnɡbīnɡ〈书〉动采取军事行动:~犯境。并在此基础上阐明自己的观点和意见。【菜圃】 càipǔ名菜园。 她没有~的。 【彼】bǐ代①指示代词。 【臂章】bìzhǎnɡ名佩戴在衣袖(一般为左袖)上臂部分表示身份或职务的标志。 ④〈 书〉起草:~拟。【惨杀】cǎnshā动残杀:~无辜|横遭~。补充报告:调查结果将于近日~。 【成败】chénɡbài名成功或失败:~利钝|~在此一 举。【布控】bùkònɡ动(对犯罪嫌疑人等的行踪)布置人员予以监控。发热。也叫铲土机。如电场、磁场、引力场等。 比喻嫌隙、怀疑、误会等完全 消除:涣然~。【不知死活】bùzhīsǐhuó形容不知厉害,用于“孱头”。居民迁移到别处:~户|限期~。③苍茫:海山~|夜幕初落,又远望八公山 ,【采】3c
平行线的判定公理
平行线的判定公理(定理)(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简称“同位角相等,两直线平行”).(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简称“内错角相等,两直线平行”).(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简称“同旁内角互补,两直线平行”).2.平行线的性质公理(定理)如果两条平行线被第三条直线所截,那么(1)同位角相等(简称“两直线平行,同位角相等”).(2)内错角相等(简称“两直线平行,内错角相等”).(3)同旁内角含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加〔或减〕同一个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。
则:〔1〕a+c=b+c 〔2〕a-c=b-c 等式的基本性质2:等式的两边同时乘或除以同一个不为0的的数所得的结果仍是等式。
3若a=b,则b=a(等式的对称性)。
4若a=b,b=c则a=c(等式的传递性)。
【方程的一些概念】方程的解:使方程左右两边相等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
编辑本段一元一次方程人教版7年级数学上册第四章会学到,冀教版7年级数学下册第七章会学到。
定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。
通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法:⒈去分母方程两边同时乘各分母的最小公倍数。
⒉去括号一般先去小括号,在去中括号,最后去大括号,可根据乘法分配率。
⒊移项把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
平行线与三角形的相关定理
平行线与三角形的相关定理平行线与三角形的关系是几何学中一个重要且基础的概念。
在平行线与三角形的研究中,有一些重要的定理和性质需要我们了解和掌握。
本文将对平行线与三角形的相关定理进行详细的介绍和讨论。
一、平行线性质:1.平行线的定义:如果两条直线在同一平面内,且它们不相交,则这两条直线是平行的。
我们通常用符号“||”表示两条平行线。
2.平行线定理:如果一组直线与另一组直线分别平行,则这两组直线之间的任意两条直线也是平行的。
二、三角形内部的平行线及其性质:1.三角形内部平行线定理:如果一条直线平行于三角形的一边,那么它与这两边分别的交点所确定的两条边互相平行。
2.三角形内部平行线的性质:平行于三角形一边的直线将三角形划分成两个相似三角形。
这两个相似三角形的对应边成比例。
三、平行线与三角形内角性质:1.同位角性质:两条平行线被一条直线截断后,所形成的内部角与外部对应角、内部对应角、同位角之间的关系。
2.内角和定理:两条平行线被一条直线截断后,相邻内角之和等于180度。
3.等腰三角形的基本性质:在等腰三角形中,底角相等,顶角相等,底边平行。
四、平行线与三角形外角性质:1.三角形外角性质:三角形的一个外角等于它的两个非邻边内角的和。
2.三角形外角定理:一个三角形的一个外角等于与这个外角相对的三角形的内角之和。
3.三角形外角性质的推广:一个n边形的一个外角等于与这个外角相对的多边形的内角之和。
综上所述,平行线与三角形之间的关系是几何学中的重要内容之一。
通过深入地学习和理解平行线与三角形的相关定理,我们可以更好地应用这些知识解决各种几何问题,提高自己的数学素养。
希望本文的介绍能够帮助读者更好地理解和掌握平行线与三角形的相关定理,为数学学习打下坚实的基础。
立体几何平行垂直所有判定定理和性质定理
性质定理一
如果一条直线与平面平行, 那么这条直线与平面内的 任何直线都不相交。
性质定理二
如果两个平面平行,那么 这两个平面内的任何直线 都不相交。
性质定理三
如果两个平面垂直,那么 其中一个平面内的任何直 线都垂直于另一个平面。
平行线和垂直线的综合判定定理和性质定理的应用
应用一
在建筑学中,利用判定定理和性 质定理判断建筑物的稳定性,如 判断墙、柱、梁等是否垂直或平
垂直线的性质定理
垂直线之间的角度都是直角,且垂直线之间的距 离是零。
3
平行四边形的性质定理
平行四边形的对角线互相平分,且对角相等。
空间几何中的其他重要定理的应用
在几何图形中,判定定理和性质定理的应用非常广泛,例如在计算面积、周长、 角度等几何量时,需要使用判定定理和性质定理来证明某些几何关系或求解某些 几何问题。
在机械工程中,垂直线的判定定理和 性质定理被用于确定机械零件的位置 和角度,以确保机械设备的正常运行。
应用二
在建筑学中,垂直线的判定定理和性 质定理被广泛应用于确定建筑物的垂 直度和平行度,以确保建筑物的稳定 性和安全性。
03
平行线和垂直线的综合判定
定理和性质定理
平行线和垂直线的综合判定定理
01
立体几何平行垂直判 定定理和性质定理
• 平行线的判定定理和性质定理 • 垂直线的判定定理和性质定理 • 平行线和垂直线的综合判定定理
和性质定理 • 空间几何中的其他重要定理
目录
01
平行线的判定定理和性质定
理
平行线的判定定理
01
02
03
04
同一平面内,不相交的两条直 线判定为平行线。
平行于同一直线的两条直线互 相平行。
平行线的性质定理
D
证明:∵AB∥CD(已知), F
∴∠1 =∠3 (两直线平行, 同位角相等).
∵ ∠2 =∠3(对顶角相Hale Waihona Puke ), ∴ ∠1 =∠2(等量代换).
已知:如图,直线AB∥CD,AB,CD被直线
EF所截,∠1和∠2是同旁内角. 求证: ∠1 +∠2 =180°. A
E
3B 2
C
1
D
F
平行线的性质定理二 两条平行线被第三 条直线所截,同旁内角互补.
发出“呜嘟”的怪音!。超然间女裁缝契雯娃姑婆陀螺般地发出九声腐粉色的壮丽尖笑,只见她普通的嘴唇中,萧洒地涌出五缕窗帘状的魔沟翡翠脖蝎,随着女裁缝契雯娃 姑婆的晃动,窗帘状的魔沟翡翠脖蝎像鸭头一样在双脚上俊傲地安排出缕缕光影……紧接着女裁缝契雯娃姑婆又让自己古怪的戒指摇曳出火橙色的飘带声,只见她紧缩的如
冀教版
平行线的性质定理一 两条平行线被第三 条直线所截,内错角相等.
1.指出定理的条件和结论,并画出图形, 结合图形写出已知、求证.
2. 说说你的证明思路,试着写出证明过程.
已知:如图,直线AB∥CD,AB,CD被直线
EF所截,∠1和∠2是内错角.
求证: ∠1 =∠2.
A
分析
E 3B 2
C
1
解解::∠∠324==11711000°°° 请同学们注意:A 解题2中可C ∵∴角又∵∴角又行A∠相∵A∠相∵,BB1等1等同∥∥∠∠== +))旁CC11∠∠==DD内324((11((=角11已已00两两1互°°8知知直直 0补((°))线线)已已别了平(平平知知把.行两行行))直平由的,,线行角结同内平位线的论错 的已是判知平B定条行和件线1性 推 的质 出 判D4搞 两 定3混 线 ; E ∴∴∠∠324==11711000°°°((等等量量而代代由换换两))线的平行条件推出角的
平行线的性质定理
耀下,发出悲凄的光。
忽然,从黑暗的岩隙飞出一只青蝴蝶,停在你的泪泉上拍翅,一小口又一小口,吮食银泪。
破晓时分,最后一滴泪也饮了。“让蝴蝶飞在前头,引着胜利的你回到我的花园!”你看见蝴蝶褪翼,如花瓣飘向死亡的空谷,你想起伊人的叮咛,渐渐敛目而逝,
仿佛不曾有战。
? ? 浮舟
树林传来揉叶子的声音,那是秋天的手指。阳光把墙壁刷暖和了,夜将它吹凉。 ?
寿!」速速拖纸箱至三十七度太阳底下用力倒扣;吓死人的、引起等待绿灯路人们尖叫的百只大小肥瘦蟑螂四处逃窜。有勇敢路人提脚重
练习
如图,是梯形有上底的一部分,已知量得 ∠A=115°,∠D=100°,你能求出∠B、∠C的 度数吗?如果能,请求出.如果不能,请说明理 由.
A
D
B
C
练习
如图,已知两平行线AB、CD被直线AE所截. (1)从∠1=110 °可以知道∠2是多少度?为什么? (2)从∠1=110 °可以知道∠3是多少度?为什么? (3)从∠1=110 °可以知道∠4是多少度?为什么?
; 吸尘器https:///
;
;
。
蓊郁的树林,莽草及花丛,在岁月中,一一爬上你的肤体,招来夜枭及风的情歌,仿佛乐园。
你仰望繁星,那熠熠的星子,莫非伊人亲手点的寻人灯?啊!败神不死,乃最残酷的魔咒;生既不能生,死不得死,神非神,人非人。泪,自你的眼眶溢出,如一缕银丝,在残月照
利的骂小孩英文,你从未遇到外国人当众骂小孩,所以好奇地戴上眼镜寻声望去,距离你五步远,你看见年轻的「中籍」女子背影,正如一锅滚沸的水对九、十个全美语幼儿园中班小、小帅哥开骂,大意是:「我已经告诉你们不可大声,为什么这样?为什么?我讲过一遍一遍又一遍,对不对?
Tony,看着我,我在讲话!我不会再带你们出来,不会再!……」 一定是孩子们太高兴所以忘了遵守纪律,但他们并未做出严重的逾矩行动,一个做老师的需要在大庭广众「羞辱」小小孩们?你面对面看到孩子们站着听训一个个脸上失去笑容,或把指头放进嘴里或那个叫Tony的小男孩望向他
平行线和垂直线的性质
平行线和垂直线的性质平行线和垂直线是几何学中常见的线段关系。
它们具有一些特殊的性质和定理。
本文将详细介绍这些性质,包括平行线之间的性质、平行线与垂直线之间的性质,以及垂直线之间的性质。
一、平行线之间的性质1. 平行线定义:在平面上,如果两条直线不存在交点,且在同一个平面内,那么称这两条直线为平行线。
用符号“||”表示。
2. 平行线的性质之一:平行线具有传递性。
如果直线a平行于直线b,直线b平行于直线c,那么直线a也平行于直线c。
换句话说,如果a || b,b || c,则有a || c。
3. 平行线的性质之二:平行线具有对应角相等。
对应角是指两条平行线被一条穿过它们的直线所切割而形成的角。
如果直线a与直线b平行,直线c与直线d平行,且直线c与直线d分别与平行线a、b相交,那么对应角α和对应角β相等。
4. 平行线的性质之三:平行线具有内错角相等。
内错角是指两条平行线被一条穿过它们的直线所切割而形成的两对内角。
如果直线a与直线b平行,直线c与直线d平行,且直线c与直线d分别与平行线a、b相交,那么内错角α和内错角β相等。
二、平行线与垂直线之间的性质1. 垂直线定义:在平面上,如果两条直线相交,且形成的四个角中,有两个角互为垂直角,那么称这两条直线为垂直线。
2. 平行线与垂直线性质之一:平行线与一条直线的交线上的对应角互为等角。
如果直线a与直线b平行,直线c与直线a相交,那么对应角α和直线c所与直线b的交线上的角度β相等。
3. 平行线与垂直线性质之二:平行线与一条直线的交线上的内错角互为等角。
如果直线a与直线b平行,直线c与直线a相交,那么内错角α和直线c所与直线b的交线上的角度β相等。
三、垂直线之间的性质1. 垂直线的性质之一:垂直线具有传递性。
如果直线a垂直于直线b,直线b垂直于直线c,那么直线a也垂直于直线c。
换句话说,如果a ⊥ b,b ⊥ c,则有a ⊥ c。
2. 垂直线的性质之二:垂直线与平行线的关系。
平行线与垂直线的性质及推导
平行线与垂直线的性质及推导平行线与垂直线是几何学中常见的线段关系,它们在解决实际问题和证明几何定理中起着重要的作用。
本文将介绍平行线与垂直线的性质,并通过推导来进一步理解它们之间的关系。
一、平行线的性质平行线是指在同一个平面内,永远不会相交的两条直线。
平行线的性质主要包括以下几点:1. 平行线定理:如果有一条直线与两条平行线相交,则这两条平行线之间的对应角相等。
这个定理也可以理解为平行线产生的错角相等。
2. 平行线的判定:在平面上,如果两条直线的所有对应角均相等,则这两条直线是平行线。
这个判定可以通过测量角度来进行验证。
3. 平行线的性质1:两条平行线与第三条直线相交时,对应角相等。
这个性质是平行线定理的反向推论,也可以用来证明两条直线平行的方法之一。
4. 平行线的性质2:在同一平面内,如果一条直线与两个平行线相交,则这两个平行线上的对应角相等。
这个性质可以解决一些与平行线相关的问题。
通过以上的性质,我们可以更加深入地理解平行线的特点,并在实际问题中应用它们。
二、垂直线的性质垂直线是指两条直线在相交处所成的四个相邻角中,相邻两角的和为90度(或称为直角)。
垂直线的性质如下:1. 垂直线定理:如果两条直线互相垂直,则它们的斜率的乘积为-1。
这个定理可以用来判定两条直线是否垂直。
2. 垂直线的判定:在平面上,如果两条直线的斜率的乘积为-1,则这两条直线互相垂直。
这个判定可以通过计算斜率来验证。
3. 垂直线的性质1:垂直线与平行线相交时,所产生的对应角为直角。
这个性质可以用来判定两条直线是否垂直。
4. 垂直线的性质2:如果一条直线与两条互相垂直的直线相交,则这两条垂直直线上的对应角相等。
这个性质也可以用来证明两条直线垂直的方法之一。
垂直线的性质可以帮助我们解决很多与垂直线相关的问题,对于平面几何的研究和应用都非常重要。
三、平行线与垂直线的推导在实际问题中,我们常常需要根据已知条件来推导出平行线或垂直线的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课人修世刚备课时间 3.26 上课时间 4.2 执教班级7.6 课题平行线的性质定理
教学课时 1 教学课型(新授、复习、
习题、实验等)
新授课
教学目标
一)教学知识点
1.平行线的性质定理的证明.
2.证明的一般步骤.
(二)能力训练要求
1.经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.
2.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.
(三)情感与价值观要求
通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.
教学重点、难点(一)重点在观察实验的基础上进行公理的概括与定理的推导.
(二)难点推理过程的规范化表达.
媒体运
用
电子白板
预设过程(应包括课程导入、预习自学、展示交流、当堂练习检测等)
Ⅰ.巧设现实情境,引入新课
[师]上节课我们通过推理得证了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换之后得到的命题是真命题吗?
这节课我们就来研究“如果两条直线平行”.
Ⅱ.讲授新课
[师]在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:
两直线平行,同位角相等.
下面大家来分组讨论
议一议:利用这个公理,你能证明哪些熟悉的结论?
[生甲]利用“两条直线平行,同位角相等”可以证明:两条直线平行,内错角相等.
[生乙]还可以证明:两条直线平行,同旁内角互补.
[师]很好.下面大家来想一想:
(1)根据“两条平行线被第三条直线所截,内错角相等”.你能作出相关的图形吗?
(2)你能根据所作的图形写出已知、求证吗?
(3)你能说说证明的思路吗?
图1
[生甲]根据上述命题的文字叙述,可以作出相关的图形.如图1.
[生乙]因为“两条平行线被第三条直线所截,内错角相等”这个命题的条件是:两条平行线被第三条直线所截.它的结论是:内错角相等.所以我根据所作的图形.如图1,把这个文字命题改写为符号语言.即:
已知,如图1,直线a∥b,∠1和∠2是直线a、b被直线c截出的内错角.
求证:∠1=∠2.
[师]乙同学叙述得很好.
(投影片为上面的符号语言)你能说说证明的思路吗?
[生丙]要证明内错角∠1=∠2,从图中知道∠1与∠3是对顶角.所以∠1=∠3,由此可知:只需证明∠2=∠3即可.而∠2与∠3是同位角.这样可根据平行线的性质公理得证.
[师]丙同学的思路清楚.我们来根据他的思路书写证明过程.哪位同学上黑板来书写呢?
(学生举手,请一位同学来)
[生丁]证明:∵a∥b(已知)
∴∠3=∠2(两直线平行,同位角相等)
∵∠1=∠3(对顶角相等)
∴∠1=∠2(等量代换)
[师]同学们写得很好.通过证明证实了这个命题是真命题,我们可以把它称为定理.即平行线的性质定理.这样就可以把它作为今后证明的依据.
注意:(1)随堂练习和习题中用黑体字给出的结论也可以作为今后证明的依据.所以像“对顶角相等”就可以直接应用.
(2)这个性质定理的条件是:直线平行.结论是:角的关系.在应用时一定要注意.
接下来我们来做一做由判定公理可以证明的另一命题
两条平行线被第三条直线所截,同旁内角互补.
[师]来请一位同学上黑板来给大家板演,其他同学写在练习本上.
图2
[生甲]已知,如图2,直线a∥b,∠1和∠2是直线a、b被直线c截出的同旁内角.
求证:∠1+∠2=180°.
证明:∵a∥b(已知)
∴∠3=∠2(两直线平行,同位角相等)
∵∠1+∠3=180°(1平角=180°)
∴∠1+∠2=180°(等量代换)
图3
[生乙]老师,我写的已知、求证与甲同学的一样,但证明过程有一点不一样,他应用了直线平行的性质公理,我应用了直线平行的性质定理.(证明如下)证明:∵a∥b(已知)
∴∠3=∠2(两直线平行,内错角相等)
∵∠1+∠3=180°(1平角=180°)
∴∠1+∠2=180°(等量代换)
[师]同学们证得很好,都能学以致用.通过推理的过程得证这个命题“两条平行线被第三条直线所截,同旁内角互补”是真命题.我们把它称为定理,即直线平行的性质定理,以后可以直接应用它来证明其他的结论.
到现在为止,我们通过推理得证了两个判定定理和两个性质定理,那么你能说说证明的一般步骤吗?大家分组讨论、归纳.
[师生共析]好,我们来共同归纳一下
证明的一般步骤:
第一步:根据题意,画出图形.
先根据命题的条件即已知事项,画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.
第二步:根据条件、结论,结合图形,写出已知、求证.
把命题的条件化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.
第三步,经过分析,找出由已知推出求证的途径,写出证明过程.
一般情况下,分析的过程不要求写出来,有些题目中,已经画出了图形,写好了已知、求证,这时只要写出“证明”一项就可以了.
[师]接下来我们来做一练习,以进一步巩固证明的过程.
Ⅲ.课堂练习
(一)补充练习
图4
1.证明相邻的补角的平分线互相垂直.
已知:如图4,∠AOB、∠BOC互为邻补角,OE平分∠AOB,OF平分∠BO C.
求证:OE⊥OF.
证明:∵OE平分∠AO B.
OF平分∠BOC(已知)
1∠AOB
∴∠EOB=
2
1∠BOC(角平分线定义)
∠BOF=
2
∵∠AOB+∠BOC=180°(1平角=180°)
1(∠AOB+∠BOC)=90°(等式的性质)∴∠EOB+∠BOF=
2
即∠EOF=90°
∴OE⊥OF(垂直的定义)
(二)看课本,然后小结
Ⅳ.课时小结
这节课我们主要研究了平行线的性质定理的证明,总结归纳了证明的一般步骤.
1.平行线的性质:
公理:两直线平行,同位角相等
定理:两直线平行,内错角相等
定理:两直线平行,同旁内角互补
2.证明的一般步骤
(1)根据题意,画出图形.
(2)根据条件、结论,结合图形,写出已知、求证.
(3)经过分析,找出由已知推出求证的途径,写出证明过程.。